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Introduction

One’s background (race, parental income, hometown) affects outcomes in adulthood

Access to affordable credit is a pathway to overcome one’s starting circumstances and
achieve economic opportunity

How does one’s background affect access to affordable credit? Why?

Limited data linking credit records and income/demographics

Notable exceptions:
SSA Linkage [Federal Reserve Board of Governors (2007), summarized in Avery, Brevoort, and Canner (2009)]
LEHD Data [Braxton, Chikhale, Herkenhoff, and Phillips (2023)]

HMDA Data [Bhutta and Canner (2013); Bayer, Ferreira, and Ross (2016); Fuster et al., 2022; Bhutta, Hizmo and Ringo,
2024; CFPB Office of Research, 2021; Gerardi, Lambie-Hanson and Willen, 2021; Bhutta and Hizmo, 2021]

Consumer Data [Blattner and Nelson (2024)]



Construct linked Credit Bureau and Census/Tax data for 25M+ individuals

Population Sample: 1% sample of US population with SSNs

Intergenerational Sample: Full sample of 1978-85 birth cohorts (Chetty et al. 2020),
plus 10% linkage to parents (those aged 55-85 in 2020)

Census and Tax data (1969-2021) provide measures of race, income, education, place...
Tax data provides income information from W-2s and 1040s (+parent linkage)
Census data provides race/ethnicity and education from Decennials and ACS

Credit Bureau data person-level attributes file pulled every 4 years from June 2004-2020
Balances, delinquencies, bankruptcies, and # of tradelines
By type of credit: mortgages, credit cards, auto loans, and student loans
Credit score (Vantage 4.0) aims to predict future 90+ day delinquency



Construct linked Credit Bureau and Census/Tax data for 25M+ individuals

Part 1: Measurement of differences in credit access by race, class, and hometown
Use credit score as measure of credit access (Gibbs et al. 2025 JEL)
Assess relationship to future 90+ day delinquency by one’s background

Part 2: Determinants of credit access
Study underlying drivers of differences in credit access and delinquency
Role of income versus factors shaped during childhood
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Fraction of People with a Credit File, by Race

100%
e2gocecsesesgesesceses
o e
§ .'. o ¢ o .i . :‘3‘. Se 0.000
— % ..
5 80% ' o y
Eg 3‘ O
O 60% °
o
°
2 3
.,9 400/0'
© L
-.E- ® Black
5 o/ — ® AIAN
- ® Hispanic
. ¥ ® White
° .
0% - ® Asian

| I | | I | | I I | I | I |

20 25 30 35 40 45 ©50 655 60 65 70 75 80 85
Age in 2020

1% Sample of all SSNs (2020) -EEEE



Credit Scores by Age and Race in 2020
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Credit Scores by Age and Race in 2020
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Credit Scores by Age and Race in 2020: Intergenerational Sample

Credit Score in 2020
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Credit Scores by Race and Parental Income 2020
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Credit Scores by Race and Parental Income 2020

Credit Score in 2020

1978-85 Cohorts (2020)

800 -

750

700

650

600

550 -

— White

Black

10

20

| I I I I

30 40 50 60 70
Parental Household Income Percentile

80

90

100



Credit Scores by Race and Parental Income 2020
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Credit Scores by Race and Parental Income 2020, Native-born Mothers
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Credit Scores by Race and Parental Income 2020
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Credit Scores by Race and Parental Income 2020
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Credit Scores by Race and Parental Income 2020

Credit Score in 2020
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Credit Scores by County for White Individuals From Low-Income (p25) Families
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Within-Person Persistence of Credit Scores
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Within-Person Persistence of Credit Scores
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Credit Scores versus Credit Constraints

Does the credit score capture differences in credit access?

