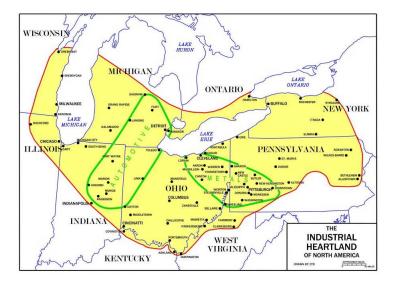
Labor Market Conflict and the Decline of the Rust Belt

Simeon Alder¹ David Lagakos² Lee Ohanian³


 1 Wisconsin–Madison

 $^2 {\sf UCSD}$ and NBER

³UCLA and NBER

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The Rust Belt

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Four Facts About Rust Belt Since WW II

- 1. Rust Belt share of economic activity declined slowly & persistently
- 2. Rust Belt wages substantially higher than average after end of WW II

- 3. Labor-management relations were prone to conflict
- 4. Weak productivity growth in Rust Belt industries

Five Facts About Rust Belt Since WW II

- 1. Rust Belt share of economic activity declined slowly & persistently
- 2. Rust Belt wages substantially higher than average after end of WW II

- 3. Labor-management relations were prone to conflict
- 4. Weak productivity growth in Rust Belt industries
- 5. Starting 1980s,
 - Rust Belt decline slowed
 - wage premia declined
 - labor market conflict decreased
 - productivity growth increased

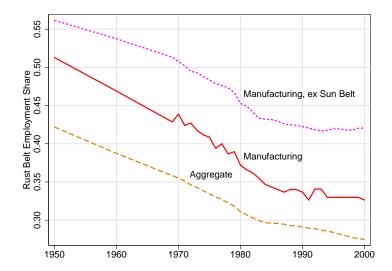
Our Theory

- Theory explores two channels of Rust Belt's decline:
 - 1. lack of competition and inefficient rent sharing in labor markets (where unions have ability to hold up firms)
 - 2. effect of foreign competition in product markets on aggregate innovation

- Competition in labor and output markets affects firms' incentive to innovate
- Economic activity shifts to region with faster productivity growth

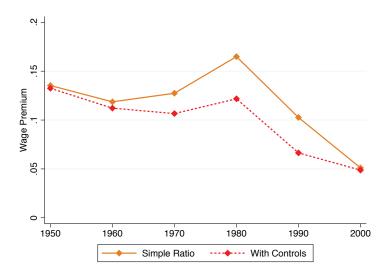
Related Literature

- Competition and productivity: Acemoglu & Akcigit (2011), Aghion et al (2005), Atkeson & Burstein (2010), Bloom, Draca and Van Reenan (2016), Cole & Ohanian (2004), Herrendorf & Texeira (2011), Holmes (1998), Holmes & Schmitz (2010), Parente & Prescott (1999), Pavcnik (2002), Schmitz (2005), ...
- Unions and economic performance: Holmes (1998), Taschereau-Dumouchel (2012), Bridgman (2011), Dinlersoz and Greenwood (2012), Acikgoz and Kaymak (2012)
- Rust Belt: Blanchard & Katz (1992), Feyrer, Sacerdote and Stern (2007), Glaeser and Ponzetto (2007), Yoon (2012)


This Talk

- 1. Four Facts
- 2. Model
- 3. Quantitative Analysis

1. Four Facts


- 2. Model
- 3. Quantitative Analysis

Rust Belt Employment Share Declined

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Rust Belt Wages High

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Labor Market Conflict

Unionization and Stoppages pre-1980s

Panel A: Unionization Rates (1973 to 1980)

	Manufacturing	Services	Overall
Rust Belt	48.1	22.5	30.9
Rest of Country	28.4	14.4	18.1

Panel B: Major Work Stoppages Rates (1958 to 1977)

	Manufacturing	Services	Overall
Rust Belt	19.2	3.2	9.7
Rest of Country	2.7	0.9	1.6

Labor Market Conflict

Stoppages pre- vs. post-1980s

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 日 ● ● ● ●

Rust Belt Productivity Growth Low

	Annualized Growth Rate, %		
	1958-1985	1985-1997	1958-1997
Blast furnaces, steelworks, mills	0.9	7.6	2.8
Engines turbines	2.3	2.9	2.5
Iron and steel foundries	1.5	2.3	1.7
Metal forgings/stampings	1.5	2.8	1.9
Metalworking machinery	0.9	3.5	1.6
Motor vehicles/equipment	2.5	3.8	2.9
Photographic equipment/supplies	4.7	5.1	4.9
Railroad locomotives/equipment	1.6	3.1	2.0
Screw machine products	1.2	1.1	1.2
Rust Belt weighted average	2.0	4.2	2.6
Manufacturing weighted average	2.6	3.2	2.8

Labor Productivity Growth in Rust Belt Industries

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 • ��?

