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Abstract 

Labor market inequality encompasses both dispersion in earnings and employment. While 
earnings dispersion is relatively straightforward to assess, employment dispersion presents 
difficulties. We offer a new approach that uses observable worker-level information to 
predict employment propensities, then tracks changes in employment at different points in 
the predicted distribution. This approach is useful for a few purposes: first, to provide a 
more comprehensive picture of labor market inequality; second, to identify (in a fine-
grained way) groups with relatively low employment propensities; and third, to facilitate 
explorations of how macroeconomic conditions (e.g., tight labor markets) may affect labor 
market inequality. 

  

 
1 The authors are grateful to Erik Hembre and Jennifer Hunt for insightful feedback on an earlier draft. 
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Introduction 
Inequality in labor income stems from both disparities in the wages earned among those employed and 
disparities in employment itself. Individuals or groups at the bottom of the labor income distribution could 
have low wages, low levels of employment, or both.  

Examining dispersion in wages is relatively straightforward because wages are a continuous variable. 
Analysts can examine a wage distribution and report a variety of conventional statistics like the ratio of the 
90th and 10th wage percentiles.2 When that ratio rises, wage inequality is understood to rise, and vice versa. 
The chief methodological difficulty in using wage dispersion alone to study inequality in labor income is 
that wages are only recorded for employed workers. It is thus important to study imbalances in employment, 
as well as wages.   

However, employment—a binary variable—cannot be assessed in exactly the same way as wages.3 Labor 
economists interested in employment inequality will typically calculate employment rates conditional on a 
single variable like education, sex, or race. For some questions, this approach is adequate: for example, if 
the analyst cares specifically about how individuals of differing education levels or demographic groups 
are faring in relation to each other. But for other questions, such as those about dispersion in employment 
probabilities more generally, this approach is likely to be unsatisfactory. Consider that in a regression of 
employment on bins of educational attainment in 2022, education can only account for 3 percent of the 
individual-level variation among prime-aged (ages 25–54) civilians. Education is therefore unlikely to fully 
capture the underlying variation in employment propensity that constitutes employment inequality. 

To understand how labor market conditions are evolving more generally for individuals with differing 
propensities to work—i.e., to assess employment dispersion—education is an imperfect proxy for what the 
analyst cares about. In this case, it would be more useful to calculate employment rates across the 
distribution of the underlying propensity to work. For instance, how is actual employment evolving for 
individuals at the 90th percentile of employment propensity relative to the 10th percentile? Unfortunately, 
this is not immediately observable in the same way that the wage distribution is observable. For this type 
of question, we would like to approximate an individual-level distribution of employment propensity. These 
individuals can have varying employment propensities that are not perfectly correlated with their 
educational attainment or with any other single demographic variable. Of course, we are not able to fully 
recover the latent employment propensity distribution, but the use of a rich set of demographic 
characteristics allows for a better approximation of that distribution than is possible with education (or race 
or sex) alone. 

We therefore propose a new way to unpack binary outcomes like employment and labor force participation.4 
Our approach uses observable worker-level information to predict employment propensities, then tracks 
changes in employment at different points in the predicted distribution. This approach is useful for a few 
purposes: first, to provide a more comprehensive picture of labor market inequality; second, to identify (in 

 
2 See Autor, Dube, and McGrew (2023) for a careful investigation of recent wage inequality trends.   
3 Another difference, which is not the focus of this paper, is that wages have a clearer mapping to worker welfare than 
does employment. With some limited exceptions (e.g., compensating differentials), lower wages indicate lower utility. 
By contrast, lower employment can reflect limited access to jobs, but it can also reflect a choice not to take paid 
employment. 
4 For some analytical questions, it may be appropriate to limit consideration to labor force participants, thereby 
excluding those who have not demonstrated a desire for market employment. In this article, we focus on employment. 

https://www.nber.org/papers/w31010
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a fine-grained way) groups with relatively low employment propensities; and third, to facilitate explorations 
of how macroeconomic conditions (e.g., tight labor markets) may affect labor market inequality. 

