Andrés Blanco FRB Atlanta Andrés Drenik UT Austin

Christian Moser Columbia University Emilio Zaratiegui Columbia University

OIGI Research Conference

October 5, 2023

James Tobin's 1972 presidential address to the AEA:

How does monetary policy "grease the wheels of the labor market"?

James Tobin's 1972 presidential address to the AEA:

How does monetary policy "grease the wheels of the labor market"?

- Keynesian (Non-Coasean) tradition:
 - Rigid wages may lead to inefficient employment

James Tobin's 1972 presidential address to the AEA:

How does monetary policy "grease the wheels of the labor market"?

- Keynesian (Non-Coasean) tradition:
 - Rigid wages may lead to inefficient employment
- Search-theoretic labor market (Coasean) tradition:

• Theory of unemployment, job creation and destruction, pure wage dispersion

James Tobin's 1972 presidential address to the AEA:

How does monetary policy "grease the wheels of the labor market"?

- Keynesian (Non-Coasean) tradition:
 - Rigid wages may lead to inefficient employment
- Search-theoretic labor market (Coasean) tradition:
 - Theory of unemployment, job creation and destruction, pure wage dispersion

This paper: First step toward a unifying framework

Why Non-Coasean Labor Markets?

Why Non-Coasean Labor Markets?

Good theoretical reasons:

1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)
- 3. Institutional constraints on wages (Castellanos et al. '04; Elsby & Solon '19; Ahn et al. '22)

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)
- 3. Institutional constraints on wages (Castellanos et al. '04; Elsby & Solon '19; Ahn et al. '22)

Also good empirical reasons:

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)
- 3. Institutional constraints on wages (Castellanos et al. '04; Elsby & Solon '19; Ahn et al. '22)

Also good empirical reasons:

1. Quits \neq layoffs (McLaughlin '90, '91; Elsby et al. '10, '11)

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)
- 3. Institutional constraints on wages (Castellanos et al. '04; Elsby & Solon '19; Ahn et al. '22)

Also good empirical reasons:

- 1. Quits \neq layoffs (McLaughlin '90, '91; Elsby et al. '10, '11)
- 2. Monetary policy non-neutrality in the labor market (Graves et al. '23)

- 1. Asymmetric information (Barro '77; Myerson & Satterthwaite '83; Hall & Lazear '84)
- 2. Morale effects, status comparisons, fairness norms (Akerlof & Yellen '90; Bewley '99)
- 3. Institutional constraints on wages (Castellanos et al. '04; Elsby & Solon '19; Ahn et al. '22)

Also good empirical reasons:

- 1. Quits \neq layoffs (McLaughlin '90, '91; Elsby et al. '10, '11)
- 2. Monetary policy non-neutrality in the labor market $({\it Graves \ et \ al.}\ '23)$
- 3. Survey evidence on sticky wages \implies layoffs (Bertheau et al. '23; Davis & Krolikowski '23)

Empirical Reason 1: Quits \neq Layoffs (Elsby et al. '10)

Unemployment Inflows by Reason for Unemployment

Empirical Reason 2: Labor Market Non-Neutrality (Graves et al. '23)

Impulse Responses to a Contractionary Monetary Policy Shock

Percent of UI Recipients Who Would Accept a Pay Cut to Save Lost Job

Size of proposed pay cut	5%	10%	15%	20%	25%
Permanent layoffs	60.6	52.3	43.7	38.4	32.4
	(2.4)	(2.5)	(2.5)	(2.4)	(2.3)
Temporary layoffs	404	413	410	419	423
	54.5	42.9	35.8	34.3	37.4
	(5.0)	(5.0)	(4.9)	(4.7)	(4.9)
	101	98	95	102	99

For permanent layoffs: "Would you have been willing to stay at your last job for another 12 months at a pay cut of X percent?"

For temporary layoffs: "Suppose your employer offered a temporary pay cut of X percent as an alternative to the temporary layoff. Would you have been willing to accept the temporary pay cut to avoid the layoff?"

