The Downward Spiral

Jeremy Greenwood

University of Pennsylvania

Nezih Guner

Karen Kopecky

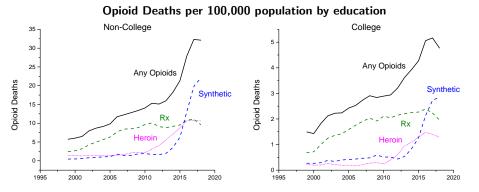
FRB Cleveland* and Emory University

2023 OIGI Research Conference

October 2023

*The views expressed do not necessarily reflect the position of the Federal Reserve Bank of Cleveland or the Federal Reserve System.

- Since 2000, more than 500,000 opioid overdose deaths.
- Leading cause of accidental death since 2017.



 Death rate and rise in synthetic opioids death rate particularly high for non-college.

Question

• What accounts for the dramatic rise in opioid overdose deaths?

Analysis

- Model recreational opioid usage, addiction, and death
- Calibrate to 2015–18 cross-sectional medical/economic data
 - Separate calibrations for college and non-college
 - Perform a cross-state validation check
- Assess various causal factors for the opioid crisis
 - Changes from 2000 to 2015–18 in
 - Prices (Rx and street)
 - Medical practices (Rx dosage levels and Rx durations)
 - Risk of death conditional on addiction
 - Misinformation about addiction risk

Main Findings

- All factors together account for:
 - 73% of the \uparrow in non-college deaths
 - 49% of the \uparrow in college deaths
- Most important factors: \downarrow in prices, \uparrow in death risk, \downarrow in misinformation
- Consumers value recreational opioids
 - non-college: 0.52% of their consumption
 - college: 0.23%
- Consumers value medical interventions that reduce addiction or death risk
 - even though these could increase opioid consumption and deaths

In the 1990s physicians rethought the need to manage pain

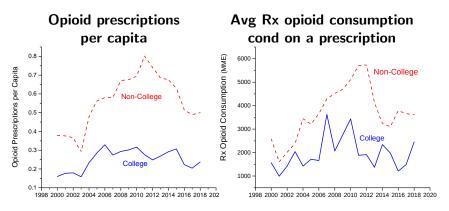
• 1995: Dr. James Campbell addresses the American Pain Society: treat pain as the "fifth vital sign" (American Pain Society, 1999)

Drug companies entered the scene

- 1996: Purdue Pharma introduces OxyContin with aggressive marketing campaign claiming:
 - "(d)elayed absorption, as provided by OxyContin tablets, is believed to reduce the abuse liability of a drug"
 - rate of addiction: < 1%
- Pills were open to abuse by crushing then snorting or injecting.

Increase in prescription opioids

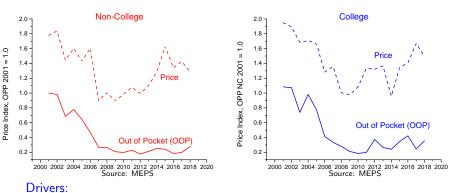
Starting in early 2000's, large increase in Rx opioid use.



Source: Medical Expenditure Panel Survey (MEPS), sample: non-students ages 18-64

Introduction

Decline in prescription opioid prices

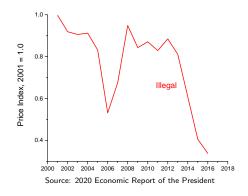


And dramatic fall in prescription opioid prices.

- advent of generic prescription opioids in 2004
- 2001–2010: % of Rx opioids funded by govt ↑ from 17% to 60% due to Medicare Part D Rx drug coverage (2006) and ↑ in SSDI recepiency.

Introduction Decline in illegal opioid prices

As well as fall in illegal opioid prices.



Drivers:

- diversion of opioids from legal sources onto the black market
- illegal imports of inexpensive powerful and more deadly synthetic opioids, fentanyl

Introduction Opioid Use

US Population Ages 18-64 by Opioid Use, 2015/18

		<u> </u>	· · ·		
	Nonuser	Prescription	Misuser	Addict	Dead
Non-College	0.80688	0.13477	0.04479	0.01328	0.00028
College	0.87342	0.09182	0.03040	0.00432	0.00005

Source: NSDUH, MEPS, and CDC Vital Statistics

- **Misuser:** use any opioids w/o a prescription, use for reasons other than directed by a physician, use more than prescribed
- Addict: misuser who has an opioids dependence according to criteria in the American Psychiatric Association *Diagnostic* and Statistical Manual of Mental Disorders (DSM-5)
- Calibrated model will match this distribution

Introduction Opioid Use

US Population Ages 18-64 by Opioid Use, 2015/18

	Nonuser	Prescription	Misuser	Addict	Dead
Non-College	0.80688	0.13477	0.04479	0.01328	0.00028
College	0.87342	0.09182	0.03040	0.00432	0.00005
NC/CL		1.47	1.47	3.07	5.60
Source: NSDUH, MEPS, and CDC Vital Statistics					

• Non-college:

- 3 times more likely to be an addict
- 5.6 times more likely to die from opioid overdose
- About twice as likely to die conditional on addiction

Non-college account for 86% of addicts and 93% of deaths.

Model of Rational Addiction Setup

Goods

- Three goods: consumption, c, leisure, l, and opioids, o
 - price of prescription opioids, p
 - prescription level of opioids, <u>o</u>
 - price of black market opioids, q

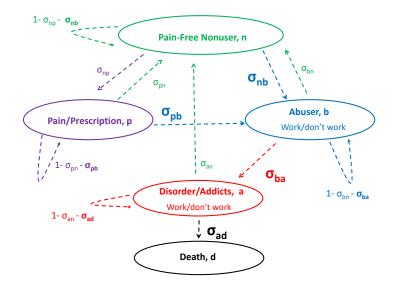
Addiction

- Five stages of potential addiction, s = n, p, b, a, d
- *n*, nonuser—everyone starts here
- p, prescription user
 - \rightarrow *b*, abuser—either nonuser or prescription user
 - $\rightarrow a$, addict
 - ightarrow d, death

Transition Probabilities

- Transition probability from stage i to j, σ_{ij}
 - some endogenous, some exogenous

Model Stages



Labor

- Hours worked are indivisible, $h \in \{0, \mathfrak{h}\}$
- Productivity in stage s, π_s
 - $\pi_a < \pi_b < \pi_p = \pi_n$
- Non-employment transfer, t
- Employment decision made after opioid decision
- Nonusers and prescription users always work

Budget Constraint

$$c = \begin{cases} \pi_{s}\mathfrak{h}, & \mathsf{w} \\ \pi_{s}\mathfrak{h} - qo, & \mathsf{w} \\ \pi_{s}\mathfrak{h} - p\underline{o} - q(o - \underline{o}), & \mathsf{w} \\ t - qo, & \sim \end{cases}$$

works/ \sim use, s = n; works/uses, s = n, b, a; works/uses, s = p; \sim work/uses, s = b, a.

