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▪ One’s background (race, parental income, hometown) affects outcomes in adulthood

▪ Access to affordable credit is a pathway to overcome one’s starting circumstances and 

achieve economic opportunity

▪ How does one’s background affect access to affordable credit? Why?

▪ Limited data linking credit records and income/demographics

▪ Notable exceptions: 

▪ SSA Linkage [Federal Reserve Board of Governors (2007), summarized in Avery, Brevoort, and Canner (2009)]

▪ LEHD Data [Braxton, Chikhale, Herkenhoff, and Phillips (2023)]

▪ HMDA Data [Bhutta and Canner (2013); Bayer, Ferreira, and Ross (2016); Fuster et al., 2022; Bhutta, Hizmo and Ringo, 

2024; CFPB Office of Research, 2021; Gerardi, Lambie-Hanson and Willen, 2021; Bhutta and Hizmo, 2021]

▪ Consumer Data [Blattner and Nelson (2024)]

Introduction



Construct linked Credit Bureau and Census/Tax data for 25M+ individuals

Population Sample: 1% sample of US population with SSNs 

Intergenerational Sample: Full sample of 1978-85 birth cohorts (Chetty et al. 2020), 

plus 10% linkage to parents (those aged 55-85 in 2020)

Census and Tax data (1969-2021) provide measures of race, income, education, place…

• Tax data provides income information from W-2s and 1040s (+parent linkage)

• Census data provides race/ethnicity and education from Decennials and ACS

Credit Bureau data person-level attributes file pulled every 4 years from June 2004-2020

• Balances, delinquencies, bankruptcies, and # of tradelines 

• By type of credit: mortgages, credit cards, auto loans, and student loans

• Credit score (Vantage 4.0) aims to predict future 90+ day delinquency



Construct linked Credit Bureau and Census/Tax data for 25M+ individuals

Part 1: Measurement of differences in credit access by race, class, and hometown

• Use credit score as measure of credit access (Gibbs et al. 2025 JEL)

• Assess relationship to future 90+ day delinquency by one’s background

Part 2: Determinants of credit access

• Study underlying drivers of differences in credit access and delinquency

• Role of income versus factors shaped during childhood
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Fraction of People with a Credit File, by Race
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Credit Scores by Age and Race in 2020
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Credit Scores by Age and Race in 2020: Intergenerational Sample
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Credit Scores by Race and Parental Income 2020
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Credit Scores by Race and Parental Income 2020, Native-born Mothers
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Credit Scores by County for White Individuals From Low-Income (p25) Families

1978-85 Cohorts (2020)
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Within-Person Persistence of Credit Scores

   

   

   

   

 
 
 
  
 
 
  

  
 
  
  
 
 
  

                

    

134 122

A black 
and 
grey 



Credit Scores versus Credit Constraints

Does the credit score capture differences in credit access?

Groups with lower credit scores have:

1. Lower balances [link]

2. More formal credit inquiries [link]

3. Higher relative share of student loans [link]

4. Higher credit card utilization [link]

5. Lower ability to get $2,000 to cover an unexpected need (Nat’l Fin. Capability Study)

6. More likely to rely on alternative credit [link]

Conclude that groups with lower credit scores face greater credit constraints



What Drives Differences in Credit Scores/Access? The Role of Non-Repayment

▪ Natural reason to restrict credit is that the lender is afraid they won’t be repaid

▪ Credit scores (Vantage and FICO) seek to predict future 90+ day delinquency, with the 

idea this prediction is helpful for measuring creditworthiness

▪ Measure rate of 90+ day delinquency by group



Presence of Late Payment on Credit Report by Age and Race (90+ day)
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Presence of Late Payment on Credit Report by Age and Race (90+ day)

A black 
and 
grey 



Presence of Late Payment on Credit Report by Age and Race (90+ day)
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Presence of Late Payment on Credit Report by Age and Race (90+ day)

A black 
and 
grey 



90+ Day Late Payment Breakdown for Black Individuals
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Algorithmic Bias in Credit Scores

▪ Large gaps in credit scores and repayment by race, class, and hometown

▪ Are the differences in credit scores accurate reflections of these non-repayment 

differences or is there algorithmic bias? [e.g. Fuster et al. (2022); Blattner and Nelson (2024); 

Elzayn et al. (2025); Arnold et al. (2025)]

▪ Assess relationship between credit scores and future delinquencies to evaluate 

algorithmic bias of the credit score

▪ Caveat: May differ from bias in firm decisions using the algorithm

▪ Calibration Bias: Are there disparities in future 90+ day delinquency conditional on the 

credit score? 