Our proposed method aims to approximate an underlying individual-level distribution of employment 
propensity, then track actual employment rates over time by quantiles of that underlying distribution. We 
approximate the individual-level distribution with a basket of observable factors in the Current Population 
Survey microdata, including education but also demographic characteristics like age, sex, race, nativity, 
veteran status, marital status, and presence of own children in the household, as well as geographic 
characteristics. In our primary application of this approach, we estimate employment for individuals from 
2017–18 and predict quintiles of employment propensities for 2015–23 using that estimation. Our baseline 
methodology uses a random forest research design that flexibly allows for interactions across variables to 
estimate employment in 2017–18, but the patterns we uncover are similar if we use a linear probability 
model or LASSO. 

Results obtained from the new approach, in any of its variants, are not strictly comparable to those obtained 
from disaggregations of employment rate by education, race, or sex. Take education, for example. The 
lowest level of attainment does not generally correspond to a quintile of individuals (leaving aside the fact 
that it imperfectly corresponds to the lowest employment individuals). We see this as a virtue of the new 
approach: it provides a more consistent comparison over time between two groups within the underlying 
distribution of employment propensity.5  

We find that the likelihood of employment increased most for the lowest predicted quintile of employment 
in the late 2010s as the labor market tightened. This corresponded with a falling dispersion in the propensity 
for employment across quintiles. Individuals with the lowest predicted likelihoods of working also 
experienced the sharpest drops in employment during 2020, which saw an increase in employment 
dispersion. However, by mid-2023 the lowest predicted quintile of individuals—as well as those across the 
entire distribution—were back at employment levels similar to those achieved at the beginning of 2020. 
The tight labor markets of 2023 and January 2020 were thus associated with relatively compressed 
employment propensities.  

These results complement research examining recent trends in wage dispersion adjusted for the composition 
of the workforce (e.g., Autor, Dube, and McGrew 2023). We find that employment dispersion declined at 
the same time that adjusted wage dispersion fell. Together, these insights on wage and employment 
dispersion paint a clearer picture of recent trends in labor income inequality. Our approach is also useful 
for identifying observable characteristics that correspond to labor market disadvantage, which in turn can 
be used to investigate the relationship between labor market tightness and inequality. At the end of this 
article, we show how this investigation could proceed in the context of our approach.  

Trends in employment by education, race, and sex 
Though not always characterized as reflecting employment inequality per se, graphs of employment rates 
by education (Figure 1), sex (Figure 2), and race (Figure 3) are commonly generated to show how the 
extensive margin of the labor market is evolving. Each provides a window into how changing labor demand 
and supply are shaping the labor market, and each has been used as a launching point for studies of secular 
trends in employment and participation.  

 
5 A caveat to this statement applies to the extent that—in periods outside the estimation period (e.g., 2017–18 in our 
baseline case)—the share of individuals within each group may deviate somewhat from 20 percent. Later in the article, 
we discuss a variant of our approach that re-estimates the model in each period and thereby avoids this issue. 

https://www.nber.org/papers/w31010
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In the figures below, we observe declining gaps in employment, disaggregated in these three ways since 
2015. Less-educated individuals, who are less likely to work overall than more highly educated individuals, 
increased their propensity to work between 2015 and January 2020 more than more highly educated 
individuals. In a temporary reversal of this trend, less-educated people experienced larger employment 
declines during the 2020 recession and aftermath but have returned to their 2020 employment levels by the 
end of 2023. Similar patterns are apparent by sex, with the likelihood of work increasing markedly for 
women between 2015 and January 2020, dropping slightly more during 2020, and reaching January 2020 
levels by 2023. By race, there is likewise convergence in the Black-White employment rate gap through 
the beginning of 2020 that then sharply reverses during the 2020 recession, finally rebounding by mid-
2023. Latino individuals follow a similar pattern as White individuals from 2015 through the beginning of 
2020, though they experience sharper declines during 2020. After that, sharper growth for Latinos during 
the recovery period returns the Latino-White employment gap back to pre-2020 recession levels. Patterns 
are similar for the Asian American and Pacific Islander population with particularly strong growth since 
2020 leading to convergence over the entire period. For American Indians and Alaska Natives, our estimates 
are noisier but remain suggestive of compression from 2015 to 2023. 

Overall, these patterns suggest recent convergence in employment propensities based on various population 
characteristics. They inspire an examination of how employment rates have varied over time for individuals 
who ex-ante would be considered more or less likely to work. The following sections develop a more 
formalized way to assess how employment has evolved for groups with lower likelihoods to work compared 
to groups with higher likelihoods of working.  