Opioid utility function – state contingent

$$O(o-\underline{o}) = \begin{cases} O_s(o-\underline{o}) + \varepsilon_s = \mu_s[(o-\underline{o})^{1-\psi} - 1]/(1-\psi) + \varepsilon_s, & \text{user in } s = n, p; \\ O_s(o-\underline{o}) = \mu_b[(o-\underline{o})^{1-\psi} - 1]/(1-\psi), & \text{user in } s = b; \\ O_s(o-\underline{o}) = \mu_a[(o-\underline{o})^{1-\psi} - 1]/(1-\psi) - \omega_a, & \text{user in } s = a; \\ 0, & \text{nonabuser in } s = n, p. \end{cases}$$

with state contingent weights

$$\mu_a \ge \mu_b \ge \mu_p \ge \mu_n;$$

Gumbel euphoria shocks

$$\Pr[\varepsilon_s \leq \tilde{\varepsilon_s}] = \Gamma(\tilde{\varepsilon_s}) = \exp\left(-\exp[-(\tilde{\varepsilon_s} - \nu_s)/\zeta_s]\right), \text{ for } s = n, p;$$

and addiction utility cost $\omega_a \geq 0$.

Leisure utility function - state contingent

$$L(I) = \begin{cases} L_s(1-\mathfrak{h}) = (1-\mu_s)\eta \ln(1-\mathfrak{h}), & \text{work, } s = n, p, b, a; \\ L_s(1) + \lambda_s = \lambda_s & \sim \text{work, } s = b, a. \end{cases}$$

with Gumbel leisure shocks

$$\Pr[\lambda_s \leq \tilde{\lambda_s}] = \Lambda(\tilde{\lambda}_s) = \exp\left(-\exp[-(\tilde{\lambda_s} - \iota_s)/\xi_s]\right), \text{ for } s = b, a.$$

Goods utility function - state contingent

$$U(c) = (1 - \mu_s)(1 - \eta)(c^{1-\rho} - 1)/(1 - \rho).$$

Objective probabilities of addiction and death - endogenous

$$\sigma_{ij} = S_{ij}(o) = \kappa_j \sqrt{o}, \text{ for } (i \rightarrow j) = (b \rightarrow a), (a \rightarrow d)$$

• function of opioid use, o

Subjective probability of addiction - early stage of crisis

$$\widetilde{\sigma}_{ba} = \alpha S_{ba}(o)$$
, with $0 \le \alpha \le 1$

• degree of misperception, α

Expected Lifetime Utilities

- N, nonuser
 - before ecstasy shock, ε_n
- P, prescription user
 - before ecstasy shock, ε_p
- *B*, abuser
 - before leisure shock, λ_b
- A, addict
 - before leisure shock, λ_a
- δ , value of death
- β , discount factor

Model

Prescription User's Decision Problem

Prescription User

• Threshold rule for opioid use

$$o = \begin{cases} \underline{o}, & \text{abide by Rx, if } \varepsilon_p < \varepsilon_p^*; \\ o > \underline{o}, & \text{don't abide, if } \varepsilon_p > \varepsilon_p^*. \end{cases}$$

• Odds abide by prescription

$$\mathsf{Pr}(\mathsf{abide}) = \underbrace{\Gamma(\varepsilon_p^*)}_{\text{Gumbel}}$$

$$\Pr(\operatorname{don't} \operatorname{abide}) = 1 - \Gamma(\varepsilon_p^*)$$

Model

Prescription User's Bellman equation

$$P = \underbrace{\Gamma(\varepsilon_{p}^{*})}_{\text{abide}} \left\{ U(\pi_{p}\mathfrak{h} - p\underline{o}) + L_{p}(1-\mathfrak{h}) + \beta \left[(1-\sigma_{pn})P + \sigma_{pn}N \right] \right\}$$
$$+ \underbrace{\left[1 - \Gamma(\varepsilon_{p}^{*})\right]}_{\text{don't abide}} \left\{ \max_{o > \underline{o}} U(\pi_{p}\mathfrak{h} - p\underline{o} - q(o-\underline{o})) + O_{p}(o-\underline{o}) + E[\varepsilon_{p}|\varepsilon_{p} \ge \varepsilon_{p}^{*}] + L_{p}(1-\mathfrak{h}) + \beta \left[(1-\sigma_{bn})B + \sigma_{bn}N \right] \right\}.$$

Abusers

• Threshold rule for working

$$h = \begin{cases} 1, & \text{work, if } \lambda_b < \lambda_b^*; \\ 0, & \text{don't work, if } \lambda_b > \lambda_b^*. \end{cases}$$

• Odds of work and no work

 $\Pr(\text{work}) = \Lambda(\lambda_b^*)$ and $\Pr(\text{don't work}) = 1 - \Lambda(\lambda_b^*)$

- Odds of addiction
 - Actual: $S_{ba}(o)$
 - Perceived: **a** S_{ba}(o)
 - functions of opioid use, o

Abuser's Bellman equation

$$B = \max_{o \ge \underline{o}} \left\{ \underbrace{\Lambda(\lambda_b^*)}_{\text{work}} \left\{ U(\pi_b \mathfrak{h} - \boldsymbol{q} o) + O_b(o - \underline{o}) + L_b(1 - \mathfrak{h}) \right. \\ \left. + \left[1 - \boldsymbol{\alpha} S_{ba}(o) \right] \beta \left[(1 - \sigma_{bn}) B + \sigma_{bn} N \right] + \boldsymbol{\alpha} S_{ba}(o) \beta A \right\} \right. \\ \left. + \underbrace{\left[1 - \Lambda(\lambda_b^*) \right]}_{\text{don't work}} \left\{ U(t - \boldsymbol{q} o) + O_b(o - \underline{o}) + L_b(1) + \mathbf{E}[\lambda_b | \lambda_b \ge \lambda_b^*] \right\} \right.$$

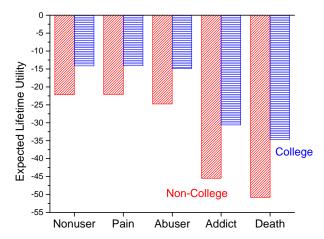
+
$$[1 - \alpha S_{ba}(o)]\beta[(1 - \sigma_{bn})B + \sigma_{bn}N] + \alpha \underbrace{S_{ba}(o)}_{addiction} \beta A \}$$
.

