Bonus Question: How Does Flexible Incentive Pay Affect Wage Rigidity?

Meghana Gaur

Princeton

John Grigsby Princeton Jonathon Hazell LSE Abdoulaye Ndiaye New York University

2024 Institute Research Conference, October 3, 2024

Motivation

Sluggish wage adjustment over the business cycle is important in macro

- Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
- Inflation dynamics (Christiano et al 2005, 2016)

Motivation

Sluggish wage adjustment over the business cycle is important in macro

- Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
- Inflation dynamics (Christiano et al 2005, 2016)
- One challenge for models w/ wage rigidity: incentive pay
 - Base wages are sluggish (rarely change, weakly pro-cyclical)
 - But bonuses seem flexible (change frequently, strongly procyclical in some studies/contexts)

Motivation

Sluggish wage adjustment over the business cycle is important in macro

- Unemployment dynamics (Hall 2005, Hagedorn & Manovskii 2008, Gertler & Trigari 2009)
- Inflation dynamics (Christiano et al 2005, 2016)
- ▶ One challenge for models w/ wage rigidity: incentive pay
 - Base wages are sluggish (rarely change, weakly pro-cyclical)
 - But bonuses seem flexible (change frequently, strongly procyclical in some studies/contexts)
- ▶ This paper: how does flexible incentive pay affect wage rigidity?
 - Incentive pay: piece-rates, bonuses, commissions, stock options or profit sharing
 - > 30-50% of US workers get incentive pay (Lemieux, McLeod and Parent, 2009; Makridis & Gittelman 2021)
 - Including 25-30% of low wage workers

This paper: incentive pay + unemployment dynamics + slope of price Phillips Curve

- Flexible incentive pay = dynamic incentive contract with moral hazard (Holmstrom 1979; Sannikov 2008)
- Unemployment = standard labor search model (Mortensen & Pissarides 1994)
- ▶ Phillips Curve: sticky price model with labor search (Blanchard & Gali 2010, Christiano et al. 2016)
- Allows flexible + cyclical incentive pay and long-term contracts consistent with microdata

This paper: incentive pay + unemployment dynamics + slope of price Phillips Curve

Result #1: Wage cyclicality from incentives does not dampen unemployment responses

Unemployment dynamics first-order identical in two economies calibrated to same steady state:

- 1. Economy #1: labor search model with flexible incentive pay + take-it-or-leave-it offers
- 2. Economy #2: labor search model with perfectly rigid wages as in Hall (2005)

Intuition: lower incentive pay raises profits, but worse incentives reduces effort + lowers profits

• Optimal contract: effect of wage + effort on profits cancel out

- This paper: incentive pay + unemployment dynamics + slope of price Phillips Curve
- **Result #1:** Wage cyclicality from incentives does not dampen unemployment responses
- Result #2: Wage cyclicality from incentives does not affect slope of price Phillips Curve
 - > Optimal contract: Effort movements ensure effective marginal costs are rigid

- This paper: incentive pay + unemployment dynamics + slope of price Phillips Curve
- Result #1: Wage cyclicality from incentives does not dampen unemployment responses
- **Result #2:** Wage cyclicality from incentives does not affect slope of price Phillips Curve
- **Result #3:** Calibrated model: $\approx 45\%$ of wage cyclicality **due to incentives**, remainder due to bargaining
- $\rightarrow\,$ Calibrate simple models without incentive pay to wage cyclicality that is 45% lower than raw data
- More empirical work should separately measure wage cyclicality due to incentives vs bargaining

Literature

Dynamic Model

Numerical Exercise

Conclusion

Introduction

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Roadmap

Proceed in three steps:

1. Real labor search model à la Diamond-Mortensen-Pissarides (DMP)

- Setting where all wage cyclicality due to incentives
- Equivalence result for unemployment responses

2. Introduce sticky prices

Equivalence result for slope of Phillips Curve

3. Introduce non-incentive wage cyclicality

- Bargaining/outside option fluctuations
- Non-incentive wage cyclicality does affect marginal costs

Frictional labor markets

- > Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- Firms post vacancies v at cost κ to recruit workers
- ▶ Vacancy-filling rate is $q(\theta) \equiv \Psi \theta^{-\nu}$ for $\theta \equiv \nu/u$ market tightness

Frictional labor markets

- Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- Firms post vacancies v at cost κ to recruit workers
- ▶ Vacancy-filling rate is $q(\theta) \equiv \Psi \theta^{-\nu}$ for $\theta \equiv \nu/u$ market tightness

Workers' preferences

- Workers derive utility from consumption c and labor effort a with utility u(c, a)
- Employed workers consume wage w and supply effort a
- Unemployed workers have value $U \equiv u(b, 0)$

Frictional labor markets

- > Measure 1 of workers begin unemployed and search for jobs; remain unemployed if unmatched
- Firms post vacancies v at cost κ to recruit workers
- ▶ Vacancy-filling rate is $q(\theta) \equiv \Psi \theta^{-\nu}$ for $\theta \equiv \nu/u$ market tightness

Workers' preferences

- Workers derive utility from consumption c and labor effort a with utility u(c, a)
- Employed workers consume wage w and supply effort a
- Unemployed workers have value $U \equiv u(b, 0)$

Technology

- Firm-worker match produces output $y = z(a + \eta)$
 - z: aggregate labor productivity, always common knowledge
 - η : i.i.d., mean zero output shock with distribution $\pi(\eta)$
- Firms pay workers wage w, earn expected profits from a filled vacancy:

$$J(z) = \mathbb{E}_{\eta} \left[z(a + \eta) - w \right]$$

Conclusion

Employment Dynamics in Static Model

Free entry to vacancy posting guarantees zero profits in expectation:

Response of Employment to productivity z: Derivation

$$\frac{d\log n}{d\log z} = constant + \left(\frac{1-\nu}{\nu}\right) \cdot \frac{d\log J(z)}{d\log z}$$

▶ Next: solve for dJ/dz to determine employment responses

Dynamic Model

Numerical Exercise

Conclusion

First Order Effect of Change in Labor Productivity z

Consider effect of small shock to z on expected profits J(z):

$$\frac{dJ(z)}{dz} = \frac{d\mathbb{E}_{\eta} \left[z(a+\eta) - w \right]}{dz}$$
$$= \mathbb{E}_{\eta} \left[\underbrace{\frac{\partial \left[z(a+\eta) - w \right]}{\partial z}}_{\text{Direct Productivity}} + \underbrace{\frac{\partial \left[z(a+\eta) - w \right]}{\partial w} \cdot \frac{dw}{dz}}_{\text{Wages}} + \underbrace{\frac{\partial \left[z(a+\eta) - w \right]}{\partial a} \cdot \frac{da}{dz}}_{\text{Incentives}} \right]$$

If labor productivity shocks change effort, incentives can partially offset marginal cost effect

Next: different models of a and w

Dynamic Model

Numerical Exercise

Conclusion

Two Models of a and w

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a - \frac{dw}{dz} + z\frac{da}{dz}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
-------	---	---	--------------------

Fixed effort and wage (Hall 2005)

Optimal incentive contract (Holmstrom 1979)

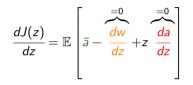
luction Static Model

Dynamic Mod

Numerical Exercise

Conclusion

Two Models of *a* and *w*



Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	\bar{w}	ā
Optimal incentive contract (Holmstrom 1979)			

Moral Hazard, Optimal Contract with Incentive Pay

Moral hazard: firm cannot distinguish effort *a* from idiosyncratic shock η (Holmstrom 1979)

Dynamic Model

Numerical Exercise

Conclusion

Moral Hazard, Optimal Contract with Incentive Pay

Static Model

- Moral hazard: firm cannot distinguish effort *a* from idiosyncratic shock η (Holmstrom 1979)
- Firm meets worker and offers contract to maximize value of filled vacancy

$$J(z) \equiv \max_{a(z),w(z,y)} \mathbb{E}[z(a(z) + \eta) - w(z,y)]$$

subject to

Introduction

incentive compatibility constraint:

participation constraint w/ bargaining:

 $egin{aligned} & a(z) \in rg\max_{ ilde{a}(z)} \mathbb{E}\left[u(w(z,y), ilde{a}(z))
ight] \ & \mathbb{E}\left[u(w(z,y),a(z))
ight] \geq \mathcal{B} \end{aligned}$

Dynamic Model

Numerical Exercise

Conclusion

Moral Hazard, Optimal Contract with Incentive Pay

Static Model

- Moral hazard: firm cannot distinguish effort *a* from idiosyncratic shock η (Holmstrom 1979)
- Firm meets worker and offers contract to maximize value of filled vacancy

$$J(z) \equiv \max_{a(z),w(z,y)} \mathbb{E}[z(a(z) + \eta) - w(z,y)]$$

subject to

Introduction

incentive compatibility constraint: $a(z) \in \arg\max_{\widetilde{a}(z)}$

participation constraint w/ bargaining:

 $egin{aligned} & a(z) \in rg\max_{ ilde{a}(z)} \mathbb{E}\left[u(w(z,y), ilde{a}(z))
ight] \ & \mathbb{E}\left[u(w(z,y),a(z))
ight] \geq \mathcal{B} \end{aligned}$

- Properties of the contract:
 - 1. Promised utility is constant $\mathcal{B} \to$ all wage cyclicality due to incentives (relaxed later)
 - 2. Incentives vs insurance—pass through of y into w

Conclusion

Wage Cyclicality from Incentives Does Not Dampen Employment Response

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a + z\frac{\frac{da}{dz} - \frac{dw}{dz}}{\frac{da}{dz} - \frac{dw}{dz}}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	Ŵ	ā
Optimal Flexible + cyclical incentive pay	$a^*(z)$	w*(z, y) a*(z)

Conclusion

Wage Cyclicality from Incentives Does Not Dampen Employment Response

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a + \frac{z \frac{da}{dz} - \frac{dw}{dz}}{z \frac{da}{dz} - \frac{dw}{dz}}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	\bar{w}	ā
Optimal Flexible $+$ cyclical incentive pay	$a^*(z)$	$w^*(z,y)$	a*(z

 \implies In both rigid wage and flexible incentive pay economies:

$$\frac{d \ln n}{d \ln z} = constant + \frac{1 - \nu}{\nu} \cdot \frac{d \ln J(z)}{d \ln z}$$

Conclusion

Wage Cyclicality from Incentives Does Not Dampen Employment Response

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a + \frac{2}{z}\frac{da}{dz} - \frac{dw}{dz}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	$ar{w}$	ā
Optimal Flexible + cyclical incentive pay	$a^*(z)$	$w^*(z,y)$) a*(z)

 \implies In both rigid wage and flexible incentive pay economies:

$$\frac{d\ln n}{d\ln z} = constant + \frac{1-\nu}{\nu} \cdot \mathbb{E}\left[\frac{za}{za-w}\right]$$

Wage Cyclicality from Incentives Does Not Dampen Employment Response

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a + \frac{z}{z}\frac{da}{dz} - \frac{dw}{dz}\right]$$

Model	а	W	$\frac{dJ(z)}{dz}$
Fixed effort and wage (Hall 2005)	ā	\bar{w}	ā
Optimal Flexible $+$ cyclical incentive pay	$a^*(z)$	w*(z, y) a*(z)

 \implies In both rigid wage and flexible incentive pay economies:

$$\frac{d\ln n}{d\ln z} = constant + \frac{1-\nu}{\nu} \cdot \mathbb{E}\left[\frac{1}{1-\Lambda}\right]$$

Dynamic Model

Numerical Exercise

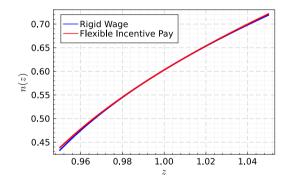
Conclusion

Same Employment Response w/ Rigid Wage or Flexible Incentive Pay

- Fixed effort, fixed wages (Hall)
 - \longrightarrow Large fluctuations in n when z fluctuates

Incentive contract

 \longrightarrow 1st order identical to rigid wage economy!

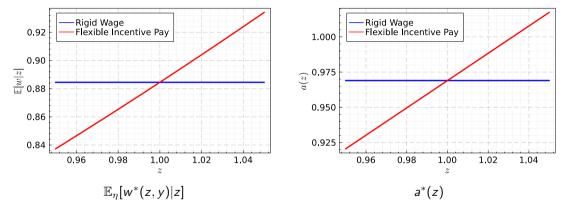


Introduction Static Model Dynamic Model Numerica

Numerical Exercise

Conclusion

Holds even though average wages can be strongly "pro-cyclical"



Result #1: wage cyclicality from incentives does not dampen unemployment dynamics

NB: Output dynamics not equivalent

Dynamic Model

Numerical Exercise

Conclusion

Roadmap

Proceed in three steps:

- 1. Real labor search model à la Diamond-Mortensen-Pissarides (DMP)
 - Setting where all wage cyclicality due to incentives
 - Equivalence result for unemployment responses

2. Introduce sticky prices

- Equivalence result for slope of Phillips Curve
- 3. Introduce non-incentive wage cyclicality
 - Bargaining/outside option fluctuations
 - Non-incentive wage cyclicality does affect marginal costs

ion			

Dynamic Model

Conclusion

Introducing Sticky Prices: Model Preliminaries

Final Goods Producer

$$Y = \left(\int_0^1 Y_j^{\frac{\alpha-1}{\alpha}}\right)^{\frac{\alpha}{\alpha-1}} \implies P = \left(\int_0^1 p_j^{1-\alpha}\right)^{\frac{1}{1-\alpha}}$$

Retailers and Price Setting

$$\max_{p_j, Y_j H_j} p_j(Y_j) Y_j - zH_j \qquad s.t. \qquad Y_j = AH_j$$

Optimal Price

$$p_j^* = \mu \cdot z/A$$

Labor Market & Wholesale goods

Wholesalers hire labor in frictional labor market as above, and sell at price z

Calvo Friction

- > In middle of period, before output produced, there is a shock to real marginal cost z/A
- > Calvo friction: a fraction ϱ of retailers can adjust their price and fully passthrough shock to prices

Incentive Pay Does Not Affect Slope of Phillips Curve

Change in price level between beginning and end of period is:

 $\Pi = \varrho(d \ln z - d \ln A)$

Conclusion

Incentive Pay Does Not Affect Slope of Phillips Curve

Change in price level between beginning and end of period is:

 $\Pi = \varrho(d \ln z - d \ln A)$

Previous: in both rigid wage and incentive pay economies

$$\frac{d\ln n}{d\ln z} = constant + \mathbb{E}\left[\frac{1}{1-\Lambda}\right]$$

Conclusion

Incentive Pay Does Not Affect Slope of Phillips Curve

Change in price level between beginning and end of period is:

 $\Pi = \varrho(d \ln z - d \ln A)$

Previous: in both rigid wage and incentive pay economies

$$rac{d\ln n}{d\ln z} = constant + \mathbb{E}\left[rac{1}{1-\Lambda}
ight]$$

Phillips Curve relationship between inflation and market tightness/employment

$$\Pi = \varrho \iota d \ln n - \varrho d \ln A, \quad \text{for} \quad \iota = \left(constant + \mathbb{E} \left[\frac{1}{1 - \Lambda} \right] \right)^{-1}$$

Conclusion

Incentive Pay Does Not Affect Slope of Phillips Curve

Change in price level between beginning and end of period is:

Static Model

Introduction

 $\Pi = \varrho(d \ln z - d \ln A)$

Dynamic Model

Previous: in both rigid wage and incentive pay economies

$$rac{d\ln n}{d\ln z} = constant + \mathbb{E}\left[rac{1}{1-\Lambda}
ight]$$

Phillips Curve relationship between inflation and market tightness/employment

$$\Pi = \varrho \iota d \ln n - \varrho d \ln A, \quad \text{for} \quad \iota = \left(constant + \mathbb{E} \left[\frac{1}{1 - \Lambda} \right] \right)^{-1}$$

ightarrow Same SS Labor Share \implies same slope of Phillips Curve in both rigid and incentive wage economies

Intuition: Marginal costs are rigid with optimal incentive pay despite cyclical wages

Dynamic Model

Numerical Exercise

Conclusion

Roadmap

Proceed in three steps:

- 1. Real labor search model à la Diamond-Mortensen-Pissarides (DMP)
 - Setting where all wage cyclicality due to incentives
 - Equivalence result for unemployment responses

2. Introduce sticky prices

Equivalence result for slope of Phillips Curve

3. Introduce non-incentive wage cyclicality

- Bargaining/outside option fluctuations
- Non-incentive wage cyclicality does affect marginal costs

Introduction

Static Model

Dynamic Model

Conclusion

Introducing Bargaining & Outside Option Fluctuations

Allow for reduced form "bargaining rule" $\mathcal{B}(z)$ (Michaillat 2012):

$$J(z) \equiv \max_{a(z),w(z,y)} \mathbb{E}[z(a(z) + \eta) - w(z,y)]$$

subject to

incentive compatibility constraint:

participation constraint w/ bargaining:

 $a(z) \in rg\max_{\widetilde{a}(z)} \mathbb{E}\left[u(w(z, y), \widetilde{a}(z))
ight]$ $\mathbb{E}\left[u(w(z, y), a(z))
ight] \geq \mathcal{B}(z)$

Dynamic Model

Conclusion

Introducing Bargaining & Outside Option Fluctuations

Allow for reduced form "bargaining rule" $\mathcal{B}(z)$ (Michaillat 2012):

$$J(z) \equiv \max_{a(z),w(z,y)} \mathbb{E}[z(a(z) + \eta) - w(z,y)]$$

subject to

incentive compatibility constraint:

participation constraint w/ bargaining:

 $a(z) \in rg\max_{\widetilde{a}(z)} \mathbb{E}\left[u(w(z, y), \widetilde{a}(z))
ight]$ $\mathbb{E}\left[u(w(z, y), a(z))
ight] \geq \mathcal{B}(z)$

Properties of the contract:

1. Bargaining or cyclical outside option $\implies \mathcal{B}'(z) > 0$

2. Wages can be cyclical either from incentives or because B'(z) > 0

Introduction Static Model Dynamic Model Numerical Exercise

Conclusion

Wage Cyclicality from Bargaining Does Dampen Unemployment Responses

Result #3: Wage cyclicality from bargaining or outside option does dampen unemployment dynamics

$$rac{dJ}{dz}=a^*-\lambda^*\mathcal{B}'(z)$$

- Direct productivity effect a*
- Cyclical utility from bargaining or outside option $\mathcal{B}'(z)$
- ▶ $\lambda^* = \text{Lagrange multiplier on participation constraint}$

Wage Cyclicality from Bargaining Does Dampen Unemployment Responses

Result #3: Wage cyclicality from bargaining or outside option does dampen unemployment dynamics

$$rac{dJ}{dz} = a^* - \lambda^* \mathcal{B}'(z)$$

 $\lambda^* \mathcal{B}'(z) = \underbrace{\mathbb{E}\left[rac{dw^*}{dz} - z rac{da^*}{dz}
ight]}_{ ext{non-incentive wage cyclicality}}$

- Direct productivity effect a*
- Cyclical utility from bargaining or outside option $\mathcal{B}'(z)$
- $\blacktriangleright \ \lambda^* = {\sf Lagrange}$ multiplier on participation constraint
- $\lambda^* \mathcal{B}'(z)$ is non-incentive wage cyclicality

Intuition: higher wages from bargaining or outside option not accompanied by higher effort

 \Rightarrow Marginal costs cyclical: same mechanism as standard model (e.g. Shimer 2005)

Introduction

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- Firms post vacancies, match with unemployed in frictional labor market w/ tightness θ_t
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- Firms post vacancies, match with unemployed in frictional labor market w/ tightness θ_t
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Dynamic incentive contract (Sannikov 2008)

- General production and utility functions $f(z_t, \eta_t)$ and $u(w_t, a_t)$, discount factor β
- Unobservable history of effort a^t shifts distribution of observable persistent idiosyncratic shock η_t
- Firm offers dynamic incentive contract:

$$\left\{w_t\left(\eta^t, z^t\right), a_t\left(\eta^{t-1}, z^t\right)\right\}_{\eta^t, z^t, t=0}^{\infty}$$

- 1. Sequence of incentive constraints
- 2. Ex ante participation constraint w/ reduced form bargaining (ex ante promised utility = $\mathcal{B}(z_0)$)
- 3. Two sided commitment

Summary of Dynamic Model

Diamond-Mortensen-Pissarides labor market

- Firms post vacancies, match with unemployed in frictional labor market w/ tightness θ_t
- ▶ Baseline: exogenous separations, extension w/ endogenous separations

Dynamic incentive contract (Sannikov 2008)

- General production and utility functions $f(z_t, \eta_t)$ and $u(w_t, a_t)$, discount factor β
- Unobservable history of effort a^t shifts distribution of observable persistent idiosyncratic shock η_t
- Firm offers dynamic incentive contract:

$$\left\{w_t\left(\eta^t, z^t\right), a_t\left(\eta^{t-1}, z^t\right)\right\}_{\eta^t, z^t, t=0}^{\infty}$$

- 1. Sequence of incentive constraints
- 2. Ex ante participation constraint w/ reduced form bargaining (ex ante promised utility = $\mathcal{B}(z_0)$)
- 3. Two sided commitment

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Introduction Static Model Dyn

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$d \log heta_0 \propto \left(rac{1}{1 - \textit{labor share}}
ight) \cdot d \log z_0, \qquad \textit{labor share} = rac{\mathbb{E}_0[\textit{present value wages}]}{\mathbb{E}_0[\textit{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort. • Expression

Implication: incentive wage cyclicality does not mute unemployment responsiveness

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's Shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$d \log heta_0 \propto \left(rac{1}{1 - \textit{labor share}}
ight) \cdot d \log z_0, \qquad \textit{labor share} = rac{\mathbb{E}_0[\textit{present value wages}]}{\mathbb{E}_0[\textit{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort. • Expression

Implication: incentive wage cyclicality does not mute unemployment responsiveness

Proof sketch: optimal contract + envelope theorem

Static Model

Introduction

- ightarrow No first order effect of wage + effort changes on profits in response to z₀
- $\rightarrow\,$ Same profit response as if fixed wages + effort

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's Shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$d \log heta_0 \propto \left(rac{1}{1 - \textit{labor share}}
ight) \cdot d \log z_0, \qquad \textit{labor share} = rac{\mathbb{E}_0[\textit{present value wages}]}{\mathbb{E}_0[\textit{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort. • Expression

Implication: incentive wage cyclicality does not mute unemployment responsiveness

Proof sketch: optimal contract + envelope theorem

Introduction

Generality: analytical results with general functions, persistent idiosyncratic shocks .

▶ *In paper:* same result w/ efficient endogenous separations

Introduction Static Model C

Result#1: Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's

Shut down bargaining power + outside option \rightarrow all wage cyclicality due to incentives

Assume: (i) proximity to aggregate steady state (ii) production function is h.o.d. 1 in z, (iii) z is driftless random walk (iv) no worker bargaining power + constant outside option. In incentive pay economy

$$d \log heta_0 \propto \left(rac{1}{1 - \textit{labor share}}
ight) \cdot d \log z_0, \qquad \textit{labor share} = rac{\mathbb{E}_0[\textit{present value wages}]}{\mathbb{E}_0[\textit{present value output}]}$$

The same equations characterize a rigid wage economy with fixed wages + effort. • Expression

Implication: incentive wage cyclicality does not mute unemployment responsiveness

Proof sketch: optimal contract + envelope theorem

Generality: analytical results with general functions, persistent idiosyncratic shocks • Assumptions

Result in paper: bargained wage cyclicality does mute unemployment responsiveness Details

Same set-up as static model Details

Introduction

- \blacktriangleright Labor \longrightarrow wholesalers \longrightarrow sticky price retailers \longrightarrow final goods producer
- Price Phillips Curve from linearized Calvo pricing problem

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \zeta^{-1} \left(\ln \theta_{t} - \ln \bar{\theta} \right) - \vartheta \ln A_{t}$$

where $\vartheta \equiv (1 - \varrho)(1 - \beta \varrho)/\varrho$ and $\zeta \equiv d \ln \theta/d \ln z$ summarize nominal and real rigidity, respectively

Same set-up as static model Details

Introduction

- \blacktriangleright Labor \longrightarrow wholesalers \longrightarrow sticky price retailers \longrightarrow final goods producer
- Price Phillips Curve from linearized Calvo pricing problem

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \zeta^{-1} \left(\ln \theta_{t} - \ln \bar{\theta} \right) - \vartheta \ln A_{t}$$

where $\vartheta \equiv (1 - \varrho)(1 - \beta \varrho)/\varrho$ and $\zeta \equiv d \ln \theta/d \ln z$ summarize nominal and real rigidity, respectively

► $d \ln \theta / d \ln z$ equal near steady state in both rigid wage and incentive pay economies \Rightarrow same PC

- Same set-up as static model Details
 - \blacktriangleright Labor \longrightarrow wholesalers \longrightarrow sticky price retailers \longrightarrow final goods producer
- Price Phillips Curve from linearized Calvo pricing problem

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \zeta^{-1} \left(\ln \theta_{t} - \ln \bar{\theta} \right) - \vartheta \ln A_{t}$$

where $\vartheta \equiv (1 - \varrho)(1 - \beta \varrho)/\varrho$ and $\zeta \equiv d \ln \theta/d \ln z$ summarize nominal and real rigidity, respectively

- ► $d \ln \theta / d \ln z$ equal near steady state in both rigid wage and incentive pay economies \Rightarrow same PC
- Also have equivalence in inflation-unemployment space

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \tilde{\zeta} \left(u_{t} - \bar{u} \right) - \vartheta \ln A_{t}$$

with ϑ and $\tilde{\zeta}$ the same in rigid wage and incentive pay economies with same SS

- Same set-up as static model Details
 - \blacktriangleright Labor \longrightarrow wholesalers \longrightarrow sticky price retailers \longrightarrow final goods producer
- Price Phillips Curve from linearized Calvo pricing problem

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \zeta^{-1} \left(\ln \theta_{t} - \ln \bar{\theta} \right) - \vartheta \ln A_{t}$$

where $\vartheta \equiv (1 - \varrho)(1 - \beta \varrho)/\varrho$ and $\zeta \equiv d \ln \theta/d \ln z$ summarize nominal and real rigidity, respectively

- ► $d \ln \theta / d \ln z$ equal near steady state in both rigid wage and incentive pay economies \Rightarrow same PC
- Also have equivalence in inflation-unemployment space

$$\Pi_{t} = \beta \mathbb{E}_{t} \Pi_{t+1} + \vartheta \tilde{\zeta} \left(u_{t} - \bar{u} \right) - \vartheta \ln A_{t}$$

with ϑ and $\tilde{\zeta}$ the same in rigid wage and incentive pay economies with same SS

Outstanding question: how much of total wage cyclicality in data is due to incentives?