Rust Belt was Technological Laggard

- Autos, steel, rubber did not adopt latest technologies:
 - National Academy of Sciences: producers did not adopt long-available technologies (e.g. basic oxygen furnace, continuous caster, electric arc furnace, ...)
 - McKinsey productivity study on autos: slow adoption of "lean production" in autos
 - Literature comparing productivity to other countries: US producers were slow to roll out new products (e.g. radial tires, fuel-efficient engines, ...)

Mechanism:

labor market conflict \Rightarrow inefficient rent sharing \Rightarrow low innovation rates \Rightarrow low employment growth

Non-Structural Evidence (I): Work Stoppages (1957-78)

Unit of Observation: state-industry (2-digit)

	Log Employment Growth 1950-2000	
Independent Variables	(1)	(2)
Work Stoppages / Year	-0.30***	-0.27***
	(0.063)	(0.056)
State Manufacturing	-1.90***	
Employment Share, 1950	(0.13)	
State Employment	-2.10***	
Herfindahl Index, 1950	(0.38)	
Constant	-0.87***	-1.40***
	(0.10)	(0.13)
Observations	5,128	5,128
R^2	0.617	0.735
Industry Fixed Effects	Y	Y
State Fixed Effects	Ν	Y

Non-Structural Evidence (II): Unionization Rate (1973-77)

Unit of Observation: state-industry (2-digit)

	Log Employment Growth 1950-2000	
Independent Variables	(1)	(2)
Unionization Rate	-0.56***	-0.30***
	(0.077)	(0.072)
State Manufacturing	-1.83***	
Employment Share, 1950	(0.12)	
State Employment	-2.41***	
Herfindahl Index, 1950	(0.37)	
Constant	-0.83***	-1.45***
	(0.10)	(0.13)
Observations	4,691	4,691
R^2	0.637	0.747
Industry Fixed Effects	Y	Y
State Fixed Effects	Ν	Y

Non-Structural Evidence (III): Strikes / Year (1927-34)

Unit of Observation: state-industry (2-digit)

	Log Employment Growth 1950-2000	
Independent Variables	(1)	(2)
Strikes 1927-34	-0.019***	-0.012***
	(0.0040)	(0.0039)
State Manufacturing	-2.68***	
Employment Share, 1950	(0.14)	
State Employment	3.85***	
Herfindahl Index, 1950	(0.68)	
Constant	-0.70***	-1.33***
	(0.18)	(0.19)
Observations	2,834	2,834
R^2	0.712	0.745
Industry Fixed Effects	Y	Y
State Fixed Effects	Ν	Y

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

1. Four Facts

2. Model

3. Quantitative Analysis

Key Ingredients

- Risk-neutral households, inelastic labor supply
- Two regions: Rust Belt (R), Rest of Country(S)
- ▶ Two sectors: manufactures (m), non-tradables (n)
- ► Two countries: U.S., Rest of the World (*)
- ▶ Technologies linear in labor in all sectors / regions / countries

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Static Problem

- For given productivities in all sectors / regions / countries, the model has standard features:
 - Trade à la Armington in manufactured goods
 - Manufactured goods and non-tradeables (services) are gross complements in CES production technology of final good

 Labor market in Rust Belt manufacturing is non-competitive but does not affect static allocation of labor across sectors / regions

Final Good

Final good in each region produced from manufactured goods and local services:

$$Y_t^{\cdot} = \left(\mu m_t^{\frac{\theta-1}{\theta}} + (1-\mu)(n_t^{\cdot})^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}$$