2003 Fed Board Analysis Finds Calibration Bias of Credit Score Against White 

Borrowers [Federal Reserve Board (2007); Avery, Brevoort, and Canner (2009)] 
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But Vantage 4.0 Argues No Calibration Bias Today (Zipcode imputation)
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https://cdn.vantagescore.com/uploads/2022/09/VantageScore-4.0-UserGuide_abr_Sep22.pdf


Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Summary of Measurement of Credit Access

▪ Large differences in credit scores by race, class, and hometown, that 

emerge early in the life cycle

▪ Credit score gaps align with and even understate differences in 

delinquency rates across groups

▪ Key Question: What drives the large group-level differences in 

repayment that emerge early in the life cycle?
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What Drives Differences in Repayment by Race, Class, and Hometown? 

Two theories:

1. Differences in adult incomes/wealth
▪ Large differences in income/wealth by race, class, and hometown

2. Differences in childhood environments
▪ Gaps emerge early in life cycle and we know incomes are driven by childhood 

exposure to neighborhoods

Economic model of repayment: 𝑟𝑖 = 𝑚(𝑦𝑖 , 𝑐𝑖 , 𝜖𝑖)
• 𝑦𝑖 is adult income / budget constraint

• 𝑐𝑖 is childhood inputs (potentially correlated with 𝑦𝑖)

• 𝜖𝑖 are other determinants (e.g. random shocks)
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What Drives Differences in Repayment by Race, Class, and Hometown? 

Two theories: 

1. Differences in adult incomes/wealth
▪ Large differences in income/wealth by race, class, and hometown

2. Differences in childhood environments
▪ Gaps emerge early in life cycle and we know incomes are driven by childhood 

exposure to neighborhoods

Assess these theories using two empirical strategies: 
1. Observational controls for income

2. Causal strategy focused on hometown gaps to isolate childhood inputs and 
study mediation through income
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What Drives Differences in Repayment by Race, Class, and Hometown? 

Two theories: 

1. Differences in adult incomes/wealth
▪ Large differences in income/wealth by race, class, and hometown

2. Differences in childhood environments
▪ Gaps emerge early in life cycle and we know incomes are driven by childhood 

exposure to neighborhoods

Assess these theories using two empirical strategies: 
1. Observational controls for income

2. Causal strategy focused on hometown gaps to isolate childhood inputs and 
study mediation through income
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1. The Role of Income and Wealth in Explaining 90+ Day Delinquency (Age 24-30)
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1. The Role of Income and Wealth in Explaining 90+ Day Delinquency (Age 24-30)
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1. The Role of Income and Wealth in Explaining 90+ Day Delinquency (Age 24-30)
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1. Repayment (No 90+ Day Delinquency) vs. Repayment Conditional on Income 

White 25th Percentile Parental Income (2020)

1978-85 Cohorts (2020)
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Role of Parental Credit Score in Explaining 90+ Day Delinquency in 2008
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2. Causal Strategy to Identify Role of Childhood Inputs and Adult Income

Develop causal strategy to identify the impact of childhood inputs and 

understand the extent to which it is mediated through adult income

Follows 2 steps: 

1. Childhood exposure design: Measure effect of childhood exposure 

to hometowns that have higher delinquency rates

2. Mediation Analysis [stay tuned]: Assess whether effect of place on 

income is a mediator
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White 25th Percentile Parental Income (2020)

1978-85 Cohorts (2020)