Introduction

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Numerical Exercise: Overview

Introduction

Questions

- ▶ How much wage cyclicality due to incentives vs bargaining + outside option?
- How to calibrate simpler model of wage setting without incentives?

Approach

- 1. Explicit and tractable optimal contract building on Edmans et al (2012) Details
- 2. Reduced form bargaining: take-it-or-leave it with cyclical value of unemployment
- 3. Calibrate parameters targeting micro moments of wage adjustment

Heuristic Identification: Disentangling Bargaining from Incentives

1. Ex post wage pass through informs incentives

Static Model

- ▶ Key moments: pass-through of firm-specific profitability shocks to wages, variance of wage growth
- Key parameter: disutility of effort, variance of idiosyncratic shocks
- Conservative choices to reduce role of incentives (e.g. target low pass-through)

2. Ex ante fluctuations in wage for new hires informs bargaining + outside option

- Key moment: new hire wage cyclicality
- Key parameter: cyclicality of promised utility

3. Externally calibrate standard parameters 🕐

- Separation rate, discount rate, vacancy cost, matching function (Petrosky-Nadeau and Zhang, 2017)
- ▶ TFP process from Fernald (2014), accounting for capacity utilization of labor + capital

Static Model

Dynamic Model

Result#3: Substantial Share of Overall Wage Cyclicality Due to Incentives

Moment	Description	Data	Baseline
$\operatorname{std}(\Delta \log w_{it}) \ \partial \mathbb{E}[\log w_0]/\partial u \ \partial \log w_{it}/\partial \log y_{it} \ u_{ss}$	Std. Dev. Log Wage Growth New Hire Wage Cyclicality Wage Passthrough: Firm Shocks SS Unemployment Rate	0.064 -1.00 0.039 0.060	0.064 -1.00 0.035 0.060
$std(log\ u_t)$	Std. Dev. of unemployment rate Share of Wage Cyclicality Due to Incentives	0.207	0.103 0.457

Table: Data vs Simulated Model Moments

- Good match to targeted moments
- Rationalize about 1/2 of unemployment fluctuations in data
- 46% wage cyclicality due to incentives

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
Moment	(1) Incentives + Bargaining	(2) No Incentives	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.54	
$\partial \log heta_0 / \partial \log z_0$	13.6	13.3	
$\operatorname{std}(\log u_t)$	0.10	0.10	

- Calibrate baseline model w/ bargaining + incentives and simple/standard model without incentives
- Analytical results suggest:
 - Calibrate bargaining + incentives model to overall wage cyclicality
 - Calibrate no-incentive model to non-incentive wage cyclicality which is less procyclical

|--|--|--|--|--|

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
Moment	(1) Incentives + Bargaining	(2) No Incentives	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.54	
$\partial \log heta_0 / \partial \log z_0$	13.6	13.3	
$\operatorname{std}(\log u_t)$	0.10	0.10	

No incentive model calibrated to weakly cyclical wages

Introduction

▶ Has similar employment dynamics to bargaining + incentives model w/ strongly cyclical wages

User Guide: Calibrate Model w/o Incentives to Less Cyclical Wages

	Model: source of wage flexibility		
Moment	(1) Incentives + Bargaining	(2) No Incentives	
$\partial \mathbb{E}[\log w_0]/\partial u$	-1.00	-0.54	
$\partial \log heta_0 / \partial \log z_0$	13.6	13.3	
$std(\log u_t)$	0.10	0.10	

Takeaway:

- Can study simple models of wage setting without incentives
- But calibrate to relatively rigid wages

▶ All Wage Cyclicality from Bargaining) (▶ IRFs

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Static Model

Dynamic Model

Numerical Exercise

Conclusion

Conclusion

- Does flexible incentive pay affect unemployment or inflation responses?
- Incentive effect (effort moves) offsets wage effect so marginal costs are rigid

Results:

- 1. Incentive wage cyclicality does not dampen unemployment responses
- 2. Incentive wage cyclicality does not steepen slope of Phillips Curve
- 3. Non-Incentive wage cyclicality does dampen unemployment responses
 - Important to separately measure bargaining and incentives
 - Numerically: 46% of wage cyclicality due to incentives
 - Calibrate simple model without incentives to weakly procyclical wages

Appendix

Why is employment log-linear in expected profits? Free entry into vacancies

 $\kappa = q(v)J(z)$

Substitute in for q(v) and re-arrange for equilibrium vacancy posting

$$\mathbf{v}^* = \left(rac{\Psi J(z)}{\kappa}
ight)^{rac{1}{
u}}$$

Now note that n = f(v) (because initial unemployment = 1). Plug in to see

$$f(v) \equiv \frac{m(u,v)}{u} = \Psi v^{1-\nu} \qquad \Longrightarrow \qquad n = \left(\frac{\psi^{\nu+1}}{\kappa}\right)^{\frac{1}{\nu}} J(z)^{\frac{1-\nu}{\nu}}$$

Take logs to obtain result

$$\ln n = constant + \left(\frac{1-\nu}{\nu}\right) \cdot \ln J(z)$$

- ▶ The utility function *u* is Lipschitz continuous in the compact set of allocations
- ► z_t and η_t are Markov processes
- Local incentive constraints are globally incentive compatible
- The density $\pi(\eta_i^t, z^t | z_0, a_i^t)$ is continuous in the aggregate state z_0

Full Information Benchmark (Employment Responses)

- Firm observes aggregate productivity z and offers contract to worker
- Firm observes worker's effort *a* and idiosyncratic output shock η after production
- Firm offers contract to maximize profits

$$\max_{\mathsf{a}(z,\eta),\mathsf{w}(z,\eta)}J(z)=z\left(\mathsf{a}(z,\eta)+\eta\right)-\mathsf{w}(z,\eta)$$

subject to worker's participation constraint

$$\mathbb{E}_\eta \left[u\left(w(z,\eta), extbf{a}(z,\eta)
ight)
ight] \geq \mathcal{B}$$

- First order condition implies optimal contract $a^*(z), w^*(z)$
- Yields fluctuations in profits

$$\frac{dJ(z)}{dz} = \mathbb{E}\left[a^*(z) + z\frac{da^*(z)}{dz} - \frac{dw^*(z)}{dz}\right] = a^*(z)$$

Parameterization

CARA utility

$$u(c,a) = -e^{-r\left(c - \frac{\phi a^2}{2}\right)}$$

Linear contracts

$$w(y) = \alpha + \beta y$$

▶ α: "Base Pay"

Noise observed after worker's choice of action

Yields optimal contract

$$eta = rac{z^2}{z^2 \phi r \sigma}, \qquad lpha = b + rac{eta^2 \left(\phi r \sigma^2 - z^2\right)}{2\phi}, \qquad a = rac{eta z}{\phi}$$

Static Model Parameter Values 👁

- Elasticity of matching function $\nu = 0.72$ (Shimer 2005)
- Matching function efficiency $\psi = 0.9$ (Employment/Population Ratio = 0.6)
- Non-employment benefit b = 0.2 (Shimer 2005)
- Vacancy Creation Cost $\kappa = 0.213$ (Shimer 2005)

CARA utility

$$u(c,a) = -e^{-r\left(c - \frac{\phi a^2}{2}\right)}$$

with $\phi = 1$ and r = 0.8

Linear contracts

$$w(y) = \alpha + \beta y$$

- α: "Base Pay"
 β: "Piece-Rate" or "Bonus"
- Profit shocks $\eta \sim \mathcal{N}(0, 0.2)$

- Frictional labor market: vacancy filling rate $q_t = \Psi \theta_t^{-\nu}$, market tightness $\theta_t \equiv v_t/u_t$
- Production function $y_{it} = f(z_t, \eta_{it})$
 - Density $\pi(\eta_i^t | z^t, a_i^t)$ of idiosyncratic shocks $\eta_i^t = \{\eta_{i0}, ..., \eta_{it}\}$
 - Affected by unobservable action $a_i^t = \{a_{i0}, ..., a_{it}\} + \text{observable}$ aggregate shocks z^t
- Dynamic incentive contract: $\{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}\} = \{w_{it}(\eta_i^t, z^t; z_0, b_{i0}), a_{it}(\eta_i^t, z^t; z_0, b_{i0}), c_{it}(\eta_i^t, z^t; z_0, b_{i0}), b_{i,t+1}(\eta_i^t, z^t; z_0, b_{i0})\}_{t=0,\eta_i^t, z^t}^{\infty}$
- Value of filled vacancy at time zero:

$$\mathcal{W}\equiv\sum_{t=0}^{\infty}\int\int\left(eta\left(1-s
ight)
ight)^{t}\left(f\left(z_{t},\eta_{it}
ight)-\mathsf{w}_{it}\left(\eta_{i}^{t},z^{t};z_{0},b_{i0}
ight)
ight)\pi\left(\eta_{i}^{t},z^{t}|z_{0},b_{i0},a_{i}^{t}
ight)d\eta_{i}^{t}dz^{t}$$

s: exogenous separation rate, β : discount factor

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{B}\left(b_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, a_{i}^{t}\right] = \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{B}\left(b_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, a_{i}^{t} \right] = \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \ge [\underline{b}]^t$