 

Figure 1. Employment by education, 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0.  
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Figure 2. Employment by sex, 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0. 

 

Figure 3. Employment by race/ethnicity, 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0.  
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A new approach to measuring employment inequality 
Disaggregations by education, race, or sex each have utility for answering specific questions. But to gain a 
more comprehensive understanding of recent trends in employment dispersion, we take the following 
approach. We restrict our population to prime-aged (25–54) civilians, i.e., those not employed in the armed 
forces. We use as our dependent variable an indicator for employment and as our independent variables 
five-year age categories, an indicator for sex, six race and ethnicity categories, indicators for whether an 
individual was born in the U.S. or is a U.S. citizen, an indicator for veteran status, an indicator for marital 
status, variables describing the number of own children in the household and the number of children under 
the age of 5, and finally geographic indicators including metropolitan status and state of residence. We 
exclude potential independent variables that could be affected by employment status, such as those related 
to disability or occupational licensing.   

Our preferred methodology uses a random forest algorithm. A random forest algorithm is a machine 
learning method that uses numerous decision trees, which are essentially flowcharts for making decisions. 
For example, at the top of the tree might be a question of “Is the sex male?” Depending on the answer, there 
is another set of branches, such as, “Are there two children” and “Is the race Black?”, and so forth, until the 
final outcome of the decision tree. In the random forest algorithm, each of the numerous decision trees is 
trained on a different subset of data with slightly different rules and makes its own prediction. The random 
forest algorithm combines all of these predictions to come up with a final decision. This helps reduce 
overfitting and makes the model more accurate in mapping worker characteristics to employment.   

We implement a random forest algorithm with a depth of 5 and a regression decision tree type to predict 
employment based on the individual characteristics listed above. We implement the random forest 
algorithm for the years 2017–18 to avoid picking up on idiosyncratic employment patterns during the 
COVID-19 pandemic, as well as to make it visibly clear in the figures we present that over-fitting is not 
driving our results. We opt for a random forest algorithm in our preferred approach to allow for interactions 
among the observable variables while limiting the amount of structure we impose on the mapping between 
characteristics and employment. The patterns we uncover are similar when using a LASSO or linear 
probability model. 

After implementing the algorithm for the 2017–2018 period, we use the algorithm results to predict 
employment for the entire analysis period of 2015–23. Once we have predicted individual-level 
employment for our analysis period, we construct quintiles of the predicted employment variable in the 
base period of 2017–18. For each month throughout the entire sample period, we calculate each group’s 
average employment rate. That is, we use the predicted employment cutoffs implied by the 2017–18 
quintiles as a way of consistently grouping individuals throughout the sample period, such that the number 
of individuals in any given group may rise or fall over time, but an individual with a given predicted 
employment probability will always fall into the same group. Among members of each group, the actual 
employment rate will vary over time.  

Because our monthly data are somewhat noisy, our figures present trailing three-month moving averages 
of the observed (indexed) employment rates, which helps to more clearly see trends. We additively index 
the employment rate for each group to 0 in the base period of January 2020. As a result, the figures present 
a calculation that show percentage point changes in the group’s employment rate relative to the base period. 
We later show that our findings are qualitatively similar when using multiplicative calculations that show 
percent changes; we also discuss the advantages and disadvantages of the two approaches. 

https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/lasso-regression


7 
 

Trends in employment inequality 
Primary findings 
Figure 4 presents the findings from our main approach, showing convergence in employment likelihoods 
from 2015 through the very beginning of 2020 as the labor market tightened. Lower quintiles of predicted 
employment experienced the largest increases in employment likelihoods during this time frame. During 
the labor market downturn caused by the COVID-19 pandemic, we observe a sharp increase in employment 
dispersion as the bottom quintiles experience the greatest declines in employment. As the labor market 
subsequently tightens, we again observe compression in employment across quintiles, and by mid-2023, 
the employment dispersion is similar to that observed in early 2020.  

Figure 5 shows the difference between the top and bottom quintile from 2015 to 2023. This presentation of 
the top quintile-bottom quintile employment gap is similar in spirit to other inequality statistics like the 90-
10 wage gap. The figure shows that the difference between the top and bottom quintile employment rates 
fell by 3.5 percentage points from December 2015–23.   