A black 
and 
grey 

Other Maps



Repayment (No 90+ Day Delinquency)
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Repayment (No 90+ Day Delinquency)
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Childhood Exposure Effects for Repayment in 2004 (age 19-22)

A black 
and 
grey 



                    

  

  

  

  

 

 
 
 
  
  
  
 
  
 
 
  

 
 
  
  

 
  
  
 
 
  
 
  

  
 
  
 
  
 
  
  
 
 

          

                              

Childhood Exposure Effects for Repayment in 2004 (age 19-22)
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Summary

▪ Childhood inputs that are captured through exposure to place explains 

most of the gap in repayment across place (at least 60%)

▪ What about other gaps by race and parental income? 

▪ Race gap varies by hometown: 2x in San Francisco vs. Indianapolis

▪ Most of this subset of the gap is due to the causal effect of childhood exposure

▪ Suggests childhood inputs also influence race gap



Childhood Exposure and the Race Gap



What Are These Inputs Generated Through Childhood Exposure? 

Spatial Correlation with Social Capital

Repayment (Credit Bureau Data) Upward Income Mobility (Tax Data)

Repayment 
Conditional on Adult Income

Cross-Class Friendships
(Facebook Data)

A black 
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grey See also Bricker and Li (2023) who document  correlation between economic connectedness and credit scores.

https://www.federalreserve.gov/econres/feds/files/2023048pap.pdf


Conclusion

▪ Large differences in credit scores and non-repayment by race, class, 

and hometown, emerging by late 20s and persisting over the life cycle

▪ Income explains at most ~30% of the gaps by race, place, and 

hometown; childhood exposure to place explains more than 60% of the 

hometown gap

▪ Strength of cross-class friendships are correlated with both repayment 

and upward income mobility

▪ Credit constraints in adulthood have their roots in childhood



Appendix



Credit Score Black-White Gap by County
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Racial Calibration: Credit Scores are Predictive of Future Delinquency
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Racial Calibration of Credit Score by Age
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Racial Calibration of Credit Score by Age
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Racial Calibration of Credit Score by Age
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Summary

▪ Calibration: Credit score gaps understate differences in underlying 

propensities to repay across groups
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Summary

▪ Calibration: Credit score gaps understate differences in underlying 

propensities to repay across groups

▪ A different notion of “Bias” is Balance [Arnold, Dobbie and Hull (2022,2025)]

▪ Conditional on the outcome, do different groups receive different scores
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Summary

▪ Calibration: Credit score gaps understate differences in underlying 

propensities to repay across groups

▪ A different notion of “Bias” is Balance [Arnold, Dobbie and Hull (2022,2025)]

▪ Conditional on the outcome, do different groups receive different scores

▪ Take the set of people who do NOT experience a 90+ day delinquency 

between 2016-2020 study the difference in credit scores

▪ Start with differences in credit scores by race (relative to White), 

separately by age

Credit Terms A black 
and 
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Racial Balance by Age: Average Score Among Those Without 90+ Delinquency



Racial Balance by Age: Average Score Among Those Without 90+ Delinquency



Racial Balance by Age: Average Score Among Those Without 90+ Delinquency



Number of Tradelines by Age, by Race

1% Sample of all SSNs (2020)
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Fraction of People with a Credit File, by Race

A black 
and 
grey 



  

   

   

   

   

    
 
 
  
 
 
  
 
  
 
  

  
 
  
  
 
 
  

                

           

     

    

        

     

     

1% Sample of all SSNs (2020)

Credit Score (VantageScore 4.0) Rates By Age and Race

XX Also, let’s try adding a slide before this that averages across all races using national race shares (or if we have a way of doing this using pooled race but on the same sample that’s great)

White

Black

Hispanic

Asian

A black 
and 
grey 



  

   

   

   

   

    
 
 
  
 
 
  
 
  
 
  

  
 
  
  
 
 
  

                

           

     

    

        

     

     

1% Sample of all SSNs (2020)

Credit Score (VantageScore 4.0) Rates By Age and Race

A black 
and 
grey 



Further Details on Credit Scores

1978-85 Cohorts (2020)
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Credit Score Robustness
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Credit Scores by Age and Race in 2004
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Credit Score Progression Over Time By Race
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Credit Score by Race and Gender in 2020
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Household Balance Sheets