Overview of Our Theory

We develop a theory of Non-Coasean labor markets featuring:

- 1. Directed search
- 2. Nominally rigid wages within jobs
- 3. Idiosyncratic productivity and aggregate monetary shocks
- 4. Two-sided lack of commitment

Overview of Our Theory

We develop a theory of Non-Coasean labor markets featuring:

- 1. Directed search
- 2. Nominally rigid wages within jobs
- 3. Idiosyncratic productivity and aggregate monetary shocks
- 4. Two-sided lack of commitment

Implications:

- 1. \implies Costly to find and fill jobs
- 2.–3. \implies Real wages do not track productivity
 - 4. \implies Workers and firms play a game in Markov strategies
- $1.-4. \implies$ Inefficient separations through unilateral worker quits and firm layoffs

Preferences and Technology

• Agents: unit measure of heterog. workers, endogenous measure of homog. firms

- Agents: unit measure of heterog. workers, endogenous measure of homog. firms
- Time: continuous, indexed by t

- Agents: unit measure of heterog. workers, endogenous measure of homog. firms
- Time: continuous, indexed by t
- Preferences: $\mathbb{E}_0\left[\int_0^\infty e^{-\rho t} C_t \,\mathrm{d}t\right]$

Preferences and Technology

- Agents: unit measure of heterog. workers, endogenous measure of homog. firms
- Time: continuous, indexed by t
- Preferences: $\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} C_t \, \mathrm{d}t \right]$
- Worker's state:
 - Employment status s_t , either employed (h) or unemployed (u)
 - Log productivity z_t follows $dz_t = \gamma dt + \sigma d\mathcal{W}_t^z$ [today: $\gamma = 0$, in paper: $\gamma \neq 0$]

Preferences and Technology

- Agents: unit measure of heterog. workers, endogenous measure of homog. firms
- Time: continuous, indexed by t
- Preferences: $\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} C_t \, \mathrm{d}t \right]$
- Worker's state:
 - Employment status s_t , either employed (h) or unemployed (u)
 - Log productivity z_t follows $dz_t = \gamma dt + \sigma d\mathcal{W}_t^z$ [today: $\gamma = 0$, in paper: $\gamma \neq 0$]

• Production:
$$y(s_t, z_t) = \begin{cases} e^{z_t} & \text{for } s_t = h \\ \tilde{B}e^{z_t} < e^{z_t} & \text{for } s_t = u \end{cases}$$

• Workers and firms direct search across markets indexed by (z, w)

 $\circ z = \log$ worker productivity, $w = \log$ real wage [later: monetary economy]

• Workers and firms direct search across markets indexed by (z, w)

 $\circ z = \log$ worker productivity, $w = \log$ real wage [later: monetary economy]

• Firms post vacancies and wages at cost $\tilde{K}e^z$

• Workers and firms direct search across markets indexed by (z, w)

• $z = \log$ worker productivity, $w = \log$ real wage [later: monetary economy]

- Firms post vacancies and wages at cost $\tilde{K}e^z$
- Match creation follows $m(\mathcal{V}, \mathcal{U}) = \mathcal{U}^{\alpha} \mathcal{V}^{1-\alpha}, \ \alpha \in (0, 1)$
 - Market tightness: $\theta(w, z) = \mathcal{V}(w, z) / \mathcal{U}(w, z)$
 - Worker's finding rate: $f(\theta) = \theta^{1-\alpha}$, firm's filling rate: $q(\theta) = \theta^{-\alpha}$

• Workers and firms direct search across markets indexed by (z, w)

• $z = \log$ worker productivity, $w = \log$ real wage [later: monetary economy]