Quantative Exercise Overview

- Between 2000 and 2018:
 - \downarrow opioid prices (**p** and **q**)
 - \uparrow prescription dosage level (<u>o</u>)
 - \uparrow prescription duration ($\downarrow \sigma_{pn}$)
 - \uparrow death risk conditional on addiction (κ_d)
 - due to shift in opioid consumption towards more deadly fentanyl
 - \downarrow misinformation about addiction risk ($\uparrow \alpha$)
- Assess impact of these changes on usage and deaths

- Model period is one year.
- Calibrate model to 2015–2018 cross-sectional data assuming no misinformation (α = 1).
- Some parameters are set directly others are chosen by targeting moments such as
 - opioid consumption levels and transition rates by stage of usage, opioid price elasticity, VSL.
- To determine α in 2000:
 - assume beliefs about addiction risk in 2000 are same as in 2010 (peak of Rx distribution).
 - target 2010–2018 change in deaths given observed changes in prices, Rx's, and death risk.
- Separate calibrations for college and non-college.

Baseline Calibration The Downward Spiral



Cross-State Validation Check

Triplicate Prescription Programs

- When OxyContin was introduced in 1996, some states had drug monitoring programs called Triplicate Prescription Programs.
 - California, Idaho, Illinois, NY, Texas
- Triplicate states:
 - OxyContin distribution was \approx 50% \downarrow
 - Less marketing of OxyContin
 - Opioid deaths were $45\% \downarrow$

• Number of people misusing opioids was 50% (Alpert, Evans, Lieber and Powell, 2019)

• Is the model-implied relationship between distribution and marketing of Rx opioids and opioid misuse/deaths consistent with this evidence?

Cross-State Validation Check

Mimicking Triplicate Prescription Programs

Exercise: Compare misuse/deaths in

- 2000 steady state and
- 2000 steady state with Triplicate Prescription Programs:
 - Rx opioid distribution 50% lower:
 - $1 \downarrow \# \mathsf{Rx} \text{ users } (\sigma_{np})$
 - **2** \downarrow Rx strength (<u>o</u> in budget constraint only)
 - 3 Equal share decline in both
 - Less OxyContin marketing:
 - Eliminated misinformation

Cross-State Validation Check Model v. Data

Deaths in 2000: Effect of Triplicate Prescription Programs

	Deaths	Misusers (%)
2000 steady state	17,449	3.0
Rx opioid distribution 50%↓ ↓ # Rx users ↓ Rx strength ↓ Both	7,124 (59.2%↓) 10,608 (39.2%↓) 8,632 (50.5%↓)	1.3 (56.1%↓) 2.0 (33.3%↓) 1.6 (46.3%↓)

• Alpert et al (2022): 45% lower deaths in triplicate states.

Cross-State Validation Check Model v. Data

Deaths in 2000: Effect of Triplicate Prescription Programs

	Deaths	Misusers (%)
2000 steady state	17,449	3.0
Rx opioid distribution 50%↓ ↓ # Rx users ↓ Rx strength ↓ Both	7,124 (59.2%↓) 10,608 (39.2%↓) 8,632 (50.5%↓)	1.3 (56.1%↓) 2.0 (33.3%↓) 1.6 (46.3%↓)

• Alpert et al (2022): 50% less misusers in triplicate states.

Results: Deaths

What accounts for the increase in deaths?

- Between 2000 and 2018
 - prices declined
 - 2 prescriptions became more powerful
 - 3 prescription lengths got longer
 - 4 risk of death conditional on addiction increased
 - 5 misinformation about addiction risk declined
- Use model to assess the contribution of each factor to the rise in opioid usage and death.

Experiment: Higher prices

Increase opioid prices: street 155%, prescription 350%

Non-college			
	Baseline	$\uparrow p$ and q	% Change
	2018	2000	2018 to 2000
Opioid Consumption	on		
Average	365.6	119.7	67% ↓
Misusers	3,967.8	3,877.7	
Addicts	14,372.3	8,865.2	
Demographics			
Misusers	0.0444	0.0179	
Addicts	0.0132	0.0057	
Deaths	37,596	12,662	
Deaths, explained		83%	

• Higher prices \Rightarrow 67% decline in opioid consumption for non-college.

Experiment: Higher prices

Increase opioid prices: street 155%, prescription 350%

Non-college						
	Baseline	$\uparrow p$ and q	% Change			
	2018	2000	2018 to 2000			
Opioid Consumption	Opioid Consumption					
Average	365.6	119.7				
Misusers	<i>3,967.8</i>	3,877.7	2% ↓			
Addicts	14,372.3	8,865.2	38%↓			
Demographics						
Misusers	0.0444	0.0179	60% ↓			
Addicts	0.0132	0.0057	57% ↓			
Deaths	37,596	12,662				
Deaths, explained 83%						

 Both consumption conditional on misuse/addiction and the number of misusers/addicts decline.

Experiment: Higher prices

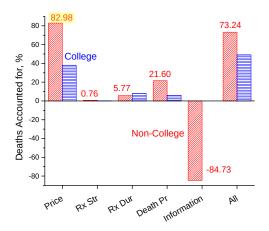
Increase opioid prices: street 155%, prescription 350%

Non-college					
	Baseline	$\uparrow p$ and q	% Change		
	2018	2000	2018 to 2000		
Opioid Consumpti	Opioid Consumption				
Average	365.6	119.7			
Misusers	3,967.8	3,877.7			
Addicts	14,372.3	8,865.2			
Demographics					
Misusers	0.0444	0.0179			
Addicts	0.0132	0.0057			
Deaths	37,596	12,662	66% ↓		
Deaths, explained		83%			

• Non-college: \approx 7,549 deaths in 2000

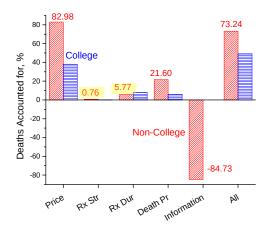
• Change in prices generates pprox 83% of change in deaths

Accounting for the increase in opioid deaths 2000 to 2018



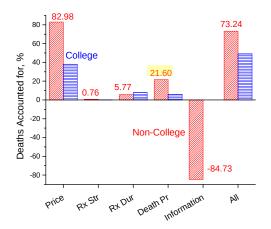
 Decline in prices had the largest effect accounting for 83% of the rise in non-college deaths.

Accounting for the increase in opioid deaths 2000 to 2018



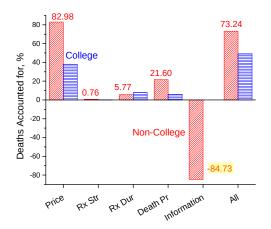
• Changes in Rx dosages and durations had little effect.

Accounting for the increase in opioid deaths 2000 to 2018



• Increases in the risk of death accounts for 22% of the rise.

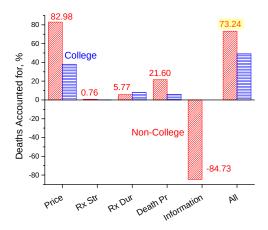
Accounting for the increase in opioid deaths 2000 to 2018



• Decline in misinformation reduced deaths by 85% of the rise.