 

Figure 4. Employment by predicted quintiles, 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0. Quintiles are constructed using a random forest algorithm for the base period of 2017–18 predicting 
employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, 
and geography variables.  
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Figure 5. Predicted employment Q5 Less Q1, 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio for the highest 
quintile less the trailing 3-month moving average for the bottom quintile. Quintiles are constructed using a random forest 
algorithm for the base period of 2017–18 predicting employment using education, age, sex, race, nativity, veteran status, marital 
status, presence of own children in the household, and geography variables.  

Notably, the cumulative decline shown in Figure 5 occurs at the same time that adjusted wage compression 
is observed for employed workers (Autor, Dube, and McGrew 2023). The effect of employment 
compression strongly contributes to overall reduction in labor market inequality since the mid-2010s. 

Robustness to alternate methodologies 
Figures 6 and 7 repeat the analysis presented in Figure 4 above but are based on estimations of a LASSO 
regression (on all pairwise interactions between the variables noted above, excluding state of residence for 
computational feasibility) and a linear probability model regression, respectively. The patterns are similar 
to those shown in Figure 4. In part, this is because all three methods classify individuals into quintiles in 
relatively similar ways. Table 1 show the make-up of the quintiles yielded by the random forest, LASSO, 
and linear probability methodologies. For each of the methods, individual characteristics (including but not 
limited to education) are quite differently distributed across predicted quintiles. For example, the quintiles 
vary considerably by the share of each who are women, which is much larger in the bottom quintile than in 
the top.  
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Figure 6. Employment by predicted quintiles (LASSO variant), 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0. Quintiles are constructed using a LASSO regression for the base period of 2017–18 predicting 
employment using all pairwise interactions of education, age, sex, race, nativity, veteran status, marital status, presence of own 
children in the household, and geography variables (excluding state for computational feasibility).  

 

Figure 7. Employment by predicted quintile (LPM variant), 2015–23 

 

Notes: Figure presents data from the January 2015–December 2023 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2020=0. Quintiles are constructed using a linear probability model for the base period of 2017–18 predicting 
employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, 
and geography variables. 
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Table 1. Characteristics of quintiles by prediction methodology 

 
Notes: Table presents data from 2017–18 Current Population Surveys. Sample is restricted to civilians ages 25–54. Quintiles are constructed using various methodologies for this 
base period of 2017–18 predicting employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, and geography 
variables. Table presents a subset of relevant summary statistics based on these variables.  
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Figure 8 replicates the main analysis, but rather than scaling the employment shares additively, it uses a 
multiplicative calculation that is derived by setting each group’s employment rate to 100 in the January 
2020 index period, then showing percent changes in the group’s employment rate relative to that period. 
The patterns from this calculation need not be the same as those from the additive approach. For specificity, 
suppose that the bottom and top quintile employment rates started in the index period at 40 and 80 percent, 
respectively, subsequently falling to 36 and 72 percent, respectively. In the multiplicative approach, both 
groups would have a value of 90 in the subsequent period. In the additive approach, the bottom and top 
quintile values in the same subsequent period would be -0.04 and -0.08, respectively. In practice, the 
patterns are qualitatively similar using the multiplicative approach in Figure 8 as the additive approach in 
Figure 4. 

The choice between additive and multiplicative approaches hinges on one’s preferred measure of inequality. 
The multiplicative calculation assumes that inequality has not changed if the ratio of employment rates 
remains constant, e.g., if rates were to fall from 40 and 80 to 36 and 72 percent. By contrast, the additive 
calculation assumes that inequality has not changed if the percentage point group changes are identical, 
e.g., if rates were to fall from 40 and 80 to 36 and 76. We use the additive interpretation in our baseline 
approach given its ease of interpretation of percentage point changes and invariance to how a metric is 
expressed (e.g., employment rate vs. non-employment rate or participation rate vs. non-participation rate). 
But a reasonable argument can also be made for the multiplicative interpretation, which offers a similar 
interpretation to other labor market inequality measures that are conventionally expressed as ratios of group 
statistics, such as the Black/White unemployment ratio or the 90th–10th percentile wage ratio.  