- Firms post vacancies and wages at cost $\tilde{K}e^z$
- Match creation follows $m(\mathcal{V}, \mathcal{U}) = \mathcal{U}^{\alpha} \mathcal{V}^{1-\alpha}, \ \alpha \in (0, 1)$
 - Market tightness: $\theta(w, z) = \mathcal{V}(w, z) / \mathcal{U}(w, z)$
 - Worker's finding rate: $f(\theta) = \theta^{1-\alpha}$, firm's filling rate: $q(\theta) = \theta^{-\alpha}$
- Free entry: $\theta(z; w) > 0 \Longrightarrow \tilde{K}e^z = \text{firm's expected value}$

- Workers and firms direct search across markets indexed by (z, w)
 - $z = \log$ worker productivity, $w = \log$ real wage [later: monetary economy]
- Firms post vacancies and wages at cost $\tilde{K}e^z$
- Match creation follows $m(\mathcal{V}, \mathcal{U}) = \mathcal{U}^{\alpha} \mathcal{V}^{1-\alpha}, \ \alpha \in (0, 1)$
 - Market tightness: $\theta(w, z) = \mathcal{V}(w, z) / \mathcal{U}(w, z)$
 - Worker's finding rate: $f(\theta) = \theta^{1-\alpha}$, firm's filling rate: $q(\theta) = \theta^{-\alpha}$
- Free entry: $\theta(z; w) > 0 \Longrightarrow \tilde{K}e^z = \text{firm's expected value}$
- Key friction: wages are rigid after match formation [in paper: Calvo hazard]

Exogenous and Endogenous Job Separations

Exogenous and Endogenous Job Separations

- Exogenous match separation:
 - \implies Exogenous stopping time $\tau^{\delta} \sim Exponential(\delta)$

Exogenous and Endogenous Job Separations

- Exogenous match separation:
 - \implies Exogenous stopping time $\tau^{\delta} \sim Exponential(\delta)$
- Endogenous separation due to unilateral worker quit or firm layoff:
 - $\mathcal{Z}^{h}(w) :=$ set of productivities s.t. worker does not quit \implies Worker's stopping time $\tau^{h}(z;w) = \inf\{t \ge 0 : z_t \notin \mathcal{Z}^{h}(w), z_0 = z\}$
 - $\mathcal{Z}^{j}(w) :=$ set of productivities s.t. firm does not lay off \implies Firm's stopping time $\tau^{j}(z;w) = \inf\{t \ge 0 : z_t \notin \mathcal{Z}^{j}(w), z_0 = z\}$

Exogenous and Endogenous Job Separations

- Exogenous match separation:
 - \implies Exogenous stopping time $\tau^{\delta} \sim Exponential(\delta)$
- Endogenous separation due to unilateral worker quit or firm layoff:
 - $\mathcal{Z}^{h}(w) :=$ set of productivities s.t. worker does not quit \implies Worker's stopping time $\tau^{h}(z; w) = \inf\{t \ge 0 : z_t \notin \mathcal{Z}^{h}(w), z_0 = z\}$
 - $\circ \ \mathcal{Z}^{j}(w) := \text{set of productivities s.t. firm does not lay off} \\ \implies \quad \text{Firm's stopping time } \tau^{j}(z;w) = \inf\{t \ge 0 : z_t \notin \mathcal{Z}^{j}(w), \ z_0 = z\}$
- Match duration: $\tau^m = \min\{\tau^{\delta}, \tau^h, \tau^j\}$

Value matching condition: $z \notin \mathbb{Z}^{h*}(w) \Longrightarrow j(z;w) = 0$

Characterizing Equilibrium Quits and Layoffs

Suff. Conditions

Characterizing Equilibrium Quits and Layoffs

Suff. Conditions

Firm's continuation set: $\mathcal{Z}^{j*}(w) = int \{ z \in \mathbb{R} : e^z - e^w > 0 \text{ or } j(z;w) > 0 \}$

$$\tau^{j*}(z;w) = \inf\left\{t \ge 0 : z_t \notin \mathcal{Z}^{j*}(w), \ z_0 = z\right\}$$

Proposition 1 (Equilibrium Existence and Uniqueness).