Manufactured good is composite of differentiated varieties (indexed by j) in a continuum of sectors (indexed by i), produced at home and abroad:

$$m_{t} = \left(\int_{0}^{1} m_{t}(i)^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$
$$m_{t}(i) = \left(\int_{0}^{1} m_{t}(i,j)^{\frac{\rho-1}{\rho}} dj + \int_{0}^{1} m_{t}^{*}(i,\tilde{j})^{\frac{\rho-1}{\rho}} d\tilde{j}\right)^{\frac{\rho}{\rho-1}},$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

where * denotes varieties produced abroad

Final Good

- Final output consumed or used for investment
- \blacktriangleright Manufactures and services are gross complements, i.e. $\theta \in [0,1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 \blacktriangleright Intermediates are gross substitutes , i.e. $\rho > \sigma > 1$

Intermediate Goods

- Industries $i \in [0, \lambda)$ located in Rust Belt (R)
- Industries $i \in [\lambda, 1]$ located in Rest-of-Country (S)
- Competition in labor markets varies by region (captured by time-varying union bargaining power β_t)

Intermediate Goods

Each intermediate firm (producing variety j in industry i) has access to production and innovation technologies.

1. Production is linear in labor:

$$y_t = z_t \cdot n_t$$

2. By investing C(x, z, Z) units of the final good, firm can enhance idiosyncratic productivity by $100 \cdot x$ percent next period:

$$z_{t+1} = z_t(1+x_t)$$

Union

- Union bargains with (individual) Rust Belt producers over profits
- Protocol is atemporal Nash with time-varying bargaining weight β_t
- Results robust to alternative protocols (e.g. take-it-or-leave-it bargaining embedded in optimal rent extraction problem)
 TIOLI

Intermediate Firms' Dynamic Problem (Innovation)

In the Rest-of-Country:

$$V^{S}(Z, U, z_{S}; \beta, \tau) = \max_{x_{S} > 0} \left\{ \Pi^{S}(Z, U, z_{S}; \beta, \tau) - P(Z, U; \beta, \tau) \cdot C(x_{S}, z_{S}, Z) + \delta E \left[V^{S}(Z', U', z'_{S}; \beta', \tau') \right] \right\},$$

In the Rust Belt:

$$V^{R}(Z, U, z_{R}; \beta, \tau) = \max_{x_{R} > 0} \left\{ (1 - \beta) \Pi^{R}(Z, U, z_{R}; \beta, \tau) - P(Z, U; \beta, \tau) \cdot C(x_{R}, z_{R}, Z) + \delta E \left[V^{R}(Z', U', z'_{R}; \beta', \tau') \right] \right\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Worker's Problem

- Rust Belt manufacturing jobs pay premium over competitive wage
- "Closed Shop" in Rust Belt manufacturing implies rationing of jobs
- Each period fixed fraction of the labor force retires and non-union workers decide whether to apply for lifetime union card

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantitative Analysis

 $W(Z, U, M, v; \beta, \tau) = \max\left\{W^R(Z, U, M, v; \beta, \tau), W^S(Z, U, v; \beta, \tau)\right\}$

Value of non-union worker in Rust Belt:

$$\begin{split} W^{R}(Z,U,M,\mathbf{0};\beta,\tau) &= F(Z,U,M;\beta,\tau) \Big\{ w + R(Z,U;\beta,\tau) \\ &+ \delta \Big((1-\zeta) E \big[W(Z',U',M',1;\beta',\tau') \big] \Big\} \\ &+ \big(1 - F(Z,U,M;\beta,\tau) \big) \\ &\times \Big\{ w - \bar{u} + \delta E \big[W(Z',U',M',0;\beta',\tau') \big] \Big\}, \end{split}$$

where $\bar{u} \geq 0$.

Value of union worker in Rust Belt:

$$W^{R}(Z, U, \cdot, \mathbf{1}; \beta, \tau) = w + R(Z, U; \beta, \tau) +\delta(1-\zeta)E[W(Z', U', M', \mathbf{1}; \beta', \tau')]$$

Value of any worker in the Sun Belt:

$$W^{S}(Z, U, \boldsymbol{\nu}; \beta, \tau) = w + \delta(1 - \zeta) E\left[W(Z', U', \boldsymbol{\nu}; \beta', \tau')\right]$$

- 1. Four Facts
- 2. Model
- 3. Quantitative Analysis

Quantitative Analysis

How big is model's decline in Rust Belt employment share?