Groups with lower credit scores have:
Lower balances [link]
More formal credit inquiries [|ink]
Higher relative share of student loans [link]
Higher credit card utilization [/ink]
Lower ability to get $2,000 to cover an unexpected need (
More likely to rely on alternative credit [link]

Conclude that groups with lower credit scores face greater credit constraints



What Drives Differences in Credit Scores/Access? The Role of Non-Repayment

Natural reason to restrict credit is that the lender is afraid they won’t be repaid

Credit scores (Vantage and FICO) seek to predict future 90+ day delinquency, with the
idea this prediction is helpful for measuring creditworthiness

Measure rate of 90+ day delinquency by group



Presence of Late Payment on Credit Report by Age and Race (90+ day)
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Presence of Late Payment on Credit Report by Age and Race (90+ day)
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Presence of Late Payment on Credit Report by Age and Race (90+ day)

Fraction 90+ Day Delinquent from 2016 to 2020
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Presence of Late Payment on Credit Report by Age and Race (90+ day)
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Presence of Late Payment on Credit Report by Age and Race (90+ day)
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90+ Day Late Payment Breakdown for Black Individuals

Share of Individuals
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Algorithmic Bias in Credit Scores

= Large gaps in credit scores and repayment by race, class, and hometown

= Are the differences in credit scores accurate reflections of these non-repayment

differences or is there algorithmic bias? [e.g. Fuster et al. (2022); Blattner and Nelson (2024);
Elzayn et al. (2025); Arnold et al. (2025)]

= Assess relationship between credit scores and future delinquencies to evaluate
algorithmic bias of the credit score
= Caveat: May differ from bias in firm decisions using the algorithm

= Calibration Bias: Are there disparities in future 90+ day delinquency conditional on the
credit score?



2003 Fed Board Analysis Finds Calibration Bias of Credit Score Against White
Borrowers [Federal Reserve Board (2007); Avery, Brevoort, and Canner (2009)]
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But Vantage 4.0 Argues No Calibration Bias Today (Zipcode imputation)

Figure 22: Statistical Bias: Bankcard default profiles by ethnicity with confidence intervals
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https://cdn.vantagescore.com/uploads/2022/09/VantageScore-4.0-UserGuide_abr_Sep22.pdf

Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Summary of Measurement of Credit Access

Large differences in credit scores by race, class, and hometown, that
emerge early in the life cycle

Credit score gaps align with and even understate differences in
delinquency rates across groups

Key Question: What drives the large group-level differences in
repayment that emerge early in the life cycle?



What Drives Differences in Repayment by Race, Class, and Hometown?

Two theories:

Differences in adult incomes/wealth
Large differences in income/wealth by race, class, and hometown

Differences in childhood environments

Gaps emerge early in life cycle and we know incomes are driven by childhood
exposure to neighborhoods

Economic model of repayment: r; = m(y;, ¢;, €;)
y; is adult income / budget constraint
c; is childhood inputs (potentially correlated with y;)
€; are other determinants (e.g. random shocks)



What Drives Differences in Repayment by Race, Class, and Hometown?

Two theories:

Differences in adult incomes/wealth
Large differences in income/wealth by race, class, and hometown

Differences in childhood environments

Gaps emerge early in life cycle and we know incomes are driven by childhood
exposure to neighborhoods

Assess these theories using two empirical strategies:
Observational controls for income

Causal strategy focused on hometown gaps to isolate childhood inputs and
study mediation through income



What Drives Differences in Repayment by Race, Class, and Hometown?

Two theories:

Differences in adult incomes/wealth
Large differences in income/wealth by race, class, and hometown

Differences in childhood environments

Gaps emerge early in life cycle and we know incomes are driven by childhood
exposure to neighborhoods

Assess these theories using two empirical strategies:
Observational controls for income

Causal strategy focused on hometown gaps to isolate childhood inputs and
study mediation through income



1. The Role of Income and Wealth in Explaining 90+ Day Delinquency (Age 24-30)
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1. The Role of Income and Wealth in Explaining 90+ Day Delinquency (Age 24-30)
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1. Repayment (No 90+ Day Delinquency) vs. Repayment Conditional on Income
White 25th Percentile Parental Income (2020)
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Role of Parental Credit Score in Explaining 90+ Day Delinquency in 2008

Intergenerational Sample

(1) (2) 3) (4) 5) (6)
90+ Day Delinquency
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2. Causal Strategy to Identify Role of Childhood Inputs and Adult Income

Develop causal strategy to identify the impact of childhood inputs and
understand the extent to which it is mediated through adult income

Follows 2 steps:

Childhood exposure design: Measure effect of childhood exposure
to hometowns that have higher delinquency rates

Mediation Analysis [stay tuned]: Assess whether effect of place on
Income is a mediator
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Repayment (No 90+ Day Delinquency)
White 25th Percentile Parental Income (2020)
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Childhood Exposure Effects for Repayment in 2004 (age 19-22)
1 -

Coefficient on Dest. Relative to Orig. Prediction

Age of Child When Parents Move
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Childhood Exposure Effects for Repayment in 2004 (age 19-22) with Family FE
1 -

.