There **exists** a **unique** block-recursive equilibrium.

- Extends Menzio & Shi ('10) to case of two-sided limited commitment
- Leverages continuous-time methods from stochastic diff. games literature
- Specifically, application of the Birkhoff-Tartar fixed point theorem

Equilibrium Characterization

- State reduces to wage-productivity ratio $\hat{w}\equiv w-z$
 - Normalized values: $\hat{W}(\hat{w}) \equiv (h(z;w) u(z))/e^z$, $\hat{J}(\hat{w}) \equiv j(z;w)/e^z$, $\hat{U} \equiv u(z)/e^z$
 -
o Normalized discount rate $\hat{\rho} \equiv \rho \gamma \sigma^2/2$
- Unemployed workers' policy: $\hat{w}^* \equiv w^*(z) z$
- Optimal continuation region: (S, s) band in wage-productivity ratio $\hat{w} \in (\hat{w}^-, \hat{w}^+)$
- Match surplus $\hat{S}(\hat{w}) \equiv \hat{J}(\hat{w}) + \hat{W}(\hat{w})$ and worker's surplus share $\eta(\hat{w}) \equiv \hat{W}(\hat{w})/\hat{S}(\hat{w})$

Match Surplus $\hat{S}(\hat{w})$, Entry Wage \hat{w}^* , Job Finding Rate $f(\hat{w}^*)$

Proposition 2 (Surplus and Entry Wage).

3.

1. Match surplus:
$$\hat{S}(\hat{w}) = (1 - \hat{\rho}\hat{U})\mathcal{T}(\hat{w},\hat{\rho})$$
 with $\mathcal{T}(\hat{w},\hat{\rho}) \equiv \mathbb{E}^{\hat{w}} \left[\int_{0}^{\tau^{m*}} e^{-\hat{\rho}t} \, \mathrm{d}t \right], \, \hat{\rho}\hat{U} \in (\tilde{B},1)$

2. The entry wage solves a "Nash bargaining problem":

$$\hat{w}^* = \arg\max_{\hat{w}} \left\{ \hat{J}(\hat{w})^{1-\alpha} \hat{W}(\hat{w})^{\alpha} \right\} = \arg\max_{\hat{w}} \left\{ (1 - \eta(\hat{w}))^{1-\alpha} \eta(\hat{w})^{\alpha} \mathcal{T}(\hat{w}, \hat{\rho}) \right\}$$
with FOC
$$\eta'(\hat{w}^*) \underbrace{\left(\frac{\alpha}{\eta(\hat{w}^*)} - \frac{1-\alpha}{1-\eta(\hat{w}^*)}\right)}_{\text{Share channel}} = -\underbrace{\frac{\mathcal{T}'_{\hat{w}}(\hat{w}^*, \hat{\rho})}{\mathcal{T}(\hat{w}^*, \hat{\rho})}}_{\text{Surplus channel}}$$
Job finding rate: $f(\hat{w}^*) = \left[(1 - \eta(\hat{w}^*))(1 - \hat{\rho}\hat{U})\mathcal{T}(\hat{w}^*, \hat{\rho}) / \tilde{K} \right]^{\frac{1-\alpha}{\alpha}}$

- Share channel: higher wage vs. higher job-finding rate [as in Moen ('97)!]
- Surplus channel: entry wage \Rightarrow match duration \Rightarrow surplus \Rightarrow job-finding rate [novel!]

Aggregate Shocks in a Non-Coasean Labor Market

• Monetary economy summarized by distribution of real wage-to-productivity ratios:

 $\hat{w} = w - z - p$

- Consider unanticipated one-off price level increase by ζ from steady state: $p_t = p_{t^-} + \zeta$
- Employed workers' nominal wages are sticky, so real wages become $\hat{w}_t = \hat{w}_{t^-} \zeta$
- New hires' nominal wages fully flexible [in paper: sticky entry wages!]