Results Summary

Accounting for the increase in opioid deaths 2000 to 2018



• All factors together account for 73% of the rise in deaths for non-college and 49% for college.

- A model of the opioid crisis is developed and calibrated.
- Find:
 - drop in Rx and street prices of opioids
 - increases in Rx strength and duration
 - increase in addicts' death risk and
 - decline in misinformation

can account for more than 70% of rise in non-college deaths.

• Drop in prices and increase in death risk had the largest impact.

Reducing the probability of addiction or death

- Consider two medical advances:
 - A reduction in the probability of death for a given level of opioid usage

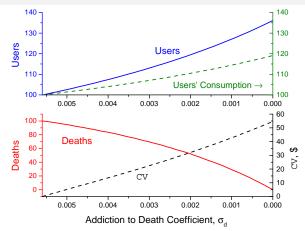
Example: improvements in drugs like Naloxone

2 A reduction in the probability of addiction for a given level of opioid usage

Example: development of less addictive opioids

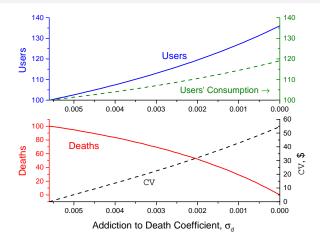
• What are the implications for usage and deaths?

Reducing the probability of dying by lowering σ_d



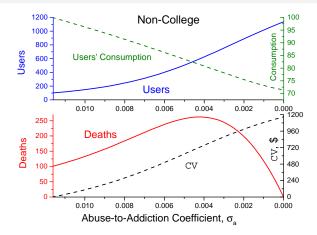
- Number of users and their usage levels ↑.
- Consistent with Doleac and Mukherjee (2021) who find ↑ access to naloxone ⇒ ↑ usage using cross-state variation.

Reducing the probability of dying by lowering σ_d



- On net, deaths \downarrow .
- Avg. WTP \approx \$24 for 50% \downarrow in cond. death prob.

Reducing the probability of addiction by lowering σ_{a}



- Number of users ↑ substantially but usage levels ↓ (less addicts). Deaths ↑ and then ↓.
- Avg. WTP \approx \$522 for 50% \downarrow in cond. addiction prob.

Baseline Calibration

Value of recreational opioids to consumers

 What is the willingness to pay to move from a world without illegal opioids to their availability at the 2015-2018 prices?

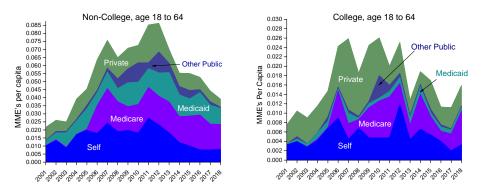
from ∞ to baseline value					
Non-College College					
Non-user	\$198.64	\$146.40			
Prescription-user	\$363.80	\$272.05			
Average	\$225.85	\$159.99			

WTP to reduce illicit price of opioids

- Non-college average WTP = 0.52% of non-opioid consumption.
- College is 0.23%.

- 1990s: pain management movement
- 1995: American Pain Society argues pain is the fifth vital sign
- 1996: Purdue Pharma introduces OxyContin with an aggressive marketing campaign targeted at physicians.
- 2002–2005: Hospital Consumer Assessment of Healthcare Providers and Systems Survey (HCAHPS) and 2005 Deficit Reduction Act links Medicare/Medicaid payments to hospitals to pain management survey results.
- 2004: generic opioids enter the Rx market
- 2006: a Mexican lab dramatically \uparrow US fentanyl supply, was quickly shut down through cooperative action of US and Mexico.
- 2001–2010: % of Rx opioids funded by govt \uparrow 17% to 60%
- 2006: Medicare part D prescription drug coverage
- 2007–2010: SSDI rolls expand
- 2010: tamper-resistant OxyContin formulation released, heroin usage \uparrow
- 2013: fentanyl enters the US black market primarily from China/Mexico

Introduction Primary payer by MME



• 2001–2010: % of Rx opioids funded by govt \uparrow 17% to 60%

• Threshold rule for opioid use

$$o = \left\{ \begin{array}{ll} 0, & \text{don't use, if } \varepsilon_n < \varepsilon_n^*; \\ o > \underline{o}, & \text{use, if } \varepsilon_n > \varepsilon_n^*. \end{array} \right.$$

–odds don't use and use, $\Gamma(\varepsilon_n^*)$ and $1-\Gamma(\varepsilon_n^*)$

• Nonuser's Bellman equation

$$N = \underbrace{\Gamma(\varepsilon_n^*)}_{\text{don't use}} \left\{ U(\pi_n \mathfrak{h}) + L_n(1-\mathfrak{h}) + \beta [(1-\sigma_{np})N + \sigma_{np}P] \right\}$$
$$+ \underbrace{[1-\Gamma(\varepsilon_n^*)]}_{\text{use}} \left\{ \max_{o>\underline{o}} U(\pi_n \mathfrak{h} - \boldsymbol{q}o) + O_n(o-\underline{o}) + \mathbf{E}[\varepsilon_n | \varepsilon_n \ge \varepsilon_n^*] + L_n(1-\mathfrak{h}) + \beta [(1-\sigma_{bn})B + \sigma_{bn}N] \right\}$$

Nonuser's threshold equation

$$\varepsilon_n^* = \underbrace{U(\pi_n \mathfrak{h}) + L_n(1 - \mathfrak{h}) + \beta [(1 - \sigma_{np})N + \sigma_{np}P]}_{\text{expected utility if don't use}} - \max_{o > \underline{o}} \left\{ U(\pi_n \mathfrak{h} - qo) + L_n(1 - \mathfrak{h}) + O_n(o - \underline{o}) + \beta [(1 - \sigma_{bn})B + \sigma_{bn}N] \right\}.$$

expected utility if use net of euphoria shock

Addicts

• Threshold rule for working

$$h = \begin{cases} 1, & \text{work, if } \lambda_a < \lambda_a^*; \\ 0, & \text{don't work, if } \lambda_a > \lambda_a^*. \end{cases}$$

• Odds of work and no work

 $\Pr(\text{work}) = \Lambda(\lambda_a^*)$ and $\Pr(\text{don't work}) = 1 - \Lambda(\lambda_a^*)$

• Odds of death, S_{ad}(o)

Addict's Bellman equation

$$A = \max_{o \ge \underline{o}} \left\{ \underbrace{\Lambda(\lambda_a^*)}_{\text{work}} \left\{ U(\pi_a \mathfrak{h} - \boldsymbol{q} o) + O_a(o - \underline{o}) + L_a(1 - \mathfrak{h}) \right. \\ \left. + \left[1 - S_{ad}(o) \right] \beta \left[(1 - \sigma_{an})A + \sigma_{an}N \right] + S_{ad}(o)\beta\delta \right\} \right. \\ \left. + \underbrace{\left[1 - \Lambda(\lambda_a^*) \right]}_{\text{don't work}} \left\{ U(t - \boldsymbol{q} o) + O_a(o - \underline{o}) + L_a(1) + \mathbf{E}[\lambda_a|\lambda_a \ge \lambda_a^*] \right. \\ \left. + \left[1 - S_{ad}(o) \right] \beta \left[(1 - \sigma_{an})A + \sigma_{an}N \right] + \underbrace{S_{ad}(o)}_{\text{death}} \beta\delta \right\} \right\}.$$

▶ Back

- In the estimated Markov chains:
 - stages are different
 - misusers: include abusers and first-time misusers
 - some transition matrix elements picked directly from the data
 - rest are estimated
 - use data on (unconditional) fractions of population in each stage details
 - and imposing model-implied restrictions on elements details
- Using estimation results:
 - solve nonlinear system to obtain some model parameters.