Slope: -.018 SE: .002

Coefficient on Dest. Relative to Orig. Prediction

Age of Child When Parents Move



Summary

Childhood inputs that are captured through exposure to place explains
most of the gap in repayment across place (at least 60%)

What about other gaps by race and parental income?
Race gap varies by hometown: 2x in San Francisco vs. Indianapolis
Most of this subset of the gap is due to the causal effect of childhood exposure
Suggests childhood inputs also influence race gap




Childhood Exposure and the Race Gap

(D (2) (3) 4
Pooled Race A By Race A
Age Spline Component Base Fam FE Base Own vs. Other
Age 0 to 23 (Childhood) -0.019 -0.015 -0.022 -0.024
(0.001) (0.003) (0.001) (0.003)
Age -7 to 0 (Pre-Birth) 0.007 0.009 -0.007 -0.036
(0.004) (0.009) (0.005) (0.016)
Age 23 to 35 (Adulthood) 0.001 -0.015 0.011 -0.003
(0.002) (0.008) (0.003) (0.009)
Age 0 to 23 (Other) 0.002
(0.003)
Age -7 to 0 (Other) 0.030
(0.017)
Age 23 to 35 (Other) 0.011

(0.008)




What Are These Inputs Generated Through Childhood Exposure?
Spatial Correlation with Social Capital

Repayment Cross-Class Friendships
Conditional on Adult Income (Facebook Data) .

See also Bricker and Li (2023) who document correlation between economic connectedness and credit scores. =amas


https://www.federalreserve.gov/econres/feds/files/2023048pap.pdf

Conclusion

Large differences in credit scores and non-repayment by race, class,
and hometown, emerging by late 20s and persisting over the life cycle

Income explains at most ~30% of the gaps by race, place, and
hometown; childhood exposure to place explains more than 60% of the

hometown gap

Strength of cross-class friendships are correlated with both repayment
and upward income mobility

Credit constraints in adulthood have their roots in childhood






Credit Score Black-White Gap by County
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Racial Calibration: Credit Scores are Predictive of Future Delinquency

e Black

White

Any 90+ Day Delinquency From 2016 to 2020
A~ O
| |
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Racial Calibration of Credit Score by Age
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Racial Calibration of Credit Score by Age

Delinquency Gap To White
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Racial Calibration of Credit Score by Age
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Summary

Calibration: Credit score gaps understate differences in underlying
propensities to repay across groups
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Conditional on the outcome, do different groups receive different scores



Summary

Calibration: Credit score gaps understate differences in underlying
propensities to repay across groups

A different notion of “Bias” is Balance [Arnold, Dobbie and Hull (2022,2025)]
Conditional on the outcome, do different groups receive different scores

Take the set of people who do NOT experience a 90+ day delinquency
between 2016-2020 study the difference in credit scores

Start with differences in credit scores by race (relative to White),
separately by age



Racial Balance by Age: Average Score Among Those Without 90+ Delinquency
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Racial Balance by Age: Average Score Among Those Without 90+ Delinquency
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Racial Balance by Age: Average Score Among Those Without 90+ Delinquency
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Number of Tradelines by Age, by Race
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Credit Invisibles




Fraction of People with SSN that have a Credit File
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Fraction of People with a Credit File, by Race
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Credit Score (VantageScore 4.0) Rates By Age and Race
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Credit Score (VantageScore 4.0) Rates By Age and Race
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Further Details on Credit Scores

Avg. Credit Score Avg. Credit Score =~ Median Credit Score  Median Credit Score

(Population) w/Zeros
White 719 701 719 712
Black 621 601 581 571
Asian 745 741 781 776
Hispanic 670 659 655 644