 

Figure 8. Employment by predicted quintile (multiplicative variant), 2015–23 

 

Notes: Figure presents data from the January 2015–December2023 Current Population Surveys. Sample is restricted to civilians 
ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio multiplicatively indexed 
at January 2020=100. Quintiles are constructed using a random forest algorithm for the base period of 2017–18 predicting 
employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, 
and geography variables.   
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Extension to other time periods 
To determine whether the patterns we observe are new or are similar to those seen in other business cycles, 
we turn to examining employment dispersion leading up to and in the aftermath of the Great Recession 
(Figure 9). We show employment shares by predicted group for 2003–14, using a random forest algorithm 
implemented on 2005–06. That is, the mapping from observable factors to predicted employment rates was 
based on the period 2005–06 and quintile thresholds were based on that period. With the exception of 
differences in timing, the exercise is analogous to the one carried out for Figure 4 above. We observe a 
persistent, large increase in dispersion following the Great Recession. Unlike in our analysis of the recession 
associated with the COVID-19 pandemic, in our analysis of the Great Recession, we do not observe 
substantial compression in employment propensities as the labor market slowly recovers in the early to 
mid-2010s. We explore in more detail the relationship between labor market tightness and employment 
compression later in the paper after adapting our methodology below to track employment dispersion over 
longer time horizons. 

 

Figure 9. Employment by predicted quintile, 2003–15 

 

Notes: Figure presents data from the January 2003–December 2014 Current Population Surveys. Sample is restricted to 
civilians ages 25–54. Figure presents a trailing 3-month moving average of the employment-to-population ratio additively 
indexed at January 2007=0. Quintiles are constructed using a random forest algorithm for the base period of 2005–06 predicting 
employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, 
and geography variables.  

In our analysis thus far, we have chosen to fix the base period in each case to a short period prior to the 
business cycle peak. One reason for doing so is that it makes transparent any concerns about overfitting, 
i.e., it is apparent by inspection of the figures that there is no discontinuous shift in employment rates around 
the base periods. However, the choice of base periods is somewhat arbitrary. It also poses an obstacle to 
simpler application of the approach to a variety of time periods.  
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In order to expand our approach to an analysis across a longer time horizon, we modify the approach to 
calculate employment quintiles contemporaneously, rather than in a fixed base period. One advantage of 
this modification is that the model does not become systematically less predictive for time periods further 
away from the estimation sample, as could be the case in our baseline methodology. We also shift to a 
quarterly estimation to reduce computational burden. Figure 10 presents the findings from this methodology 
for 1982 onward, indexing at January 2000=0. The random forest algorithm is the same as previously 
described but excludes variables related to veteran status and nativity (which were not available in some 
early periods). We continue to observe the recent convergence in employment likelihoods with this 
variation in approach, along with the divergence that came after the Great Recession.  

 

Figure 10. Employment by predicted quintile, 1982–2023 

 

Notes: Figure presents data from the January 1982–September 2023 Current Population Surveys aggregated to the quarterly 
level. Sample is restricted to civilians ages 25–54. Figure presents the quarterly employment-to-population ratio additively 
indexed at 2000 Q1=0. Quintiles are constructed using a random forest algorithm for each quarter separately predicting 
employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the household, 
and geography variables.  

From the 1980s to 2000, we observe a secular trend of compression, i.e., a narrowing of employment rate 
gaps across our predicted quintiles. To the extent our predictor variables capture all facets of inequality we 
care about, this indicates genuine compression. However, if there are other variables of interest that do not 
perfectly correlate with those included in our prediction methodology, the graph instead might partially 
reflect a decline in how well our approach can predict employment, as employment likelihoods converge 
across the various characteristics we examine. Changes in the dispersion of employment likelihoods across 
the variables we examine are mechanically associated with changes in the efficacy of the prediction 
algorithm over time.  

To demonstrate this point, Figure 11 shows how the R-squared from an analogous linear probability model 
evolves over time. We see a sharp decline in how predictive the regression can be from the 1980s to 2000, 
coinciding with a drop in the explanatory power of sex during this time. In other words, the narrowing of 
employment gaps between men and women, among other developments, made it more difficult to predict 
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individual-level employment. If sex and its correlates represent an important facet of inequality we care 
about, the decline in explanatory power overall is a byproduct of convergence in employment by sex and 
not necessarily a matter of concern. Still, Figure 11 helps depict a potential limitation in using our 
methodology to assess employment inequality over time—a limitation that becomes more pronounced to 
the extent that our data exclude some relevant variables for predicting employment. 