Effects of an Inflationary Shock: An Illustration

• Cumulative Impulse Response (CIR) summarizes on-impact size and persistence of Impulse Response Function (IRF) of aggregate employment (\mathcal{E}_t) to monetary shock ζ :

$$CIR_{\mathcal{E}}(\zeta) = \int_0^\infty IRF_{\mathcal{E}}(\zeta, t) \,\mathrm{d}t$$

Inflation Greases the Wheels of the Labor Market

- Statistic captures marginal quits and layoffs on-impact + future dynamics
- Inflationary shock reduces real wages of employed workers
 - $\circ~f(\hat{w}^*)$ measures exit rate from unemployment
 - o $\mathbb{V}ar_{\mathcal{D}}[\Delta w]$ measures total incidence of quit vs. layoff risk
 - "skewness" measures asymmetric incidence of quit vs. layoff risk

Graphical Intuition: Symmetric Steady State

Zero skewness of real-wage-to-productivity ratios \implies Zero employment effects of inflation

Graphical Intuition: Expansion

Negative skewness of real-wage-to-productivity ratios \implies Negative employment effects of inflation

Graphical Intuition: Recession

Empirical Application

Overview of Model Identification

We provide a closed-form mapping between \mathcal{P} , \mathcal{M} and \mathcal{D} 3 steps

U.S. Labor Market Data

Survey of Income and Program Participation (SIPP)

- Monthly employment and income (wage, salary) information
- Standard selection criteria and cleaning procedures (Barattieri et al. '14)
- Wage filter to correct measurement error (Blanco et al. '22)
- Two periods: hot labor market 1996–2000 and cold labor market 2008–2012

Survey of Income and Program Participation (SIPP)

- Monthly employment and income (wage, salary) information
- Standard selection criteria and cleaning procedures (Barattieri et al. '14)
- Wage filter to correct measurement error (Blanco et al. '22)
- Two periods: hot labor market 1996–2000 and cold labor market 2008–2012

Future work:

- 1. Low to medium inflation in U.S. (LEHD) from 2001-2022
- 2. High inflation in Brazil (RAIS) from 2015–2018
- 3. Hyperinflation in Argentina (SIPA) from 2001–2002

According to our model estimates, an expansionary monetary policy shock:

- 1. leads to net decrease in employment in hot labor market (U.S. 1996–2000)
 - Increase in quits > decrease in layoffs
- 2. leads to net increase in employment in cold labor market (U.S. 2008–2012)
 - $\circ~$ Increase in quits < decrease in layoffs

Period	CIR	= 1/f	×	$1/Var(\Delta w)$	×	"Skewness"
U.S. 1996–2000 (hot)	-0.073	5.170		0.019		-0.710
U.S. $2008-2012 \pmod{2012}$	0.100	7.450		0.021		0.640

According to our model estimates, an expansionary monetary policy shock:

- 1. leads to net decrease in employment in hot labor market (U.S. 1996–2000)
 - $\circ~$ Increase in quits > decrease in layoffs
- 2. leads to net increase in employment in cold labor market (U.S. 2008–2012)
 - $\circ~$ Increase in quits < decrease in layoffs

Period	CIR	= 1/f	$\times 1/Var(\Delta q)$	$w) \times$	"Skewness"
U.S. 1996–2000 (hot)	-0.073	5.170	0.019		-0.710
U.S. $2008-2012 \pmod{2012}$	0.100	7.450	0.021		0.640

 \implies inflation greases the wheels of the labor market (Tobin '72)

Conclusion

Conclusion

- We developed a theory of **Non-Coasean labor markets**
- Novel characterization of inefficient separations in the form of layoffs vs. quits
- First step towards quantitative analysis:

labor market heterogeneity \iff monetary policy

- We developed a theory of **Non-Coasean labor markets**
- Novel characterization of inefficient separations in the form of layoffs vs. quits
- First step towards quantitative analysis:

labor market heterogeneity \iff monetary policy

Future work:

- More heterogeneity: match-specific shocks, firm heterogenity
- Additional channels: on-the-job search, costly renegotiations
- Applications: optimal monetary policy, severance pay, wage indexation
 - \longrightarrow Low to medium (U.S.), high (Brazil), and hyperinflation (Argentina)

Backup

Assumption: one-period game. $e^z - e^w > 0$, $e^w dt + \mathbb{E}_z[e^{-\rho dt}U(z')] > U(z)$

	Worker stops	Worker continues
Firm stops	$(\underline{0}, U(z))$	(0, U(z))
Firm continues	$(0,\overline{U(z)})$	$((e^{z} - e^{w}) dt, e^{w} dt + \mathbb{E}_{z}[e^{-\rho dt}U(z')])$

Necessary and Sufficient Conditions Back

1. Lower bounds for values [GLB]:

2. Firm's and worker's continuation sets [GCS]:

$$\begin{split} \mathcal{C}^{j}_{w} &:= int \left\{ z \in \mathbb{R} : j(z;w) > 0 \text{ or } 0 < e^{z} - e^{w} \right\} \\ \mathcal{C}^{h}_{w} &:= int \left\{ z \in \mathbb{R} : h(z;w) > u(z) \text{ or } 0 < e^{w} - \rho u(z) + \gamma \frac{\partial u(z)}{\partial z} + \frac{\sigma^{2}}{2} \frac{\partial^{2} u(z)}{\partial z^{2}} \right\} \end{split}$$

with stopping times given by

$$\begin{split} \tau^{j*}(w,z) &= \inf \left\{ t \geq 0 : z_t^z \notin \mathcal{C}_w^j \right\} \\ \tau^{h*}(w,z) &= \inf \left\{ t \geq 0 : z_t^z \notin \mathcal{C}_w^h \right\} \end{split}$$

Necessary and Sufficient Conditions Back

1. Lower bounds for values [GLB]:

 $(h(z;w),j(z;w)) \ge (u(z),0)$

2. Firm's and worker's continuation sets [GCS]:

$$\begin{aligned} \mathcal{C}^{j}_{w} &:= int \left\{ z \in \mathbb{R} : j(z;w) > 0 \text{ or } 0 < e^{z} - e^{w} \right\} \\ \mathcal{C}^{h}_{w} &:= int \left\{ z \in \mathbb{R} : h(z;w) > u(z) \text{ or } 0 < e^{w} - \rho u(z) + \gamma \frac{\partial u(z)}{\partial z} + \frac{\sigma^{2}}{2} \frac{\partial^{2} u(z)}{\partial z^{2}} \right\} \end{aligned}$$

with stopping times given by

$$\begin{aligned} \tau^{j*}(w,z) &= \inf \left\{ t \geq 0 : z_t^z \notin \mathcal{C}_w^j \right\} \\ \tau^{h*}(w,z) &= \inf \left\{ t \geq 0 : z_t^z \notin \mathcal{C}_w^h \right\} \end{aligned}$$

Necessary and Sufficient Conditions Back

3. Game's value matching conditions [GVM]:

$$z \notin \mathcal{C}_j^w \Longrightarrow h(z;w) = u(z), \quad z \notin \mathcal{C}_h^w \Longrightarrow j(z;w) = 0$$

4. Firm's and workers optimal layoff and quit policies [GOP]:

$$\begin{aligned} &\text{if } z \in \mathcal{C}_w^h \quad \rho j(z;w) = \max \left\{ e^z - e^w + \gamma \frac{\partial j(z;w)}{\partial z} + \frac{\sigma^2}{2} \frac{\partial^2 j(z;w)}{\partial z^2} - \delta j(z;w), 0 \right\} \\ & j(\cdot;w) \in \mathbb{C}^1(\mathcal{C}_w^h) \cap \mathbb{C}(\mathbb{R}) \\ &\text{if } z \in \mathcal{C}_w^j \quad \rho h(z;w) = \max \left\{ e^w + \gamma \frac{\partial h(z;w)}{\partial z} + \frac{\sigma^2}{2} \frac{\partial^2 h(z;w)}{\partial z^2} + \delta \left(u(z) - h(z;w) \right), \rho u(z) \right\} \\ & h(\cdot;w) \in \mathbb{C}^1(\mathcal{C}_w^j) \cap \mathbb{C}(\mathbb{R}) \end{aligned}$$