Calibration Markov Chains Estimation Results

Parameter	Explanation	Non-College	College
σ_{np}	$Prob[n \rightarrow p]$	0.0347	0.0449
σ_{pn}	$Prob[p \rightarrow n]$	0.1759	0.3703
σ_{bn}	$Prob[b \rightarrow n]$	0.1419	0.1854
σ_{an}	$Prob[a \rightarrow n]$	0.0455	0.0290
$\Gamma(\varepsilon_n^*)$	Non-misusers ÷ Nonusers	0.9966	0.9989
$\Gamma(\varepsilon_p^*)$	Non-misusers \div Prescription users	0.9689	0.9510
$S_{ba}(o)$	$Prob[b{ o}a]$	0.0232	0.0069
$S_{ad}(o)$	$Prob[a \rightarrow d]$	0.0212	0.0106

 Estimation gives us 4 exogenous transition probabilities and 4 target moments.

Calibration Highlights Markov Chains Estimation

US Population Ages 18-64 by Opioid Use, Fractions

	Nonuser	Prescription	Misuser	Addict	Dead
	tn	tp	t_{m}	ta	td
Non-College	0.80688	0.13477	0.04479	0.01328	0.00028
College	0.87342	0.09182	0.03040	0.00432	0.00005
C 001E 0					

Source: 2015–2018 NSDUH, MEPS, and CDC Vital Statistics

- Misuser: use any opioids w/o a prescription, use them for reasons other than directed by a physician, use more than prescribed
- Addict: misuser who has an opioids dependence according to criteria in the American Psychiatric Association *Diagnostic* and Statistical Manual of Mental Disorders (DSM-5).

Transition Matrix for the Model

 $T = [i \to j]$

Cells have endogenous components

$$\begin{bmatrix} i/j & \to n & \to p & \to b \\ n & \Gamma(\varepsilon_n^*)(1-\sigma_{np}) + [1-\Gamma(\varepsilon_n^*)]\sigma_{bn} & \Gamma(\varepsilon_n^*)\sigma_{np} & [1-\Gamma(\varepsilon_n^*)](1-\sigma_{bn}) \\ p & \Gamma(\varepsilon_p^*)\sigma_{pn} + [1-\Gamma(\varepsilon_p^*)]\sigma_{bn} & \Gamma(\varepsilon_p^*)(1-\sigma_{pn}) & [1-\Gamma(\varepsilon_p^*)](1-\sigma_{bn}) \\ b & [1-S_{ba}(o)]\sigma_{bn} & 0 & [1-S_{ba}(o)](1-\sigma_{bn}) \\ a & [1-S_{ad}(o)]\sigma_{an} & 0 & 0 \\ d & 1 & 0 & 0 \\ \end{bmatrix}$$

Transition Matrix for the Model Mapped to the Data

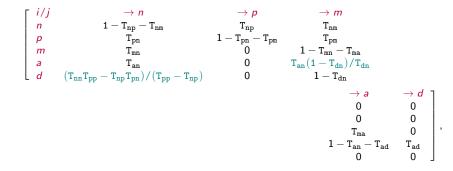
 $T = [i \to j]$

Cells have endogenous components

$$\begin{bmatrix} i/j & \rightarrow n & \rightarrow p & \rightarrow m \\ n & \Gamma(\varepsilon_n^*)(1-\sigma_{np}) & \Gamma(\varepsilon_p^*)\sigma_{np} & [1-\Gamma(\varepsilon_n^*)](1-\sigma_{np}) + [1-\Gamma(\varepsilon_p^*)]\sigma_{np} \\ p & \Gamma(\varepsilon_n^*)\sigma_{pn} & \Gamma(\varepsilon_n^*)(1-\sigma_{pn}) & [1-\Gamma(\varepsilon_n^*)]\sigma_{pn} + [1-\Gamma(\varepsilon_p^*)](1-\sigma_{pn}) \\ m & \{\tilde{e}_b[1-S_{ba}(o)] + \tilde{e}_n + \tilde{e}_p\}\Gamma(\varepsilon_n^*)\sigma_{bn} & 0 & T_{mm} \\ a & [1-S_{ad}(o)]\sigma_{an}\Gamma(\varepsilon_n^*) & 0 & [1-S_{ad}(o)]\sigma_{an}[1-\Gamma(\varepsilon_n^*)] \\ d & 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} -\delta_{ad}(o) & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Estimated Transition Matrix-Data

2 cross-cell restrictions-implied by model



Calibration Opioid prices 2015–2018

Non-College

Prescription

avg annual usage, <u>o</u> avg OOP expenses price, p (avg OOP exp/avg usage) Street 3,544 MME \$48.38 \$0.014/MME

Source: MEPS MME - morphine milligram equivalents

- avg annual usage pprox 10 MME a day
- Typical doses:
 - Starting: 15 MME every 12 hours
 - Standard: less than 60 MME every 12 hours

Calibration Opioid prices 2015–2018

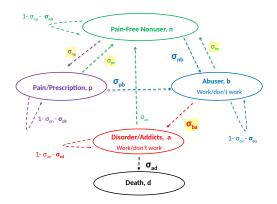
Non-College

Prescriptionavg annual usage, \underline{o} 3,544 MMEavg OOP expenses\$48.38price, p (avg OOP exp/avg usage)\$0.014/MMEStreet\$0.67/MMEgiven by friends/relatives or stolen65%price, q (0.35× street price)\$0.24/MME

Source: MEPS MME - morphine milligram equivalents

• street price: $q = $0.67 \times 0.35 = 0.24 per MME

Calibration Markov Chain



- Data: Some transitions taken directly from data and some estimated by targeting usage demographics.
- Calibration: Set exogenous transitions to observed/estimated values and use endogenous ones as targets.