AIAN 641 622 602 583

]
1978-85 Cohorts (2020) aanit



Credit Score Robustnhess




Credit Scores by Age and Race in 2004
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Credit Score Progression Over Time By Race
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Credit Score Progression Over Time By Class
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Credit Score by Race and Gender in 2020
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Household Balance Sheets




Average Debt Balance by Race 2020
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Composition of Average Debt Balance by Race 2020
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Number of Inquiries by Age
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Credit Card Utilization Rate
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Number of Tradelines by Age
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Ability to Come up with 2k vs. p25 White State Credit Score
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Alternative Credit Use by Race, Class, and Geography (Prolific Survey)

(1) (2) 3) (4) (5) (6)
Payday Payday Auto Pawn BNPL Rent-to-
Loan App Title Shop Own
Black 0.094*** (0, 113***  (0.058** 0.023 0.118%** 0.043
(0.034) (0.034) (0.025) (0.022) (0.039) (0.027)
Parent Education 0.005 —0.007 —0.006 0.005 —0.019**  -0.004
(0.006) (0.006) (0.005) (0.004) (0.007) (0.005)
Chldhd Cnty Delinquency Rate ~ 0.302 0.097 —0.146 0.296** 0.402%* 0.236
(0.186) (0.185) (0.137) (0.124) (0.214) (0.148)
N 702 702 702 702 702 702
R? 0.048 0.024 0.017 0.015 0.039 0.015
Education X X X X X X




90+ Day Late Payment Breakdown for White Individuals

Share of Individuals
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Childhood Exposure Effects

Let y,,.c denote average outcome in place c for parent income p, cohort s for those
who do not move once

Let Ayoas = Vpas — Ypos the difference between origin and destination

Regress adult outcome y; for child who moved at age m from o to d

35
Y; = Z I(m; = m)BmAsaps + Controls + ¢;

m=—6

Controls include:

Age at move, parent income rank, average outcomes children from origin (y,,s), cohort-varying
intercepts

Coefficient ,,,_1 — B, captures exposure effect of spending year m in place with one

unit higher outcome
Full spec



Childhood Exposure Effects

Yi = Z I(m; = m)BmAsdps + Controls + ¢;

1985

Controls = Z I(s; = 5)[BsAodps + (sPi + s + Pslops)
5=1982

+ Z I [O:m + Qf)myops + Cmpz]

m=—6



Childhood Exposure Effects for Repayment in 2004 (age 19-22)

(1) (2) (3) (4)
Pooled Race A By Race A
Base Fam FE Base Own vs. Other
Age 0 to 23 (Childhood) -0.019%** -0.015%** -0.022*** -0.024***
(0.001) (0.003) (0.001) (0.003)
Age -7 to O (Pre-Birth) 0.007** 0.009 -0.007 -0.036**
(0.004) (0.009) (0.005) (0.016)
Age 23 to 35 (Adulthood) 0.001 -0.015%* 0.011*** -0.003
(0.002) (0.008) (0.003) (0.009)
Age 0 to 23 (Other) 0.002
(0.003)
Age -7 to 0 (Other) 0.030*
(0.017)
Age 23 to 35 (Other) 0.011
(0.008)




What Types of Places Produce Children With Higher Future Repayment?
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What Types of Places Produce Children With Higher Future Income?

Job Density —
Mean Household Income —
Population Density —

2000 Employment Rate —

Mean 3rd Grade Math Score -
Share College Grad. —

Share Single Parent Households
2010 Divorce Rate —
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Upward Income Mobility versus Repayment Conditional on Income (White)
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The Rise of Student Loans




Student Loan Balances in 2020 by Parent Income and Race (Male)
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Student Loan Balances in 2020 by Parent Income and Race (Female)
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Student Loan

Balances for Males, by Age and Race in 2004
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Student Loan Balances for Males, by Age and Race in 2008
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Student Loan

Balances for Males, by Age and Race in 2012
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Student Loan

Balances for Males, by Age and Race in 2016
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Student Loan Balances for Males, by Age and Race in 2020
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Student Loan

Balances for Females, by Age and Race in 2004

$30k 1 —— Black
— AIAN
—— Hispanic
White
$20k - — Asian
$10k
$0 - M
I I I I I I |
20 30 40 50 60 70 80

1% Sample of all SSNs (2004)

Age in 2004



Student Loan Balances for Females, by Age and Race in 2008
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Student Loan Balances for Females, by Age and Race in 2012
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Student Loan

Balances for Females, by Age and Race in 2016
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Student Loan Balances for Females, by Age and Race in 2020
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Balances vs. Amount Borrowed Amongst Borrowers?