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{B}\left(b_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, a_{i}^{t} \right] = \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

 $\blacktriangleright \text{ Incentive compatibility constraints: for all } \tilde{a}_i^t \in [\underline{a}, \overline{a}]^t, \tilde{c}_i^t \in [\underline{c}, \overline{c}]^t, \tilde{b}_i^{t+1} \ge [\underline{b}]^t$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, \tilde{a}_{i}^{t} \right] \leq \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad \tilde{b}_{i,t+1}(\eta_{i}^{t}, z^{t}) + \tilde{c}_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) \tilde{b}_{it}(\eta_{i}^{t}, z^{t}), \quad \tilde{b}_{it}(\eta_{i}^{t}, z^{t}) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(c_{it}, a_{it}\right) + \beta s \mathcal{B}\left(b_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, a_{i}^{t} \right] = \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

▶ Incentive compatibility constraints: for all $\tilde{a}_i^t \in [\underline{a}, \overline{a}]^t$, $\tilde{c}_i^t \in [\underline{c}, \overline{c}]^t$, $\tilde{b}_i^{t+1} \ge [\underline{b}]^t$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \sum_{\substack{t=0\\ \tilde{b}_{i,t+1}(\eta_{i}^{t}, z^{t}) + \tilde{c}_{it}(\eta_{i}^{t}, z^{t})}^{\infty} \mathbb{E} \left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, \tilde{a}_{i}^{t} \right] \leq \mathcal{B}\left(b_{i0}, z_{0}\right)$$

s.t. $\tilde{b}_{i,t+1}(\eta_{i}^{t}, z^{t}) + \tilde{c}_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r)\tilde{b}_{it}(\eta_{i}^{t}, z^{t}), \quad \tilde{b}_{it}(\eta_{i}^{t}, z^{t}) \geq \underline{b} \text{ assuming } r \text{ fixed}$

► Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) = 0, IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \leq 0$

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} (\beta (1-s))^{t} \mathbb{E} \left[u (c_{it}, a_{it}) + \beta s \mathcal{B} (b_{i,t+1}, z_{t+1}) | z_{0}, b_{i0}, a_{i}^{t} \right] = \mathcal{B} (b_{i0}, z_{0})$$

s.t. $b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b}$ assuming r fixed

 $\blacktriangleright \text{ Incentive compatibility constraints: for all } \tilde{a}_i^t \in [\underline{a}, \overline{a}]^t, \tilde{c}_i^t \in [\underline{c}, \overline{c}]^t, \tilde{b}_i^{t+1} \ge [\underline{b}]^t$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \sum_{t=0}^{\infty} (\beta (1-s))^t \mathbb{E} \left[u \left(\tilde{c}_{it}, \tilde{a}_{it} \right) + \beta s \mathcal{B} \left(\tilde{b}_{i,t+1}, z_{t+1} \right) | z_0, b_{i0}, \tilde{a}_i^t \right] \le \mathcal{B} \left(b_{i0}, z_0 \right)$$

s.t. $\tilde{b}_{i,t+1}(\eta_i^t, z^t) + \tilde{c}_{it}(\eta_i^t, z^t) = w_{it}(\eta_i^t, z^t) + (1+r) \tilde{b}_{it}(\eta_i^t, z^t), \quad \tilde{b}_{it}(\eta_i^t, z^t) \ge \underline{b}$ assuming r fixed

Maximized value of a filled vacancy:

$$J(z_0, b_{i0}) \equiv \max_{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0})}_{\text{vacancy value}} + \underbrace{\langle \boldsymbol{\mu}, PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{incentive compatibility}}$$

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \sum_{t=0}^{\infty} (\beta (1-s))^{t} \mathbb{E} \left[u (c_{it}, a_{it}) + \beta s \mathcal{B} (b_{i,t+1}, z_{t+1}) | z_{0}, b_{i0}, a_{i}^{t} \right] = \mathcal{B} (b_{i0}, z_{0})$$

s.t. $b_{i,t+1}(\eta_{i}^{t}, z^{t}) + c_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) b_{it}(\eta_{i}^{t}, z^{t}), \quad b_{it}(\eta_{i}^{t}, z^{t}) \ge \underline{b}$ assuming r fixed

 $\blacktriangleright \text{ Incentive compatibility constraints: for all } \tilde{a}_i^t \in [\underline{a}, \overline{a}]^t, \tilde{c}_i^t \in [\underline{c}, \overline{c}]^t, \tilde{b}_i^{t+1} \geq [\underline{b}]^t$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\tilde{c}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(\tilde{b}_{i,t+1}, z_{t+1}\right) | z_{0}, b_{i0}, \tilde{a}_{i}^{t} \right] \leq \mathcal{B}\left(b_{i0}, z_{0}\right) \\ \text{s.t.} \quad \tilde{b}_{i,t+1}(\eta_{i}^{t}, z^{t}) + \tilde{c}_{it}(\eta_{i}^{t}, z^{t}) = w_{it}(\eta_{i}^{t}, z^{t}) + (1+r) \tilde{b}_{it}(\eta_{i}^{t}, z^{t}), \quad \tilde{b}_{it}(\eta_{i}^{t}, z^{t}) \geq \underline{b} \quad \text{assuming } r \text{ fixed} \\ \end{bmatrix}$$

Maximized value of a filled vacancy:

$$J(z_0, b_{i0}) \equiv \max_{\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0})}_{\text{vacancy value}} + \underbrace{\langle \boldsymbol{\mu}, PC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}, \mathbf{c}, \mathbf{b}; z_0, b_{i0}) \rangle}_{\text{incentive compatibility}}$$

► Free entry condition pins down market tightness: $\mathbb{E}_b[J(z_0, b_{i0})] = \frac{\kappa}{q(\theta_0)}$

Static Model Proof Outline 👁

Firm's value given by Lagrangian

 $J(z) = \mathbb{E}[z(a^*(z) + \eta) - w^*(z, y)] + \lambda \cdot (\mathbb{E}[u(w^*(z, y), a^*(z))] - \mathcal{B}) + \mu \cdot [IC]$

for λ and μ Lagrange multipliers on PC and IC, respectively.

► Take derivative w.r.t. z

$$\frac{dJ}{dz} = \mathbb{E}[a^*(z)] + z \frac{d\mathbb{E}[a^*(z,y)]}{dz} - \frac{d\mathbb{E}[w^*(z,y)]}{dz} + [PC] \cdot \frac{d\lambda}{dz} + [IC] \cdot \frac{d\mu}{dz} + \lambda \frac{\partial PC}{\partial z} + \mu \frac{\partial IC}{\partial z}$$

- Blue terms sum to zero by envelope theorem
- Red terms equal to zero as z does not appear in them
- Thus only direct term left

Intuition for Envelope Result

- Firm is trading off incentive provision and insurance
- Suppose z rises \Rightarrow changes desired effort
- ▶ If z and a complements (as here), increase desired effort
- \blacktriangleright Incentivize worker \Rightarrow steeper output-earnings schedule \Rightarrow expose worker to more risk
- Must pay worker more in expectation to compensate for more risk
- Mean wage and effort move together
- Optimal contract \Rightarrow marginal incentive and insurance motives offset

Aside: Interpretation of Bonus vs. Base Pay in Incentive Model 👁

What is a bonus payment?