Opioid usage:

- weights on opioid utility, euphoria shock variances, addiction and death probabilities
- **Targets:** abusers and addicts opioid consumption; transition rates: nonuser (Rx user) to abuser, abuser to addict, addict to dead

Employment:

- variances of leisure shocks and labor productivities of abusers and addicts
- **Targets:** abusers and addicts relative employment rates and income

- death and addiction disutility, extent of misperception in 2000
- **Targets:** statistical value of life, opioid price elasticity, 2010-18 ∆deaths

Opioid usage:

- weights on opioid utility, euphoria shock variances, addiction and death probabilities
- **Targets:** abusers and addicts opioid consumption; transition rates: nonuser (Rx user) to abuser, abuser to addict, addict to dead

Employment:

- variances of leisure shocks and labor productivities of abusers and addicts
- **Targets:** abusers and addicts relative employment rates and income

- death and addiction disutility, extent of misperception in 2000
- **Targets:** statistical value of life, opioid price elasticity, 2010-18 ∆deaths

Opioid usage:

- weights on opioid utility, euphoria shock variances, addiction and death probabilities
- **Targets:** abusers and addicts opioid consumption; transition rates: nonuser (Rx user) to abuser, abuser to addict, addict to dead

Employment:

- variances of leisure shocks and labor productivities of abusers and addicts
- **Targets:** abusers and addicts relative employment rates and income

- death and addiction disutility, extent of misperception in 2000
- **Targets:** statistical value of life, opioid price elasticity, 2010-18 ∆deaths

Opioid usage:

- weights on opioid utility, euphoria shock variances, addiction and death probabilities
- **Targets:** abusers and addicts opioid consumption; transition rates: nonuser (Rx user) to abuser, abuser to addict, addict to dead

Employment:

- variances of leisure shocks and labor productivities of abusers and addicts
- **Targets:** abusers and addicts relative employment rates and income

- death and addiction disutility, extent of misperception in 2000
- Targets: statistical value of life, opioid price elasticity, 2010-18 Δdeaths

Cost of Opioids: nonprescription sources

Source of Opioids for Misusers and Addicts

Source	Misusers	Addicts	Total
Non-College			
Prescribed by one or more doctor	31.92	34.42	32.40
Given from friends/relatives	44.49	23.31	40.43
Bought from friends/relatives	10.06	17.43	11.47
Stolen (hospitals, friends/relatives)	3.57	2.82	3.43
Bought from dealer	5.29	18.47	7.82
Other	4.67	3.54	4.45
College			
Prescribed by one or more doctor	43.09	57.24	44.60
Given from friends/relatives	44.89	15.55	41.75
Bought from friends/relatives	4.56	17.79	5.97
Stolen (hospitals, friends/relatives)	3.50	1.93	3.33
Bought from dealer	0.88	6.04	1.43
Other	3.09	1.46	2.91

Cost of Opioids: nonprescription sources

	J Stree	5 Street Price per mg					
Opioid	Street Rx	DDS	Silk Road	MME			
Hydromorphone	3.29	4.47	3.55	4			
Oxymorphone	1.57	1.65	1.58	3			
Methadone	0.96	1.16	0.93	3			
Oxycodone	0.97	0.86	0.99	1.5			
Hydrocodone	0.81	0.9	0.97	1			

\$ Street Price per mg

Source: Dasgupta et al. (2013) MME - morphine milligram equivalents

- Oxycodone street price pprox \$1 per mg = \$0.67 per MME
- StreetRx: website of anonymously submitted street prices for drugs
- Drug Diversion Survey (DDS): data from an illegal drug surveillance group run by Denver Health
- Silk Road: anonymous online drug marketplace

Cost of Opioids: prescription sources

		Non-College	College
Average yearly prescribed opioid usage	<u>0</u>	3,544 MME (≈10 MME a day)	1,785 MME (≈5 MME a day)
Avg OOP expenses on pre- scribed opioids in 2015		\$48.38	\$37.10
Prescription price (avg OOP exp/avg usage)	p	\$0.014 per MME	\$0.021 per MME

Source: MEPS MME - morphine milligram equivalents

Exogenously Set Parameter Values

Parameters Set Directly

Parameter	Explanation	Non-College	College	Comment
	From t	he Literature		
ρ	Relative risk aversion	2		Standard
η	Weight on leisure	0.64		C.&P. (1995)
β	Discount factors, nonaddicts	0.96	i	Standard
	From	the US Data		
Transitions				
σ_{np}	$Prob[n \rightarrow p]$	0.0347	0.0449	PTM estimation
σ_{pn}	$Prob[p \rightarrow n]$	0.1759	0.3703	PTM estimation
σ_{bn}	$Prob[b \rightarrow n]$	0.1419	0.1854	PTM estimation
σ_{an}	$Prob[a \rightarrow n]$	0.0455	0.0290	PTM estimation
Employment				
h	Hours worked	0.38	0.41	CPS
π_n	Productivity, nonusers	1	1.49	normalization
t	Income, non-employed	0.079	0.129	CPS
Opioids				
<u>o</u>	Rx usage, MME	3,543.75	1,785.00	MEPS
p	Rx price/1,000 MME	0.000137	0.000208	MEPS
q	Street price/1,000 MME	0.00235	0.00125	MEPS and NSDUI

• Parameters:

- weights on opioid utility, euphoria shock variances, addiction and death probabilities
- Target moments:

6		
	Data	Model
Opioid Consumption		
Misusers	3,967.8	3,967.8
Addicts	14,372.5	14,372.3
Transition Probabilities		
$Nonuser \to Abuser$	0.0029	0.0029
$Prescription \ User \to Abuser$	0.0267	0.0267
$Abuser \to Addict$	0.0232	0.0232
$Addict \to Death$	0.0212	0.0212

Non-College

• Parameters:

- variances of leisure shocks and relative labor productivities of abusers and addicts
- Target moments:

	ege	
	Data	Model
Employment		
Misuser/Nonuser	0.94	0.94
Addict/Nonuser	0.73	0.73
Income		
Misuser/Nonuser	0.90	0.90
Addict/Nonuser	0.67	0.67

Non-College

• Parameters:

- death utility, addiction disutility, misinformation in 2000
- Target moments:

Non-College			
	Data	Model	
Value of Statistical Life	\$9ml	\$8.9ml	
Opioid price elasticity	-0.95	-0.88	
Change in deaths 2018 to 2010	50%↓	50%↓	

• In 2000, non-college underestimate addiction risk by 17.5% ($\alpha = 0.825$).

Employment-related parameters

Gumbel leisure shocks

$$\Pr[\lambda_s \leq \tilde{\lambda_s}] = \Lambda(\tilde{\lambda}_s) = \exp\left(-\exp[-(\tilde{\lambda_s} - \iota_s)/\xi_s]\right), \text{ for } s = b, a.$$

 $E[\lambda_s]$ is normalized to zero.