Total Amount Borrowed as of 2015 Total Balance as of 2015
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Authorized Users




Being on Your Parent’s Credit Card Acct. Boosts Child Credit Score at Age 19
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Race Gaps in Auth. User Trades Correlate With Racial Credit Score Gaps
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Other Maps




Repayment by County for White Individuals From Low-Income (p25) Families
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Credit Scores by County for Black Individuals From Low-Income (p25) Families
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Credit Score Black-White Gap by County
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Credit Scores by County for Black Individuals with 25" Pctl Parental Income

1978-85 Cohorts (2020)
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Credit Scores by County for Black Individuals with 75" Pctl Parental Income

1978-85 Cohorts (2020)
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Credit Scores by County for White Individuals with 75t Pctl Parental Income
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Credit Score and Delinquency, by County
White Individuals with 75th Percentile Parental Income
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Credit Score and Delinquency, by County
Black Individuals with 25th Percentile Parental Income
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Credit Score and Delinquency, by County
Black Individuals with 75th Percentile Parental Income
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Takeup of Credit




What Drives Differences in Repayment? The Role of Formal Credit Terms

Existing literature documents Black individuals obtain worse terms in
auto lending and mortgage markets, even conditional on

creditworthiness (Lanning, 2021; Bartlett et al., 2022; Butler, Mayer, and Weston, 2023;
Raymond, 2024)

Differences in formal sector credit terms could drive repayment if terms
have causal effect on repayment

We don'’t believe this is a primary driver of the non-repayment patterns:

Delinquencies emerge early in life primarily for credit cards, student
loans, and delinquencies on collections from utilities, phone, TV, and
medical bills

Standardized terms for student loans

Using the SCF, we find similar credit card terms by race for 22-30 year olds



Role of Credit Terms
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First Tradeline by Age For White Individuals in 2004
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First Tradeline by Age For Black Individuals in 2004
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First Tradeline by Age For White Individuals in 2020
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First Tradeline by Age For Black Individuals in 2020
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Social Capital




Repayment in 2020 versus Upward Income Mobility
White Individuals with 25th Percentile Parental Income

Repayment Economic Connectedness
Conditional on Adult Income (Facebook Data)



Role of Social Capital

Two potential explanations for why childhood environment and social
capital / economic connectedness might affect repayment in adulthood:

Financial network: You know people who can give you money if you
need it

Learned Behaviors: You learn from or absorb the behaviors of others

Conduct survey of ~800 individuals aged 22-30 on Prolific to measure:
Self-reported delinquency
Race/class/hometown

Measures of lending to/from one’s network and ability to obtain resources from
friends/family

Similar bilateral patterns in representative surveys (CES, PSID, SCF, NCFS, BPS)



Role of Informal Networks in Repayment (Prolific Survey)

(1) 2) 3) (4) ®)
Black 0.1171%** 0.068* 0.037 0.046 0.020
(0.040) (0.040) (0.039) (0.039) (0.039)
Parent Education —0.014* —0.016** —0.016** —0.009 —0.010
(0.007) (0.007) (0.007) (0.007) (0.007)
Chldhd Cnty Repayment Rate —0.449** —0.265 -0.211 —-0.208 —-0.165
(0.218) (0.217) (0.213) (0.213) (0.210)
Give Financial Assistance ($1,000s) —0.006 —0.008 0.017 0.013
(0.015) (0.014) (0.015) (0.015)
Give Financial Assistance (Freq) 0.057*** 0.016 0.052%** 0.016
(0.011) (0.013) (0.011) (0.013)
Times Asked for Help 0.038%%** 0.035%%*
(0.007) (0.007)
Amount Could Borrow ($1,000s) —0.048*** (), 043%**
(0.009) (0.009)
Education Controls X X X X X
Dependent Variable Mean 0.526 0.526 0.526 0.526 0.526
N 702 702 702 702 702
R? 0.027 0.065 0.103 0.098 0.129




