Optimal Outlooks

Narayana Kocherlakota

Disclaimer and Acknowledgements

Disclaimer: I am not speaking for others in the Federal Reserve System.

Acknowledgements: I thank Doug Clement, David Fettig, Terry Fitzgerald, Ron Feldman, Thomas Tallarini, and Kei-Mu Yi for their comments.

Need for Outlooks

• A policymaker needs to make a decision today.

• The *current* decision results in random *future* net losses to society.

 Hence, the policymaker's decision depends on his or her outlook about those net losses.

What's the appropriate notion of an outlook for this policymaker?

Answer

• The needed outlook is not a statistically motivated **predictive density** ...

• But rather an asset-price-based **risk-neutral probability density** (RNPD).

Intuition

- From an ex ante perspective, resources may be more valuable in one state than in another state.
- Optimal decisions should reflect these relative resource valuations.
- RNPDs are derived from financial market *prices*.
- Hence, an outlook based on an RNPD does reflect the relative values of resources in different states.
- But an outlook based on a statistical forecast does not.

Outline

1. General Policy Problem

2. Risk-Neutral Probabilities

3. Example: Inflation-Targeting

4. Conclusions

GENERAL POLICY PROBLEM

Choice Problem

- Policymaker (**P**) chooses an action a.
- ullet The result of the action next period depends on the realization of x.
 - The random variable x has realizations $\{x_n\}_{n=1}^N$.
- The outcome (a, x) results in a welfare loss of L(a, x) dollars.
 - The loss L(a, x) may be positive or negative.

Possible Losses

• When **P** chooses an action a, there is a vector of possible social losses:

$$(L(a,x_n))_{n=1}^N$$

- Dollars in different states are really different goods.
- Hence, each choice of a results in a distinct bundle of different goods.
- How should P compare these bundles?

Simple Fruit Analogy

- I face a choice between giving up two baskets of fruit:
 - A apples and B bananas
 - OR A' apples and B' bananas
- I need a way to combine apples and bananas together.
 - Should I just add the number of apples and bananas?
 - Should I estimate CES preferences over apples/bananas?

Using Prices

• Right approach: How much will it cost me to replace the lost fruit?

• Hence, I need to compare:

$$p_A A + p_B B$$

vs.
$$p_A A' + p_B B'$$

• This comparison requires the use of appropriate market prices.

Replacement Cost Approach

- If **P** chooses a, then society suffers a random loss L(a, x).
- By buying a portfolio with random payoff L(a, x), **P** can replace the losses incurred by the action a.
- Hence, the value of that portfolio is the *current* (replacement) cost of taking action a.
- P should choose a so as to minimize this cost.
- This comparison requires the use of appropriate market prices.

RISK-NEUTRAL PROBABILITIES

State Prices

- If **P** chooses a, then society loses $L(a, x_n)$ if $x = x_n$.
- How much would it cost *today* to reimburse society for the loss in that state?
- ullet To answer this question, we need to know q_n the current price of a dollar received in the event that $x=x_n$.
 - The vector $(q_n)_{n=1}^N$ is the vector of state prices.

ullet Given q, it would cost:

$$\sum_{n=1}^{N} q_n L(a, x_n)$$

to reimburse society for the losses incurred with action a.

• **P** should choose a so as to minimize $\sum_{n=1}^{N} q_n L(a, x_n)$.

Risk-Neutral Probabilities

ullet We don't affect decisions if we divide q_n by a constant.

• Define:

$$q_n^* = \frac{q_n}{\sum_{m=1}^N q_m}$$

- q^* is called the *risk-neutral probability density* (RNPD) of x.
 - Probability means: q^* sums to one and q_n^* is nonnegative for all n.

Risk-Neutral and "True" Probabilities

- The RNPD q^* of x is not the same as the "true" probability density of x.
 - And what exactly is the "true" probability density of x?
- q* reflects asset traders' aversion to risk.
- And q^* reflects asset traders' assessments of the likelihood of x.

 \mathbf{E}^*

• For any function ϕ of x, define:

$$E^*(\phi(x)) = \sum_{n=1}^{N} q_n^* \phi(x_n)$$

• P can optimally choose a by minimizing:

$$E^*(L(a,x))$$

• If *L* is differentiable with respect to *a*:

$$E^*\left\{\frac{\partial L}{\partial a}(a^*,x)\right\} = \mathbf{0}$$

Verbal Summary

• Standard: Policymaker's optimal choice sets the *outlook* for L_a equal to zero.