Parameter Values

		Non-College	College
ξ_{b}, ι_{b}	leisure shock, abusers	1.760, -1.0159	0.471, -0.2719
ξ_{a}, ι_{a}	leisure shock, addicts	1.360, -0.7850	1.200, -0.6927
π_b	relative productivity, abusers	0.934	0.895
π_a	relative productivity, addicts	0.841	0.986

	Targets			
	Model	Data	Model	Data
	Non-C	ollege	Colle	ege
Employment (fraction)				
All misusers/Nonusers	0.94	0.94	0.99	0.99
Addicts/Nonusers	0.73	0.73	0.85	0.85
Income				
All misusers/Nonusers	0.90	0.90	0.91	0.91
Addicts/Nonusers	0.67	0.67	0.87	0.87

Gumbel euphoria shocks

$$\Pr[\varepsilon_s \leq \tilde{\varepsilon_s}] = \Gamma(\tilde{\varepsilon_s}) = \exp\left(-\exp[-(\tilde{\varepsilon_s} - \nu_s)/\zeta_s]\right), \text{ for } s = n, p;$$

 $E[\varepsilon_s]$ is normalized to zero.

Parameter Values

		Non-College	College
ζ_n, ν_n	euphoria shock, nonusers	0.4160, -0.2401	0.0910, -0.0525
ζ_p, ν_p	euphoria shock, Rx users	0.7560, -0.4364	0.2406, -0.1389

Targets					
	Model	Data	Model	Data	
	Non-College		College		
$Nonuser \to Abuser$	0.0029	0.0029			
$Prescription~User\toAbuser$	0.0267	0.0267			

Transition rate functions

Odds of Addiction and Death

$$\sigma_{ij} = S_{ij}(o) = \sigma_j \sqrt{o}, \text{ for } (i \rightarrow j) = (b \rightarrow a), (a \rightarrow d).$$

Parameter Values					
		Non-College	College		
σ_{a}	$Prob[b \rightarrow a]$	0.01165	0.00406		
σ_d	$Prob[a \rightarrow d]$	0.00559	0.00286		

Targets							
	Model	Data	Model	Data			
	Non-College		College				
$Prob[b{ ightarrow}\mathtt{a}]$	0.0232	0.0232	0.0069	0.0069			
$Prob[a{ ightarrow}d]$	0.0212	0.0212	0.0106	0.0106			

Preference parameters

Targets					
	Model	Data	Model	Data	
Non-College College				lege	
Opioid Consumption					
Usage, first-time misusers, MME		3,967.8		2,893.2	
Usage, abusers, MME		3,967.8		2,893.2	
Usage, addicts, MME		14,372.5		13,772.0	

Non-college

3,967.8 = (50 MME per day) \times (22% of days per year) 14,372.5 = (90 MME per day) \times (43% of days per year)

College

 $2,893.2 = (50 \text{ MME per day}) \times (16\% \text{ of days per year})$

13,772.0 = (90 MME per day) \times (42% of days per year)

Sources: Dowell et al. (2016) and Glanz et al. (2019), NSDUH (days per year)

Preference parameters

	Targets			
	Model	Data	Model	Data
	Non-C	College	Col	lege
Opioid Consumption				
Usage, first-time misusers, MME	3,967.7	3,967.8	2,901.6	2,893.2
Usage, abusers, MME	3,967.8	3,967.8	2,900.7	2,893.2
Usage, addicts, MME	14,372.3	14,372.5	13,772.4	13,772.0

	Parameter Values					
		Non-College	College			
ψ	elasticity of opioid use	1.652				
$\mu_n = \mu_p$,	utility weight on opioids	0.0013	1			
μь	utility weight on opioids	0.0182	0.0237			
μ _a	utility weight on opioids	0.870	0.333			

Death and addiction utilities

Targets					
	Model	Data	Model	Data	
	Non-C	ollege	Colle	ege	
VSL (millions of 2018 dollars)		9.0		11.8	
All					
Opioid price elasticity		-0.95			

- VSL: value of statistical life based on willingness to pay to reduce risk of death
- Mean VSL of \$10 million and income elasticity of 0.5 (Viscusi and Aldy, 2003)

Calibration Death and addiction utilities

Targets					
	Model	Data	Model	Data	
	Non-College College				
VSL (millions of 2018 dollars)		9.0		11.8	
All					
Opioid price elasticity		-0.95			

- Opioid price elasticity: Estimates range from -1.5 to -0.4
- Target -0.95, midpoint of range

Death and addiction utilities

Targets					
	Model	Data	Model	Data	
	Non-C	Colle	ege		
VSL (millions of 2018 dollars)	8.9	9.0	11.9	11.8	
All					
Opioid price elasticity	-0.88	-0.95			

	Parameter Values						
	Non-College College						
δ	utility associated with death	-50.80	-34.63				
ω_a	utility cost of addiction	4.004	1.84				

Experiment: Higher prices

Increase opioid prices: street 155%, prescription 350%

Non-college					
	Baseline 2018	↑ <i>p</i> and <i>q</i> 2000	% Change 2018 to 2000		
Employment					
Misusers	0.9439	0.9680	3% ↑		
Addicts	0.7260	0.8001	10% ↑		
All	0.9939	0.9983	0.4% ↑		

- Higher prices \Rightarrow more misusers and addicts employed.

Experiment: Less powerful prescriptions Decrease Rx strength (*o*) by 42%

Non-college					
	Baseline	↓ <u>o</u>	% Change		
	2018	2000	2018 to 2000		
Opioid Consumption	on				
Average	365.6	363.4	0.60% ↓		
Misusers	3,967.8	3,967.2	0.02% ↓		
Addicts	14,372.3	14,372.2	0.00% ↓		
Demographics					
Misusers	0.0444	0.0441	0.68% ↓		
Addicts	0.0132	0.0131	0.76% ↓		
Deaths	37,596	37,367	0.61% ↓		
Deaths, explained		0.76%			

- Lower Rx strength \Rightarrow 0.6% decline in opioid consumption.
- Change in prices generates $\approx 0.76\%$ of change in deaths

Experiment: Less powerful prescriptions Decrease Rx strength (<u>o</u>) by 42%

Non-college					
	Baseline	↓ <u>o</u>	% Change		
	2018	2000	2018 to 2000		
Employment					
Misusers	0.9439	0.9439	0.00%		
Addicts	0.7260	0.7260	0.00%		

• No effect on misusers' and addicts' employment.