Financial Literacy and Non Repayment (SCF)

(1) 2) 3) 4) &)
Financial Literacy: Inflation —0.108***  —0.087***  —(.078*** —0.081***
(0.029) (0.029) (0.028) (0.028)
Financial Literacy: Diversification —0.039 —0.030 —0.017 —0.021
(0.029) (0.028) (0.029) (0.027)
Financial Literacy: Interest 0.015 0.026 0.017 0.014
(0.029) (0.028) (0.028) (0.028)
Log HH Income —0.085%**  —0.053***  —0.082***  _0.071***
(0.015) (0.018) (0.014) (0.015)
Log Net Wealth —(0.037***
(0.010)
Black 0.185%**  (.177%**
(0.034) (0.034)
Hispanic 0.035 0.033
(0.034) (0.034)
Asian 0.178 0.212
(0.196) (0.196)
N 1,495 1,495 1,495 1,495 1,495
R? 0.021 0.049 0.066 0.065 0.074
Financial Literacy Joint F-Test (P-val) 0.000 0.002 0.008 0.004




Alternative Credit Use by Race, Class, and Geography (Prolific Survey)

(1) (2) 3) (4) (5) (6)
Payday Payday Auto Pawn BNPL Rent-to-
Loan App Title Shop Own
Black 0.094*** (0, 113***  (0.058** 0.023 0.118%** 0.043
(0.034) (0.034) (0.025) (0.022) (0.039) (0.027)
Parent Education 0.005 —0.007 —0.006 0.005 —0.019**  -0.004
(0.006) (0.006) (0.005) (0.004) (0.007) (0.005)
Chldhd Cnty Delinquency Rate ~ 0.302 0.097 —0.146 0.296** 0.402%* 0.236
(0.186) (0.185) (0.137) (0.124) (0.214) (0.148)
N 702 702 702 702 702 702
R? 0.048 0.024 0.017 0.015 0.039 0.015
Education X X X X X X




Bankruptcy by Parent Income and Race

Parental Household Income Rank
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Number of Credit Card Inquiries
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The Role of Income and Wealth in Explaining 90+ Day Delinquency in 2008
Controlling for Credit Score
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Composition of Total Assets by Race (SIPP)
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Race Dummies on Delinquency Relative to White by Age
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Comparison of Our Estimates to Urban Institute
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Calibration Bias Among Perfect

Borrowers




Credit Scores are Predictive of Future Delinquencies Of Previously Perfect

Borrowers by Race

Any 90+ Day Delinquency From 2016 to 2020

1978-85 Cohorts W/ Clean Credit Histories

14
.9 -
.8
7
o
.5 * Hispanic
3
2
17
0-
4&|'>0 5(|)0 5&I'>O 6(|)0 GFIJO 7(|)0 7£|'>0 8(|)0 8&|'>0

2016 Credit Score



Class Dummies on Delinquency Relative to Bottom Quintile by Age
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Lifecycle of Late

Payments By Tradeline



90+ Day Late Payment Breakdown
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90+ Day Late Payment Breakdown
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Calibration: Credit Scores are Predictive of Future Delinquency

Any 90+ Day Delinquency From 2016 to 2020
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Credit Card Utilization by Race and Parent Income 2020
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Calibration of Credit Score by Age

Any 90+ Day Delinquency From 2016 to 2020
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Balance of Credit Score by Age
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Calibration Bias by Parental Income
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Delinquencies and Collections By Age (White)

Share of Individuals
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Parental Income Calibration of Credit Score by Age

Delinquency Gap To 3rd Quintile
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Balance of Credit Score by Age: “Perfect 23-Year Repayment Sample”

2012 Credit Score Gap (White Base)

104 e Black
° ® Hisp.
. ® Asian
0O ——————— - ——— — ® ____..__.__.__.__? ________________
o o o
°
10 - ° ¢ s
I A
) ° ® o
-20
230 -
20 40 60 80

Age in 2012



Bankruptcy by Race

1978-85 Cohorts

Percent Bankrupt
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