- Incentive contract is $w^*(\eta) =$ mapping from idiosyncratic shocks to wages
- Base wage = "typical" value of $w^*(\eta)$
- ▶ Bonus wage = $w^*(\eta)$ base wage

Example 1: two values of idiosyncratic shock $\eta \in {\eta_L, \eta_H}$

▶ Base = min_{η} w(η), Bonus = w(η)-Base

Example 2: continuous distribution of η

▶ Base = $\mathbb{E}_{\eta}[w(\eta)]$, Bonus = $w(\eta)$ -Base

 \rightarrow Specific form will depend on context but does not affect equivalence results

Isomorphism of Bargaining to TIOLI w/ cyclical unemp. benefit •

Suppose worker and firm Nash bargain over promised utility ${\mathcal B}$ when meet

$$\mathcal{B}(z)\equiv rg\max_{E}J(z,E)^{\phi}\cdot (E-U(z))^{1-\phi}$$

Key: firm profits still determine employment fluctuations and defined as

$$J(z, B) = \max_{a,w} EPDV(Profits)$$

Under TIOLI contract offers, $\mathcal{B}(z) = U(z)$ so that

$$\mathcal{B}(z) = U(z) = b(z) + \beta \mathbb{E}[\mathcal{B}(z')|z]$$

whether $\mathcal{B}(z)$ moves due to bargaining or b(z) moves is first-order irrelevant to J(z) and thus unemployment

Optimal Contract • Expressions • Environment • ID: Main Slides • ID: Equ

Wages are a random walk

$$\ln w_{it} = \ln w_{it-1} + \psi h'(a_t) \cdot \eta - \frac{1}{2} (\sigma_{\eta} h'(a_t))^2$$

initialized at

$$w_{-1}(z_0) = \psi\left(Y(z_0) - rac{\kappa}{q(heta_0)}
ight)$$

for $\psi \equiv (\beta(1-s))^{-1}$ dubbed the "pass-through parameter" and $Y(z_0)$ the EPDV of output Fifort increasing in z_t and satisfies

$$m{a}_t(z_t) = \left[rac{z_tm{a}_t(z_t)}{\psi\left(Y(z_0) - rac{\kappa}{q(heta_0)}
ight)} - rac{\psi}{arepsilon}(h'(m{a}_t)\sigma_\eta)^2
ight]^{rac{arepsilon}{1+arepsilon}}$$

• Worker utility under the contract equals $\mathcal{B}(z_0)$, the EPDV of unemployment utility

• Cyclical $b(z) \implies w_{-1}(z)$ cyclical so influence new hire wages

Quantitative Contract: More Expressions <

EPDV of output

$$Y(z_0)\equiv\sum_{t=0}^\infty (eta(1-s))^t\mathbb{E}\left[z_t(a_t+\eta_t)|z_0
ight]$$

Worker utility under contract

$$\frac{\log w_{-1}}{\psi} - \mathbb{E}_0 \left[\sum_{t=0}^{\infty} (\beta(1-s))^{t-1} \left(\frac{\psi}{2} (h'(a_t)\sigma_{\eta})^2 + h(a_t) + \beta s \mathcal{B}(z_{t+1}) \right) | z_0 \right] = \underbrace{\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \ln b(z_t) | z_0 \right]}_{\mathcal{B}(z_0)}.$$

Identification: Some Equations • Optimal Contract

Variance of log wage growth is

$$V\!ar(\Delta \ln w_t) = \psi^2 V\!ar(h'(a)\eta) pprox (\psi h'(a))^2 \sigma_\eta^2$$

Pass through of idiosyncratic firm output shocks to wages is

$$\frac{d\ln w_{it}}{d\ln y_{it}} = \frac{d\ln w}{d\eta} \cdot \left(\frac{d\ln y}{d\eta}\right)^{-1} = \psi h'(a) \cdot \left(\frac{1}{a+\eta}\right)^{-1}$$

Wages martingale \implies new hire wages equal to w_{-1}/ψ in expectation, and $\ln w_{-1}$ equal to outside option:

$$\frac{\log w_{-1}}{\psi} - \mathbb{E}_0 \left[\sum_{t=0}^{\infty} (\beta(1-s))^{t-1} \left(\frac{\psi}{2} (h'(a_t)\sigma_{\eta})^2 + h(a_t) + \beta s \mathcal{B}(z_{t+1}) \right) | z_0 \right] = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t (\ln \gamma + \chi \ln z_t) | z_0 \right]$$

Differentiating both sides w.r.t. z shows clear relationship between χ (RHS) and $d \ln w_{-1}/d \ln z_0$

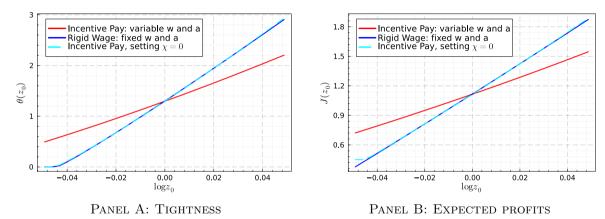
Externally Calibrated Parameters

Parameter	Description	Value	Source	
β	Discount Factor	$0.99^{(1/3)}$	Petrosky-Nadeau & Zhang (2017)	
S	Separation Rate	0.031	Re-computed, following Shimer (2005)	
κ	Vacancy Cost	0.45	Petrosky-Nadeau & Zhang (2017)	
ι	Matching Function	0.8	Petrosky-Nadeau & Zhang (2017)	
$ ho_z$	Persistence of <i>z</i>	0.966	Fernald (2012)	
σ_z	S.D. of z shocks	0.0056	Fernald (2012)	

Estimated Parameters <

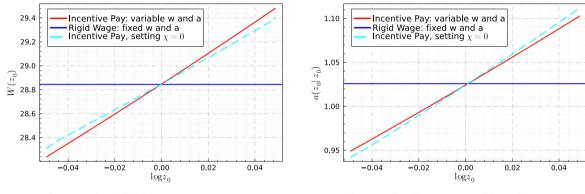
Parameter	Description	Estimate	Bargain Estimate	
σ_η	Std. Dev. of Noise	0.52	0*	
χ	Elasticity of unemp. benefit to cycle	0.49	0.63	
γ	Steady State unemp. benefit	0.43	0.48	
ε	Effort Disutility Elasticity	3.9	1*	

Equivalence Theorem Numerically



Observe equivalence between incentive pay economy setting \(\chi = 0\) (light blue) and rigid wage/effort (dark blue) economies

Wage Differences: Full model vs Incentives Only <->



PANEL A: EPDV of wages w_{-1}

PANEL B: EFFORT OF NEW HIRES

Removing bargaining reduces slope of wage-productivity schedule

Calculating Share of Wage Cyclicality due to Bargaining <

- 1. Calculate total profit cyclicality in full model $\frac{dJ}{dz}$
- 2. Calculate direct productivity effect

$$(\mathbf{A}) = \sum_{t=0}^{\infty} (\beta(1-s))^{t} \mathbb{E}_{0} f_{z}(z_{t}, \eta_{it}) \frac{\partial z_{t}}{\partial z_{0}}$$

3. Calculate "(C) term" as difference between profit cyclicality and direct productivity effect

$$(\mathbf{C}) = rac{dJ}{dz} - (\mathbf{A})$$

4. Bargained wage cyclicality share is share of profit fluctuations due to (C) term

$$BWS = -\frac{(\mathbf{C})}{dJ/dz}$$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

• Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0,\eta_i^t, z^t}^{\infty}$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\mathsf{w}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

► Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}; z_0) = 0, IC(\mathbf{w}, \mathbf{a}; z_0) \le 0$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, \mathsf{a}_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

• Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0,\eta_i^t, z^t}^{\infty}$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\mathsf{w}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

► Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta_i^t, z^t}^{\infty}$

$$\begin{bmatrix} \mathsf{IC} \end{bmatrix} \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\mathsf{w}_{it}, \tilde{a}_{it}\right) + \beta s \mathcal{B}\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

Free entry condition pins down market tightness: $J(z_0) = \frac{\kappa}{q(\theta_0)}$

A Dynamic Incentive Contract Equivalence Theorem

Assume (i) local constraints are globally incentive compatible (ii) unemployment benefits b are constant. • Technical Assumptions

The elasticity of market tightness with respect to aggregate shocks is to a first order

$$\frac{d\log\theta_{0}}{d\log z_{0}} = \frac{1}{\nu} \frac{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} E_{0,a^{*}} f_{z}\left(z_{t},\eta_{it}\right) \frac{\partial z_{t}}{\partial z_{0}} z_{0}}{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \left(E_{0,a^{*}} f\left(z_{t},\eta_{it}\right) - E_{0,a^{*}} w_{it}^{*}\right)}$$

where a_{it}^* and w_{it}^* are effort and wages under the firm's optimal incentive pay contract.