Experiment: Shorter prescription lengths

Increase $p \rightarrow n$ transitions (σ_{pn}) by 16%

Non-college				
	Baseline	$\uparrow \sigma_{pn}$	% Change	
	2018	2000	2018 to 2000	
Opioid Consumption	on			
Average	365.6	348.7	5%↓	
Misusers	3,967.8	3,967.7	0% ↓	
Addicts	14,372.3	14,372.3	0% ↓	
Demographics				
Misusers	0.0444	0.0423	5% ↓	
Addicts	0.0132	0.0126	5% ↓	
Deaths	37,596	35,862	5% ↓	
Deaths, explained		5.77%		

- Reducing Rx lengths has a small effect.
- Longer Rx lengths accounts for $\approx 6\%$ of rise in deaths

Experiment: Shorter prescription lengths Increase $p \rightarrow n$ transitions (σ_{pn}) by 16%

Non-college					
	Baseline	$\uparrow \sigma_{pn}$	% Change		
	2018	2000	2018 to 2000		
Employment					
Misusers	0.9439	0.9439	0.00%		
Addicts	0.7260	0.7260	0.00%		

• No effect on misusers' and addicts' employment.

Experiment: Lower death probability Decrease $Prob[a \rightarrow d]$ by 41%

Non-college						
	$Baseline \hspace{0.1in} \downarrow Prob[a ightarrow d] \hspace{0.1in} \% \hspace{0.1in} Change$					
	2018	2000	2018 to 2000			
Opioid Consumpt	ion					
Average	365.6	410.0	12% ↑			
Misusers	3,967.8	3,971.3	0% ↑			
Addicts	14,372.3	14,736.6	3% ↑			
Demographics						
Misusers	0.0444	0.0468	5% ↑			
Addicts	0.0132	0.0152	15% \uparrow			
Deaths	37,596	31,106	$17\%\downarrow$			
Deaths, explained 21.60%						

- Lowering death prob: opioid consumption \uparrow but deaths \downarrow .
- Higher death prob accounts for ${\approx}22\%$ of rise in deaths

Experiment: Lower death probability Decrease $Prob[a \rightarrow d]$ by 41%

Non-college					
	% Change				
	2018	2000	2018 to 2000		
Employment					
Misusers	0.9439	0.9439	0%		
Addicts	0.7260	0.7286	0.36%		

Experiment: Misinformation about addiction risk

 $\alpha = 0.825$

Non-college						
	Baseline Misinformation % Change					
	2018	2000	2018 to 2000			
Opioid Consumpti	ion					
Average	365.6	614.2	68% ↑			
Misusers	3,967.8	4,004.8	$1\%\uparrow$			
Addicts	ddicts 14,372.3 14,364.5	14,364.5	0%↓			
Demographics						
Misusers	0.0444	0.0741	67% ↑			
Addicts	0.0132	0.0221	67% ↑			
Deaths	37,596	63,054	68% ↑			
Deaths, explained -84.73%						

- With misinformation opioid consumption \uparrow .
- Eliminating misinformation reduced deaths by $\approx -85\%$

Experiment, Non-College Misinformation

Non-college					
	Baseline	% Change			
	2018 2000		2018 to 2000		
Employment					
Misusers	0.9439	0.9440	0.00%		
Addicts	0.7260	0.7260	0.00%		

Experiment: All changes

prices, dosage, Rx length set to 2000 values

	Baseline 2018	All changes 2000	% Change 2018 to 2000		
Opioid Consumption					
Average	365.6	199.3	45% ↓		
Misusers	3,967.8	3,920.5	$1\%\downarrow$		
Addicts	14,372.3	8,900.1	38% ↓		
Demographics					
Misusers	0.0444	0.0287	35% ↓		
Addicts	0.0132	0.0098	26% ↓		
Deaths	37,596	15,591	59%↓		
Deaths, explained 73.24%					

- All 3 changes \Rightarrow 45% decline in opioid consumption.
- Together accounts for \approx 73% of rise in deaths

Experiment, Non-College All changes

Non-college					
	Baseline All changes				
	2018	2000	2018 to 2000		
Employment					
Misusers	0.9439	0.9682	2.57%		
Addicts	0.7260	0.8012	10.36%		

Introduction

Relation to the literature

- Build on the models of rational addiction by Becker and Murphy (1988), Orphanides and Zervos (1995), and Strulik (2021).
- Habit-formation in Becker and Murphy (1988) is replaced by state-contingent preferences.
 - BM-type models can have multiple steady states and cycles.
- First quantitative model of opioid crisis where stages map naturally into the data.
- Captures three key features of addiction:
 - Reinforcement: current opioid consumption \uparrow future consumption.
 - Tolerance: utility declines with opioid consumption.
 - Withdrawal: users crave opioids.
- Allows for: dynamics, misinformation, medical innovations, deaths and death risk.

Introduction

Relation to empirical literature

- Ruhm (2018): changes in unemployment, poverty, median household incomes, home prices, and exposure to import competition account for less than 10% of the increase in opioid deaths from 1999 to 2015.
- Pierce and Schott (2020): an increase from 25th to 75th percentile in a county's import competition from China (due to the permanent normal trade relations bill in 2000) accounts for less than 20% of the increase in the drug overdose death rate between 1999 and 2018.
- Ruhm (2019) and Case and Deaton (2017): changes in unemployment rates and median income have only a minor effect on opioid deaths.
- Charles, Hurst, and Schwartz (2019): decline in manufacturing share of employment from 2000 to 2015 could explain all of the increase in opioid deaths over that period (using state-level data).
- Cutler and Glaeser (2021): estimating CHS 2019 model at the commuting zone level and including basic demographic controls eliminates the relationship between manufacturing decline and opioid deaths.
- Cutler and Glaeser (2021): changes in demand-side factors alone, such as physical pain, depression, despair, and social isolation can only explain a small fraction of the increase in opioid use and deaths from 1996 to 2012.

back

2015/18 US Population Ages 18-64, Education Shares by Opioid Use

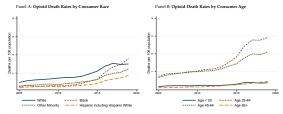
	Population	Prescription	Misuser	Addict	Dead
Non-College	0.667	0.747	0.748	0.861	0.925
College	0.333	0.253	0.252	0.139	0.075
Source: NSDUE	MEPS and CD	C Vital Statistics			

• Most addicts and opioid deaths are non-college.

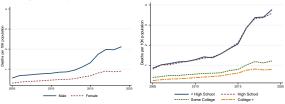
Opioid Death Rates by Demographics From: Agarwal, Li, Roman, and Sorokina (2022)

Figure 3 Opioid Death Rates by Consumer Demographics

This figure plots opioid-related overall death rates per 10K population by consumer demographics (age groups, gender, race groups, and education groups) over time. Rates are constructed relative to their respective population. Data source: CDC/NCHS, National Center for Health Statistics, Mortality.



Panel D: Opioid Death Rates by Consumer Education



Source: Agarwal, Li, Roman, and Sorokina (2022)

 Death rates are higher and rose faster among 25–64 year-olds, males, and those with a high school degree or less education.