A black 
and 
grey 



Average Debt Balance by Race 2020
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Composition of Average Debt Balance by Race 2020
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Number of Inquiries by Age
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Credit Card Utilization Rate
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Number of Tradelines by Age
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Ability to Come up with 2k vs. p25 White State Credit Score
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Alternative Credit Use by Race, Class, and Geography (Prolific Survey)
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90+ Day Late Payment Breakdown for White Individuals
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Childhood Exposure Effects

• Let ത𝑦𝑝𝑐𝑠 denote average outcome in place c for parent income p, cohort s for those 
who do not move once 

• Let Δ𝑝𝑜𝑑𝑠 = ത𝑦𝑝𝑑𝑠 − ത𝑦𝑝𝑜𝑠 the difference between origin and destination 

• Regress adult outcome 𝑦𝑖 for child who moved at age 𝑚 from 𝑜 to 𝑑

• Controls include: 

• Age at move, parent income rank, average outcomes children from origin (𝑦𝑝𝑜𝑠), cohort-varying 
intercepts

• Coefficient 𝛽𝑚−1 − 𝛽𝑚 captures exposure effect of spending year m in place with one 
unit higher outcome
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Childhood Exposure Effects

Back A black 
and 
grey 



Childhood Exposure Effects for Repayment in 2004 (age 19-22)
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What Types of Places Produce Children With Higher Future Repayment?

Economy
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Social Capital
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What Types of Places Produce Children With Higher Future Income?
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The Rise of Student Loans
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Student Loan Balances in 2020 by Parent Income and Race (Male)
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Student Loan Balances in 2020 by Parent Income and Race (Female)
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Student Loan Balances for Males, by Age and Race in 2004
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Student Loan Balances for Males, by Age and Race in 2008
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Student Loan Balances for Males, by Age and Race in 2012
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Student Loan Balances for Males, by Age and Race in 2016
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Student Loan Balances for Males, by Age and Race in 2020
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Student Loan Balances for Females, by Age and Race in 2004
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Student Loan Balances for Females, by Age and Race in 2008
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Student Loan Balances for Females, by Age and Race in 2012
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Student Loan Balances for Females, by Age and Race in 2016
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Student Loan Balances for Females, by Age and Race in 2020
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Balances vs. Amount Borrowed Amongst Borrowers?

Source: U.S. Department of Education, National Center for Education Statistics, 1996 Beginning Postsecondary Students (BPS) study, authors' calculations.
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Authorized Users
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Being on Your Parent’s Credit Card Acct. Boosts Child Credit Score at Age 19

   

   

   

   

   
 
 
 
 
  

  
 
  
  
 
 
  

                                   

1985 Cohort (2004) Who Have A Credit Score
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Race Gaps in Auth. User Trades Correlate With Racial Credit Score Gaps
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Repayment by County for White Individuals From Low-Income (p25) Families

1978-85 Cohorts (2020)

Minneapolis 
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Credit Scores by County for Black Individuals From Low-Income (p25) Families

1978-85 Cohorts (2020)
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Credit Score Black-White Gap by County

1978-85 Cohorts (2020)
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Credit Scores by County for Black Individuals with 25th Pctl Parental Income

1978-85 Cohorts (2020)
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Credit Scores by County for Black Individuals with 75th Pctl Parental Income
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Credit Scores by County for White Individuals with 75th Pctl Parental Income

1978-85 Cohorts (2020)
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Credit Score and Delinquency, by County

White Individuals with 75th Percentile Parental Income

Repayment Credit Score
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Credit Score and Delinquency, by County

Black Individuals with 25th Percentile Parental Income

Repayment Credit Score
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Credit Score and Delinquency, by County

Black Individuals with 75th Percentile Parental Income

Repayment Credit Score
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Takeup of Credit
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What Drives Differences in Repayment? The Role of Formal Credit Terms