 

Figure 11. Explanatory power of LPM model, 1982–2023 

 

Notes: Figure presents data from the January 1982–September 2023 Current Population Surveys aggregated to the quarterly 
level. Sample is restricted to civilians ages 25–54. Figure presents the R-squared from a linear probability model that seeks to 
predict employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the 
household, and geography variables.  

Application to labor market tightness 
Prior research has examined how labor market tightness affects workers in different demographic groups 
(e.g., Aaronson et al. 2019; Cajner et al. 2017; Hotchkiss and Moore 2022). We build upon that body of 
work to examine how labor market tightness matters differentially to those with high and low employment 
propensities.  

In Figure 12, we plot quarterly employment gaps estimated (i.e., the difference in top and bottom quintile 
employment rates) against the national unemployment rate over 1982–2023.6 We use a separate color for 
each business cycle, which helps visually adjust for secular trends in the explanatory power of observable 
factors concerns (depicted in Figure 11). Because we re-calculate the mapping between worker 
characteristics and employment rates in each period, we do not need to account for the model becoming 
less predictive for time periods further away from a fixed estimation sample, as would be the case with our 
baseline methodology. 

 
6 Thanks to Joshua Montes for this suggestion. 

https://www.brookings.edu/articles/okun-revisited-who-benefits-most-from-a-strong-economy/
https://www.federalreserve.gov/econres/feds/racial-gaps-in-labor-market-outcomes-in-the-last-four-decades-and-over-the-business-cycle.htm
https://ideas.repec.org/a/ijc/ijcjou/y2022q2a5.html
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For most of the business cycles, we see that tighter labor markets are associated with less dispersion in our 
measure, in line with existing research on the relationship between labor market tightness and outcomes for 
different demographic groups (Aaronson et al. 2019; Cajner et al. 2017; Hotchkiss and Moore 2022). When 
labor market conditions are poor, the lowest predicted quintile experiences relatively worse employment 
outcomes, and when labor market conditions are tight, it experiences relatively better employment 
outcomes. The relationship between labor market tightness and employment dispersion appears weaker 
when labor markets are very slack. For example, we observe a limited relationship between the 
unemployment rate and employment compression when the unemployment rate has exceeded 6 percent 
since 1990 (or 8 percent in our overall time series). This limited relationship when labor market conditions 
are fairly slack is in line with the limited compression observed in the early recovery period of the Great 
Recession in Figure 8. 

 

Figure 12. Employment dispersion and national unemployment rate, 1982–2023 

 
Notes: Figure presents data from the January 1982–December 2023 Current Population Surveys aggregated to the quarterly 
level. Sample is restricted to civilians ages 25–54. Figure presents the gap between the fifth and first quintile of quarterly 
employment-to-population ratio. Quintiles are constructed using a random forest algorithm for each quarter separately 
predicting employment using education, age, sex, race, nativity, veteran status, marital status, presence of own children in the 
household, and geography variables.  

Conclusion 
We present a new approach to understand the evolution of employment dispersion in this paper. By 
predicting employment using a comprehensive set of demographic and geographic variables, constructing 
quintiles of employment likelihoods based on those predictions, and calculating actual employment 
propensities for each of those quintiles, we are able to trace out how employment probabilities converge or 
diverge over time across a distribution. Our approach allows us to examine how dispersion in the likelihood 
of employment shifted in response to the COVID-19 pandemic and its aftermath, and we similarly apply 
our methodology to examine trends in employment dispersion during earlier business cycles. We find that 
individuals with the lowest predicted likelihoods of working experience the largest gains in employment 

https://www.brookings.edu/articles/okun-revisited-who-benefits-most-from-a-strong-economy/
https://www.federalreserve.gov/econres/feds/racial-gaps-in-labor-market-outcomes-in-the-last-four-decades-and-over-the-business-cycle.htm
https://ideas.repec.org/a/ijc/ijcjou/y2022q2a5.html
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during tight labor markets. The methodology introduced in our paper helps build a framework for future 
work that seeks to understand the determinants of employment inequality and how that relates to labor 
income inequality. Future research that could build upon our work could examine the role of labor force 
participation, study the evolution of voluntary vs. involuntary nonemployment, or examine the role of 
specific mechanisms in reducing employment inequality. 
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