The elasticity of market tightness in a rigid wage economy with $w = \bar{w}$ and $a = \bar{a}$ is

$$\frac{d\log\theta_0}{d\log z_0} = \frac{1}{\nu} \frac{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t E_{0,\bar{s}} f_z\left(z_t, \eta_{it}\right) \frac{\partial z_t}{\partial z_0} z_0}{\sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^t \left(E_{0,\bar{s}} f\left(z_t, \eta_{it}\right) - E_0 \bar{w}\right)}$$

Equivalence in Richer Models

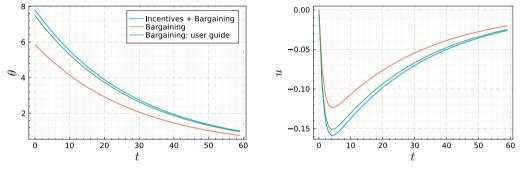
Private savings and borrowing constraints (Aiyagari 1993; Krusell et al 2010) •

Equivalent impact elasticities

Endogenous separations (Mortensen & Pissarides 1994)

Equivalent impact elasticities

Impulse Response to a 1SD shock to z_0



PANEL A: TIGHTNESS θ_t

PANEL B: UNEMPLOYMENT u_t

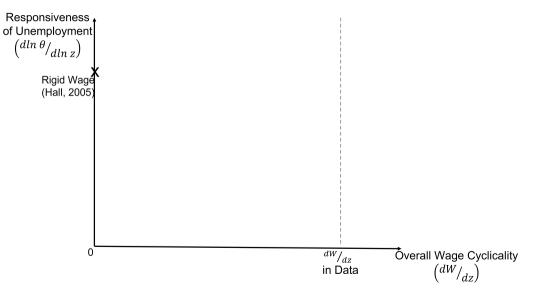
TFP Shock

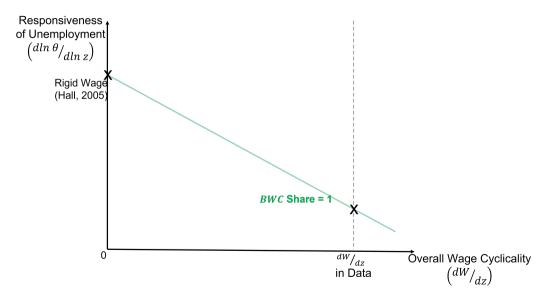
Numerical Results: Internally Calibrating Productivity Process

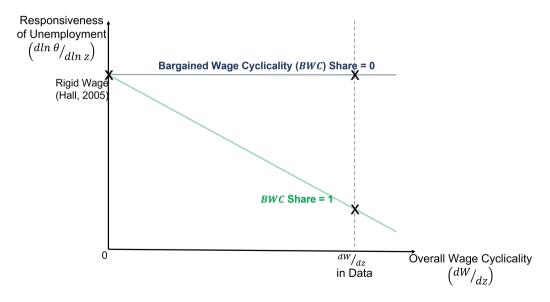
		Model: Source of wage flexibility		
		(1)	(2)	
Moment	Data	Incentives + Bargaining	Bargaining	
ρ_y	0.89	0.89	0.89	
σ_y	0.02	0.02	0.02	
$std(ln u_t)$	0.20	0.07	0.09	
$d \ln \theta_0 / d \ln z_0$	-	18.7	11.6	
$\mathcal{W}_0/\mathcal{Y}_0$	-	0.96	0.96	
$d \ln \mathcal{W}_0 / d \ln z_0$	-	0.55	0.37	
$d \ln \mathcal{Y}_0 / d \ln z_0$	-	0.92	0.61	
Incentive share	-	0.40	0.00	

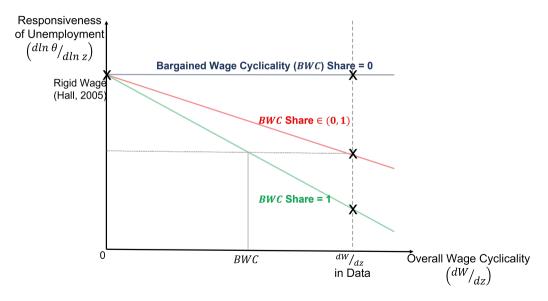
Numerical Results: Varying New Hire Wage Target

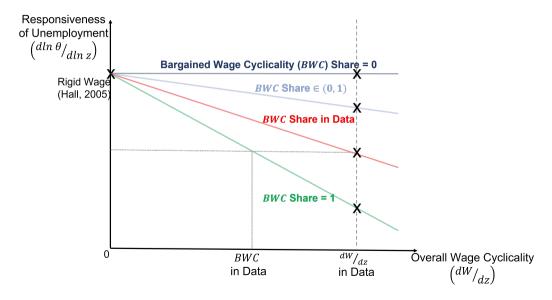
	Model: $\partial \mathbb{E}[\ln w_0]/du$ target			
Moment	-0.50	-0.75	-1.25	-1.50
$d\mathbb{E}[\ln w_0]/du$	-0.50	-0.75	-1.25	-1.50
$std(ln u_t)$	0.16	0.13	0.09	0.08
$d \ln \theta_0 / d \ln z_0$	17.9	15.8	12.0	10.5
Incentive Wage Cyclicality share	0.73	0.59	0.38	0.33
Incentive Wage Cyclicality	-0.37	-0.44	-0.47	-0.49



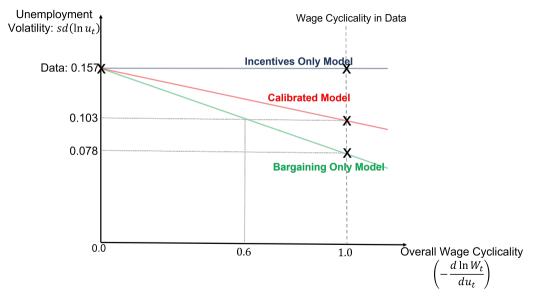








Quantitative Results: Graphical Illustration



Literature 👁

Empirics of wage adjustment. Devereux 2001; Swanson 2007; Shin & Solon 2007; Carneiro et al 2012; Le Bihan et al 2012; Haefke et al 2013; Kudlyak 2014; Sigurdsson & Sigurdardottir 2016; Kurmann & McEntarfer 2019; Grigsby et al 2021; Schaefer & Singleton 2022; Hazell & Taska 2022; Bils et al. 2023

Contribution: model of wage setting consistent with micro evidence on bonuses

- Wage adjustment and unemployment dynamics. Shimer 2005; Hall 2005; Gertler & Trigari 2009; Christiano et al 2005; Gertler et al 2009; Trigari 2009; Christiano et al 2016; Gertler et al 2020; Blanco et al 2022 Contribution: Flexible incentive pay does not dampen unemployment fluctuations
- Incentive contracts. Holmstrom 1979; Holmstrom & Milgrom 1987; Sannikov 2008; Edmans et al 2012; Doligalski et al. 2023 Contribution: Characterize aggregate dynamics with general assumptions (E.g. non-separable utility, persistent idiosyncratic shocks, no reliance on "first order approach")
- Sales + Rigidity. e.g. Nakamura & Steinsson 2008; Klenow & Kryvtsov 2008; Kehoe & Midrigan 2008; Eichenbaum et al 2011 Contribution: incentive pay does not affect aggregate rigidity even if bonuses are cyclical

- Frictional labor market: vacancy filling rate $q_t \equiv q(\theta_t)$, market tightness $\theta_t \equiv v_t/u_t$
- Production function $y_{it} = f(z_t, \eta_{it})$
 - Density $\pi\left(\eta_{i}^{t}|a_{i}^{t}\right)$ of idiosyncratic shocks $\eta_{i}^{t} = \{\eta_{i0},...,\eta_{it}\}$
 - Affected by **unobservable** action $a_i^t = \{a_{i0}, ..., a_{it}\}, a_{it} \in [\underline{a}, \overline{a}]$
- ► Dynamic incentive contract: $\{\mathbf{a}, \mathbf{w}\} = \{a(\eta_i^{t-1}, z^t; z_0), w(\eta_i^t, z^t; z_0)\}_{t=0, \eta_i^t, z^t}^{\infty}$
- Value of filled vacancy at time zero:

$$V(\mathbf{a}, \mathbf{w}; z_0) \equiv \sum_{t=0}^{\infty} \int \int \left(\beta \left(1-s\right)\right)^t \left(f\left(z_t, \eta_{it}\right) - w_{it}\left(\eta_i^t, z^t; z_0\right)\right) \pi \left(\eta_i^t, z^t | a_i^t\right) d\eta_i^t dz^t$$

s: exogenous separation rate, β : discount factor

$$\begin{bmatrix} \mathsf{PC} \end{bmatrix} \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E} \left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \mathsf{a}_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- Formulation of bargaining power nests e.g. Nash w/ cyclical outside option, Hall-Milgrom bargaining

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, a_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, a_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

• "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$

► Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0, \eta_i^t, z^t}^{\infty}$

$$\left[\mathsf{IC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(w_{it}, \tilde{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

• Loosely denote constraints as $PC(\mathbf{w}, \mathbf{a}; z_0) = 0, IC(\mathbf{w}, \mathbf{a}; z_0) \le 0$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \mathsf{a}_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0,\eta_i^t, z^t}^{\infty}$

$$\left[\mathsf{IC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\mathsf{w}_{it}, \tilde{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

Maximized value of a filled vacancy:

$$J(z_{0}) \equiv \max_{\mathbf{w}, \mathbf{a}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}; z_{0})}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_{0})}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}; z_{0}) \rangle}_{\text{incentive compatibility}}$$

$$\left[\mathsf{PC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\mathsf{w}_{it}, \mathsf{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \mathsf{a}_{i}^{t}\right] = \mathcal{B}\left(z_{0}\right)$$