▪ Existing literature documents Black individuals obtain worse terms in 
auto lending and mortgage markets, even conditional on 
creditworthiness (Lanning, 2021; Bartlett et al., 2022; Butler, Mayer, and Weston, 2023; 
Raymond, 2024)

▪ Differences in formal sector credit terms could drive repayment if terms 
have causal effect on repayment

▪ We don’t believe this is a primary driver of the non-repayment patterns:

▪ Delinquencies emerge early in life primarily for credit cards, student 
loans, and delinquencies on collections from utilities, phone, TV, and 
medical bills 
▪ Standardized terms for student loans

▪ Using the SCF, we find similar credit card terms by race for 22-30 year olds



Role of Credit Terms
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First Tradeline by Age For White Individuals in 2004
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First Tradeline by Age For Black Individuals in 2004
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First Tradeline by Age For White Individuals in 2020
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First Tradeline by Age For Black Individuals in 2020
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Social Capital
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Repayment in 2020 versus Upward Income Mobility

White Individuals with 25th Percentile Parental Income

Repayment (Credit Bureau Data) Upward Income Mobility (Tax Data)

Repayment 
Conditional on Adult Income

Economic Connectedness
(Facebook Data) A black 

and 
grey 



Role of Social Capital

▪ Two potential explanations for why childhood environment and social 

capital / economic connectedness might affect repayment in adulthood:

▪ Financial network: You know people who can give you money if you 

need it 

▪ Learned Behaviors: You learn from or absorb the behaviors of others 

▪ Conduct survey of ~800 individuals aged 22-30 on Prolific to measure:

▪ Self-reported delinquency

▪ Race/class/hometown

▪ Measures of lending to/from one’s network and ability to obtain resources from 

friends/family

▪ Similar bilateral patterns in representative surveys (CES, PSID, SCF, NCFS, BPS)



Role of Informal Networks in Repayment (Prolific Survey)



Financial Literacy and Non Repayment (SCF)
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Alternative Credit Use by Race, Class, and Geography (Prolific Survey)
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Bankruptcy by Parent Income and Race
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Inc. 2004 Inc. Vec. Inc. Vec. Inc. Vec. Inc. Vec. Inc. Vec.

Savings Savings Savings Savings

Home Eq. Home Eq. Home Eq. Home Eq.

Liquidity

Wealth

Emp. FE

All All All All SIPP Stable StableSample

Controls

The Role of Income and Wealth in Explaining 90+ Day Delinquency in 2008 

Controlling for Credit Score
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Composition of Total Assets by Race (SIPP)
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Race Dummies on Delinquency Relative to White by Age

   

 

  

  

  
 
 
   

 
 
 
 
 
 
  

 
 
  
 
  

 
  
 

                

           

     

        

     

1% Sample of all SSNs

A black 
and 
grey 
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Comparison of Our Estimates to Urban Institute
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Calibration Bias Among Perfect

Borrowers
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Credit Scores are Predictive of Future Delinquencies Of Previously Perfect 

Borrowers by Race

1978-85 Cohorts W/ Clean Credit Histories
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Class Dummies on Delinquency Relative to Bottom Quintile by Age
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Lifecycle of Late 

Payments By Tradeline
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90+ Day Late Payment Breakdown
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90+ Day Late Payment Breakdown

  

  

   

   

   

   

   

   

   
 
 
 
  
  
  
  
 
  
  
 
 
  

           

           

       

           

    

        

                  

                      



Calibration: Credit Scores are Predictive of Future Delinquency
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Credit Card Utilization by Race and Parent Income 2020
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Calibration of Credit Score by Age
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Balance of Credit Score by Age
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Calibration Bias by Parental Income
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Delinquencies and Collections By Age (White)
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Parental Income Calibration of Credit Score by Age

   

   

 

  

  
 
 
   

 
 
 
 
 
 
  

 
 
  
 
  
  
  

 
  
  
  

          

           

          

          

          

          



Balance of Credit Score by Age: “Perfect 23-Year Repayment Sample”
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Bankruptcy by Race

1978-85 Cohorts
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