Quantitative Analysis

- How big is model's decline in Rust Belt employment share?
- Discipline quantitative exercise by extent of competition:
 - 1. from foreign producers (regional trade shares, 1950-2000) import shares are low in 1950 and rising gradually
 - 2. in labor markets (estimated wage premiums, 1950-2000) wage premia high 1950 to early 1980s, followed by sharp drop

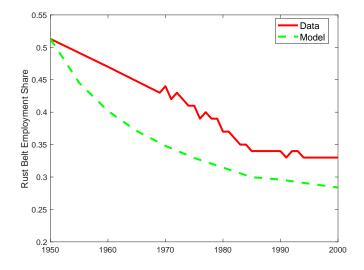
- τ iceberg trade costs
- (β_H, β_L) union's bargaining weight
- λ share of varieties produced by Rust Belt
- α linear (scale) parameter of cost function
- γ curvature parameter of cost function
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- (β_H, β_L) union's bargaining weight
- λ share of varieties produced by Rust Belt
- α linear (scale) parameter of cost function
- ▶ γ − curvature parameter of cost function
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- λ share of varieties produced by Rust Belt
- α linear (scale) parameter of cost function
- γ curvature parameter of cost function
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- α linear (scale) parameter of cost function
- γ curvature parameter of cost function
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

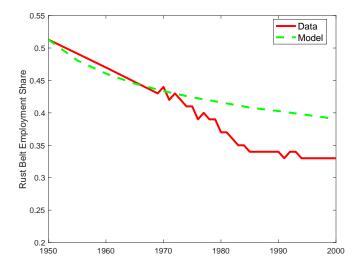
- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- ▶ 1.8% TFP growth (1950-2000)
- γ curvature parameter of cost function
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

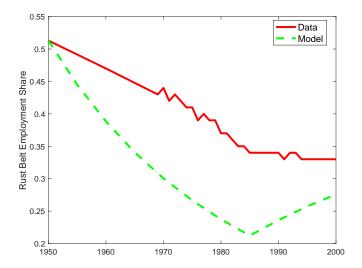

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- ▶ 1.8% TFP growth (1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (1950-2000)
- μ CES weight on manufactures
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- ▶ 1.8% TFP growth (1950-2000)
- 8.5% Investment-to-GDP ratio (1950-2000)
- 30.2% employment share of manufacturing (national, 1950)
- χ^n exogenous productivity growth in service sector
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- ▶ 1.8% TFP growth (1950-2000)
- 8.5% Investment-to-GDP ratio (1950-2000)
- 30.2% employment share of manufacturing (national, 1950)
- ▶ 12.9% employment share of manufacturing (national, 1950)
- χ^* exogenous productivity growth in foreign manufacturing

- Aggregate import share: 3% (1950)
- ▶ Wage premium: 12% (pre-1985), 4% (post-1985)
- Initial Rust Belt employment share of 51.3%
- ▶ 1.8% TFP growth (1950-2000)
- 8.5% Investment-to-GDP ratio (1950-2000)
- 30.2% employment share of manufacturing (national, 1950)
- ▶ 12.9% employment share of manufacturing (national, 1950)
- Aggregate import share: 12.3% (2000)


Rust Belt Employment Share in Model and Data


Conclusion

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Counterfactual: Weak Unions

Counterfactual: No Structural Change & Autarky

◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ● ● ● ● ● ●

Conclusion

- Relative to the rest of the US, Rust Belt declined in economic terms (employment, value added) from 1950 to 2000
- Theory emphasizes lack of competition as force of Rust Belt's decline

 Quantitative model can generate sizeable share of employment loss

Union with TIOLI Offers

- Union makes take-it-or-leave-it offer $b \in [0, 1]$
- ▶ If firm accepts, unionized workers receive w plus *per capita* share of $b \cdot \Pi^R$
- If firm rejects, union calls a strike and
 - succeeds with probability β (i.e. production is halted for one period and $\Pi^R = 0$)
 - Fails with probability 1 − β
 (i.e. production resumes, workers get w, firm receives Π^R)
- Union offers $b \in [0, \beta]$ since firm rejects any $b > \beta$
- Optimal β depends on sensitivity of firm's innovation decision
- Quantitatively, β = b for empirically relevant parameterizations of this version of model