- "Reduced form" bargaining power if $\mathcal{B}'(z_0) > 0$
- Incentive compatibility constraints: for all $\{\tilde{a}(\eta_i^{t-1}, z^t; z_0)\}_{t=0,\eta_i^t, z^t}^{\infty}$

$$\left[\mathsf{IC}\right] \quad \sum_{t=0}^{\infty} \left(\beta \left(1-s\right)\right)^{t} \mathbb{E}\left[u\left(\mathsf{w}_{it}, \tilde{a}_{it}\right) + \beta s U\left(z_{t+1}\right) | z_{0}, \tilde{a}_{i}^{t}\right] \leq \mathcal{B}\left(z_{0}\right)$$

Maximized value of a filled vacancy:

$$J(z_0) \equiv \max_{\mathbf{w}, \mathbf{a}, \boldsymbol{\mu}, \boldsymbol{\lambda}} \underbrace{V(\mathbf{w}, \mathbf{a}; z_0)}_{\text{vacancy value}} + \underbrace{\mu PC(\mathbf{w}, \mathbf{a}; z_0)}_{\text{participation}} + \underbrace{\langle \boldsymbol{\lambda}, IC(\mathbf{w}, \mathbf{a}; z_0) \rangle}_{\text{incentive compatibility}}$$

Free entry condition pins down market tightness: $J(z_0) = \frac{\kappa}{q(\theta_0)}$

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's 👁

Temporarily shut down bargaining power \rightarrow all wage cyclicality is due to incentives

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's 👁

Temporarily shut down bargaining power \rightarrow all wage cyclicality is due to incentives

Assume: (i) proximity to non-stochastic steady state (ii) production function is h.o.d. 1 in z, (iii) contracts offer constant promised utility \mathcal{B} . Then in the flexible incentive pay

$$rac{d\log heta_0}{d\log z_0} = rac{1}{
u_0}rac{1}{1- ext{labor share}}$$

where

labor share =
$$\frac{\sum_{t=0}^{\infty} (\beta (1-s))^{t} E_{0} w_{it}}{\sum_{t=0}^{\infty} (\beta (1-s))^{t} E_{0,a} f(z_{0}, \eta_{it})}$$

The same equations characterize a rigid wage economy with $w_{it} = \bar{w}, a_{it} = \bar{a}$

Incentive Wage Cyclicality Doesn't Mute Unemployment Fluct's 👁

Temporarily shut down bargaining power \rightarrow all wage cyclicality is due to incentives

Assume: (i) proximity to non-stochastic steady state (ii) production function is h.o.d. 1 in z, (iii) contracts offer constant promised utility \mathcal{B} . Then in the flexible incentive pay

$$rac{d\log heta_0}{d\log z_0} = rac{1}{
u_0}rac{1}{1- ext{labor share}}$$

where

labor share =
$$\frac{\sum_{t=0}^{\infty} (\beta (1-s))^{t} E_{0} w_{it}}{\sum_{t=0}^{\infty} (\beta (1-s))^{t} E_{0,a} f(z_{0}, \eta_{it})}$$

The same equations characterize a rigid wage economy with $w_{it} = \bar{w}, a_{it} = \bar{a}$

Implications: incentive wage cyclicality does not mute unemployment fluctuations

- In an incentive pay economy with flexible dynamic incentive pay
- Unemployment dynamics behave "as if" wages are rigid

Parameterized Dynamic Incentive Contract Model

- Linear production
- ▶ Normally distributed noise $\eta \sim \mathcal{N}(0, \sigma_{\eta})$, agg. productivity AR(1) in logs
- Log and isolastic utility

$$u(c,a) = \ln c - rac{a^{1+1/arepsilon}}{1+1/arepsilon}$$

- Agent observes η before deciding action
- Worker's flow consumption during unemployment is $b(z) \equiv \gamma z^{\chi}$
- Firm makes take-it-or-leave-it offers to worker so

$$\mathcal{B}(z_0) = \sum_{t=0}^{\infty} \beta^t \mathbb{E} \left[\ln \gamma + \chi \ln z_t | z_t
ight]$$

- First-order equivalent to fixed b and bargaining over surplus
- $\blacktriangleright~\chi$ governs cyclicality of promised utility and thus "bargained wage cyclicality"

Regularity Conditions <

1. The distribution of innovations to aggregate productivity does not depend on initial productivity z_0

$$z_t = \mathbb{E}[z_t|z_0] + \varepsilon_t, \qquad \varepsilon^t \sim G_t(\varepsilon^t)$$

- 2. $f(z, \eta)$ is differentiable and strictly increasing in both of its arguments
- 3. u(c, a) is strictly increasing and concave in c and decreasing and convex in a and is Lipschitz continuous
- 4. The set of feasible contracts that satisfy IC and PC is non-empty.
- 5. At least one of the following conditions holds
 - 5.1 The set of feasible contracts is convex and compact. The worker's optimal effort choice is fully determined by the first order conditions to their problem. Finally, idiosyncratic shocks η_{it} follow a Markov process: $\pi_t(\eta_t | \eta^{t-1}, a^t) = \pi_t(\eta_t | \eta_{t-1}, a_t)$
 - 5.2 Feasible contracts are continuous and twice differentiable in their arguments (z^t, η^t) with uniformly bounded first and second derivatives.

Exogenous TFP Shock <



Bargained Wage Cyclicality: Dynamic Model Definition and Result <-

- > Assume Inada conditions on utility and first-order Markov process for η .
- Define $\mathcal{Y}(\mathbf{a}^*(z_0), z_0)$ to be EPDV of match output given z_0
- Define $W(z_0)$ to be EPDV of wage payments given z_0 under optimal contract
- Define Bargained Wage Cyclicality to be wage movements in excess of effort-induced output movements:

$$rac{\partial \mathcal{W}^{ ext{bargained}}}{\partial z_0} = rac{d \mathcal{W}(z_0)}{d z_0} - \partial_{\mathbf{a}} \mathcal{Y}(\mathbf{a}^*(z_0), z_0) rac{d \mathbf{a}^*}{d z_0}$$

Then

$$d \ln heta_0 \propto \left(rac{1-BWC}{1- ext{labor share}}
ight) d \ln z_0$$

where *BWC* is the share of overall wage cyclicality associated with bargaining, and $BWC > 0 \iff B'(z_0) > 0$

Wage Cyclicality from Bargaining Does Dampen Unemployment Responses

Result #2: Wage cyclicality from bargaining or outside option does dampen unemployment dynamics

 $J(z) = \mathbb{E}[z(a(z) + \eta) - w(z, y)] + \lambda(z) \cdot IC + \mu(z) \cdot [\mathbb{E}[u(w, a)] - B(z)]$

- $\lambda(z)$ Lagrange multiplier on IC constraint
- $\mu(z)$ Lagrange multiplier on participation constraint

Wage Cyclicality from Bargaining Does Dampen Unemployment Responses

Result #2: Wage cyclicality from bargaining or outside option does dampen unemployment dynamics

$$rac{dJ}{dz}={\sf a}^*-\mu^*{\cal B}'(z)$$

- Direct productivity effect a*
- Cyclical utility from bargaining or outside option $\mathcal{B}'(z)$
- ▶ $\mu^* = \text{Lagrange multiplier on participation constraint}$

Wage Cyclicality from Bargaining Does Dampen Unemployment Responses

Result #2: Wage cyclicality from bargaining or outside option does dampen unemployment dynamics

$$\frac{dJ}{dz} = a^* - \mu^* \mathcal{B}'(z) = a^* + \mathbb{E}\left[z\frac{da^*}{dz} - \frac{dw^*}{dz}\right]$$
$$\implies \underbrace{\mathbb{E}\left[\frac{dw^*}{dz} - z\frac{da^*}{dz}\right]}_{\text{bargained wage cyclicality}} = \mu^* \mathcal{B}'(z)$$

▶ Wages move in excess of effort if and only if $\mu^*(z)\mathcal{B}'(z) > 0$: cyclical ex-ante promised utility

Dub $\mu^* \mathcal{B}'(z)$ bargained wage cyclicality

Intuition: higher wages from bargaining or outside option not accompanied by higher effort

Same mechanism as standard model (e.g. Shimer 2005)

Dynamic Sticky Price Model Setup Details 👁

• Unit measure of retailers j produce using wholesale good purchased at real price z_t :

 $Y_{jt} = A_t H_{jt}$

Retailers set prices at beginning of period as markup over expected marginal costs

$$p_{jt} = z_t/A_t$$

- > An i.i.d. fraction ϱ of retailers can adjust their price each period
- Final output is Dixit-Stiglitz aggregate of retailers goods

$$Y_t = \left(\int_0^1 Y_{jt}^{\frac{\alpha-1}{\alpha}}\right)^{\frac{\alpha}{\alpha-1}} \implies P_t = \left(\int_0^1 p_{jt}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}$$

Wholesalers hire labor in frictional labor market as above, and sell at price z_t