• Novel: The appropriate notion of the outlook is given by E^* .

 Intuitively, policymaker makes choices so as to balance losses across states of the world.

• The relevant trade-offs are governed by state prices, not statistical forecasts.

Aside: Endogeneity of State Prices

• Above: I've treated q^* as exogenous to **P**.

• More realistic: Risk-neutral probability density q^* depends on a.

• Then, **P**'s problem is to choose *a* to minimize:

$$\sum_{n=1}^{N} q_n^*(a) L(a, x_n)$$

• Suppose **P** ignores endogeneity and chooses a^* so that:

$$E^*\left[\frac{\partial L}{\partial a}(a^*, x_n)\right] = \mathbf{0}$$

• Result: This choice is nearly optimal as long as this second moment:

$$Cov^*(L(a^*,x), \frac{\partial \ln q^*(a^*)}{\partial a})$$

is sufficiently small.

• Note: This second moment is calculated using the RNPD $q^*(a^*)$.

EXAMPLE:

INFLATION-TARGETING

Model of Inflation-Targeting

- Consider a hypothetical central bank (CB) with a single mandate: inflation target $\overline{\pi}$.
- ullet CB chooses accommodation a that, next period, results in:
 - inflation rate $\pi = (a + x)$
 - where x is random

• Sticky prices imply that there is an efficiency loss if π differs from the target $\overline{\pi}$.

• The gap $|\pi - \pi^*|$ generates an approximate *dollar* loss:

$$\kappa(\pi-\overline{\pi})^2$$

• That is, the CB's loss function is well approximated by:

$$L(a, x) = \kappa (a + x - \overline{\pi})^2$$

First Order Condition

• The CB chooses *a* to minimize:

$$E^*(a+x-\overline{\pi})^2$$

• This results in the first-order condition:

$$E^*(\pi) = \overline{\pi}$$

- The inflation-targeting CB ensures that the outlook for π is kept near $\overline{\pi}$.
- Standard result except the relevant outlook is given by E^* , not E.

Intuition

- $E^*(\pi)$ can be measured with inflation *break-evens*.
 - on TIPS bonds or on zero coupon inflation swaps
- These break-evens imply that $E^*(\pi)$ is generally larger than (usual measures of) $E(\pi)$.
- Keeping $E^*(\pi)$ equal to $\overline{\pi}$ will result in $E(\pi)$ being less than $\overline{\pi}$.
- Why is this desirable?

• $E^*(\pi) > E(\pi) \Rightarrow$ state prices tend to be high when inflation is high.

• This means that $\pi > \overline{\pi}$ is more costly to society than $\pi < \overline{\pi}$.

• Hence, optimal monetary policy should lead to $E(\pi)$ being *lower* than $\overline{\pi}$.

RNPDs and **Predictions**

• FAQ: Do RNPDs forecast the future better than statistical models?

• Similar: Did RNPDs in 2006 reveal the coming asset price corrections?

• My point today is that these are the wrong questions for policymakers to ask.

Financial Market Data and Decisions

- Policymakers form future outlooks so as to make current decisions with future outcomes.
- Optimal decisions trade off benefits/costs in future states of the world.
- The trade-off should *not* be based on ex ante (or ex post!) assessments of the states' probabilities.
- Instead, the trade-off should be based on the ex ante relative *values* of resources in those states.

Hence, the relevant outlook for a policymaker is an RNPD.

Implementation Challenges

- Decision-making using RNPDs is not necessarily easy.
 - Need to determine appropriate financial proxy.
 - Even then: Available options may not cover longer horizons or extreme tail events.
- Nothing new: Good decisions are always based on a mix of good judgment, good data, and good modeling choices.

BUT:

The right goal is to model/estimate RNPDs, not statistical forecasts.

Ninth District Activities

- Minneapolis Fed's Banking Group uses options data to compute RNPDs.
- They report the results on the public website for a wide range of assets.
 - Gold, silver, wheat, S&P 500, exchange rates, etc.
- They report and archive the results on a biweekly basis.
- See http://www.minneapolisfed.org/banking/assetvalues/index.cfm.