5. Free entry condition [FEC]:

 $(K(e^z) - q(w,z)j(z;w))\theta(w,z) = 0, \quad K(e^z) - q(w,z)j(z;w) \ge 0, \quad \theta(w,z) \ge 0 \quad \forall (w,z) \ge 0$

6. Firm's and workers optimal layoff and quit policies [HBJ U]:

$$\rho u(z) = \tilde{B}e^{z} + \gamma \frac{\partial u(z)}{\partial z} + \frac{\sigma^{2}}{2} \frac{\partial^{2} u(z)}{\partial z^{2}} + \max_{w} f(w, z)[h(z; w) - u(z)],$$

Cross-sectional Distribution of \hat{w} (Back

• Kolmogorov Forward Equation:

$$\delta g(\hat{w}) = \gamma g'(\hat{w}) + \frac{\sigma^2}{2} g''(\hat{w}) \text{ for all } \hat{w} \in (\hat{w}^-, \hat{w}^+) / \{\hat{w}^*\}$$

• Border conditions:

$$g(\hat{w}^{-}) = g(\hat{w}^{+}) = 0, \quad 1 = \int_{\hat{w}^{-}}^{\hat{w}^{+}} g(\hat{w}) \,\mathrm{d}\hat{w}, \quad g(\hat{w}) \in \mathbb{C}$$

Cross-sectional Distributions of Δz (Back

• KFE for employed workers

$$\delta g^{h}(\Delta z) = \gamma(g^{h})'(\Delta z) + \frac{\sigma^{2}}{2}(g^{h})''(\Delta z) \quad \text{for all } \Delta z \in (-\Delta^{-}, \Delta^{+})/\{0\}$$
$$g^{h}(\Delta z) = 0, \text{ for all } \Delta z \notin (-\Delta^{-}, \Delta^{+})$$

• KFE for unemployed workers

g'

$$f(\hat{w}^*)g^u(\Delta z) = \gamma(g^u)'(\Delta z) + \frac{\sigma^2}{2}(g^u)''(\Delta z) \quad \text{for all } \Delta z \in (-\infty, \infty)/\{0\}$$
$$\lim_{\Delta z \to -\infty} g^u(\Delta z) = \lim_{\Delta z \to \infty} g^u(\Delta z) = 0$$

• Measure 1 of worker, constant employment, and regularity conditions

$$1 = \int_{-\infty}^{\infty} g^{u}(\Delta z) \, \mathrm{d}\Delta z + \int_{-\Delta^{-}}^{\Delta^{+}} g^{h}(\Delta z) \, \mathrm{d}\Delta z$$
$$f(\hat{w}^{*})(1-\mathcal{E}) = \delta \mathcal{E} + \frac{\sigma^{2}}{2} \left[\lim_{\Delta z \downarrow -\Delta^{-}} (g^{h})'(\Delta z) - \lim_{\Delta z \uparrow \Delta^{+}} (g^{h})'(\Delta z) \right]$$
$$h(\Delta z), g^{u}(\Delta z) \in \mathbb{C}$$

From \mathcal{D} ata to \mathcal{M} odel Back

• Step 1: Recover model parameters \mathcal{P}

$$\gamma = \frac{\mathbb{E}_{\mathcal{D}}[\Delta w]}{\mathbb{E}_{\mathcal{D}}[\tau]} \quad \sigma^2 = \frac{\mathbb{E}_{\mathcal{D}}[(\Delta w - \gamma \tau)^2]}{\mathbb{E}_{\mathcal{D}}[\tau]} \text{ where } \tau = \tau^m + \tau^u$$

Intuition:

- $\circ~$ average Δw must compensate for productivity trend between jobs
- dispersion of (detrended) Δw captures dispersion of cumulative shocks during h-u-h

From \mathcal{D} ata to \mathcal{M} odel Back

- Step 1: Recover model parameters \checkmark
- Step 2: Recover distribution of Δz conditional on a h-u transition
 Intuition:

$$\begin{split} \Delta w &= w_{t_0 + \tau^m + \tau^u} - w_{t_0} \\ &= \underbrace{w_{t_0 + \tau^m + \tau^u} - z_{t_0 + \tau^m + \tau^u}}_{=\hat{w}^*} - \underbrace{(w_{t_0} - z_{t_0})}_{=\hat{w}^*} + z_{t_0 + \tau^m + \tau^u} - z_{t_0} \\ &= z_{t_0 + \tau^m + \tau^u} - z_{t_0 + \tau^m} + z_{t_0 + \tau^m} - z_{t_0} \\ &= -(\Delta z | h - u \text{ transition} + \Delta z | u - h \text{ transition at } z_{t_0 + \tau^m}) \\ &= -(\Delta z | h - u \text{ transition} + \underbrace{\Delta z | u - h \text{ transition}}_{\text{independent and known}}) \end{split}$$

- Step 1: Recover model parameters \checkmark
- Step 2: Recover distribution of Δz conditional on a *h*-*u* transition \checkmark
- Step 3: Recover unconditional distribution of Δz

Intuition:

 $\circ~$ conditional distribution +~ model during inaction \Rightarrow unconditional distribution

- Step 1: Recover model parameters \checkmark
- Step 2: Recover distribution of Δz conditional on a *h*-*u* transition \checkmark
- Step 3: Recover unconditional distribution of Δz \checkmark

Environment Back

- Money supply: $dlog(M_t) = \pi dt + \zeta dW_t^m$, W_t^m is a Wiener process
- **Preferences:** $\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \left(C_{it} + \mu \log \left(\hat{M}_{it} / P_t \right) \right) dt \right]$
- Complete financial markets
- Budget constraint: $\mathbb{E}_0\left[\int_0^\infty Q_t\left(P_tC_{it}+i_t\hat{M}_{it}-Y_{it}(lm^{it})-T_{it}\right)\mathrm{d}t\right]=\hat{M}_0$

- 1

- $\circ~Q_t$: time-zero Arrow-Debreu price
- $Y_{it}(lm^{it})$: nominal labor income
- $\circ~lm^{it}:labor$ market strategy
- Market clearing:

$$\int_{0}^{1} \hat{M}_{it} \, \mathrm{d}i = M_{t}$$
$$\int_{0}^{1} \left(C_{it} + \theta_{it} \mathbb{1}_{\{e_{it}=u\}} K(Z_{it}) \right) \mathrm{d}i = \int_{0}^{1} \left(e^{z_{it}} \mathbb{1}_{\{e_{it}=h\}} + B(Z_{it}) \mathbb{1}_{\{e_{it}=u\}} \right) \mathrm{d}i$$

Lemma. (Equilibrium Prices and Workers' Problem)

Let $Q_0 = 1$ be the numéraire and $\mu = \rho + \pi + \frac{\zeta^2}{2}$. Then, $P_t = M_t$. Define $V_0(z, M_t)$ as the worker's optimal value, then

$$V_0(z, M) = \max_{\{lm_{it}\}} \mathbb{E}_0\left[\int_0^\infty e^{-\rho t} \frac{Y_{it}(z_{it}, lm^{it})}{M_t} \,\mathrm{d}t\right] + \text{terms independent of policy}$$

- In equilibrium, monetary shocks translate one-to-one to prices
- Since worker is risk neutral in consumption

maximizing consumption = maximizing PDV of real income

• New state for the worker: $\hat{w} = w - z - m$