The Value of Implicit Guarantees

Zoe Tsesmelidakis ${ }^{1} \quad$ Robert C. Merton ${ }^{2}$
${ }^{1}$ Saïd Business School \& Oxford-Man Institute, University of Oxford
${ }^{2}$ Sloan School of Management, MIT

Minneapolis Fed TBTF Workshop, November 2013

1. Introduction

1. Introduction

1. Introduction

1. Introduction

Sources of imperfection:

1. Introduction

Sources of imperfection:
\triangleright Explicit vs. (probability of existence of) implicit guarantees

1. Introduction

Sources of imperfection:
\triangleright Explicit vs. (probability of existence of) implicit guarantees
\triangleright Maximum loss coverage

1. Introduction

Sources of imperfection:
\triangleright Explicit vs. (probability of existence of) implicit guarantees
\triangleright Maximum loss coverage
\triangleright Creditworthiness of guarantor

1. Introduction

Sources of imperfection:
\triangleright Explicit vs. (probability of existence of) implicit guarantees
\triangleright Maximum loss coverage
\triangleright Creditworthiness of guarantor

Why do we care?

1. Introduction

Why do we care?

Crisis management: Bailouts and guarantees vs. free market economy

Crisis prevention: Regulatory approaches

1. Introduction

Crisis management: Bailouts and guarantees vs. free market economy
\triangleright Moral hazard

- Reduced funding costs bear negative incentives to higher leverage and excessive risk-taking

Crisis prevention: Regulatory approaches

Crisis management: Bailouts and guarantees vs. free market economy
\triangleright Moral hazard

- Reduced funding costs bear negative incentives to higher leverage and excessive risk-taking
\triangleright Market value and social costs of guarantees
- Wealth transfer from taxpayers to creditors

Crisis prevention: Regulatory approaches

Crisis management: Bailouts and guarantees vs. free market economy
\triangleright Moral hazard

- Reduced funding costs bear negative incentives to higher leverage and excessive risk-taking
\triangleright Market value and social costs of guarantees
- Wealth transfer from taxpayers to creditors
\triangleright Disruption of equity and debt markets
- Structural change in which "default" is no longer perceived as the same event across debt and equity markets

Crisis prevention: Regulatory approaches

Crisis management: Bailouts and guarantees vs. free market economy
\triangleright Moral hazard

- Reduced funding costs bear negative incentives to higher leverage and excessive risk-taking
\triangleright Market value and social costs of guarantees
- Wealth transfer from taxpayers to creditors
\triangleright Disruption of equity and debt markets
- Structural change in which "default" is no longer perceived as the same event across debt and equity markets

Crisis prevention: Regulatory approaches
\triangleright Standalone credit risk

- Better gauge of financial health than observed CDS price (cf. Hart and Zingales, 2009)

Crisis management: Bailouts and guarantees vs. free market economy
\triangleright Moral hazard

- Reduced funding costs bear negative incentives to higher leverage and excessive risk-taking
\triangleright Market value and social costs of guarantees
- Wealth transfer from taxpayers to creditors
\triangleright Disruption of equity and debt markets
- Structural change in which "default" is no longer perceived as the same event across debt and equity markets

Crisis prevention: Regulatory approaches
\triangleright Standalone credit risk

- Better gauge of financial health than observed CDS price (cf. Hart and Zingales, 2009)
\triangleright Taxation
- Bank levy based on funding advantage backed out of debt prices net of guarantees

The questions

Q. How can we measure the TBTF premium financial institutions enjoy?

1. Introduction

Q. How can we measure the TBTF premium financial institutions enjoy?
Q. What are the associated pecuniary subsidies?
Q. How can we measure the TBTF premium financial institutions enjoy?
Q. What are the associated pecuniary subsidies?
Q. Which financial institutions benefit from these subsidies, to what extent, and how are these gains split up between shareholders and creditors?
Q. How can we measure the TBTF premium financial institutions enjoy?
Q. What are the associated pecuniary subsidies?
Q. Which financial institutions benefit from these subsidies, to what extent, and how are these gains split up between shareholders and creditors?
Q. How do guarantees influence the financing strategy of banks?

Preview of the results

\triangleright Findings point to a significant funding advantage of major banks during the crisis, that is less pronounced or even inexistent for non-banks

- Structural break in the pricing assumptions for U.S. bank debt
- Stock-implied default risk estimates exceed their CDS counterparts by 1000 bps
- Effect is transitory and prices tend to converge after 2008
\triangleright Findings point to a significant funding advantage of major banks during the crisis, that is less pronounced or even inexistent for non-banks
- Structural break in the pricing assumptions for U.S. bank debt
- Stock-implied default risk estimates exceed their CDS counterparts by 1000 bps
- Effect is transitory and prices tend to converge after 2008
\triangleright U.S. financial institutions exhibit huge wealth transfers over the period 2007-2010 to investors:
- \$129bn in the case of shareholders
- \$236bn in the case of debtholders
\triangleright Findings point to a significant funding advantage of major banks during the crisis, that is less pronounced or even inexistent for non-banks
- Structural break in the pricing assumptions for U.S. bank debt
- Stock-implied default risk estimates exceed their CDS counterparts by 1000 bps
- Effect is transitory and prices tend to converge after 2008
\triangleright U.S. financial institutions exhibit huge wealth transfers over the period 2007-2010 to investors:
- \$129bn in the case of shareholders
- \$236bn in the case of debtholders
\triangleright In the course of the interventions, U.S. banks shifted to fixed-rate short-term financing to exploit their TBTF status

2. Setup

2. Setup

Deriving the TBTF premium

\triangleright Merton (1974) views equity and debt as contingent claims on the asset value and models the dependence between default risk and equity

2. Setup

Deriving the TBTF premium

\triangleright Merton (1974) views equity and debt as contingent claims on the asset value and models the dependence between default risk and equity
\triangleright Empirical literature confirms that default risk is indeed implicitly valued in stock prices (e.g., Vassalou and Xing, 2004)

2. Setup

Deriving the TBTF premium

\triangleright Merton (1974) views equity and debt as contingent claims on the asset value and models the dependence between default risk and equity
\triangleright Empirical literature confirms that default risk is indeed implicitly valued in stock prices (e.g., Vassalou and Xing, 2004)
\triangleright Use the link between equity and debt markets that structural credit pricing models establish, i.e., calculate theoretical, stock-implied CDS spreads

2. Setup

Deriving the TBTF premium

\triangleright Merton (1974) views equity and debt as contingent claims on the asset value and models the dependence between default risk and equity
\triangleright Empirical literature confirms that default risk is indeed implicitly valued in stock prices (e.g., Vassalou and Xing, 2004)
\triangleright Use the link between equity and debt markets that structural credit pricing models establish, i.e., calculate theoretical, stock-implied CDS spreads
\Rightarrow Contrast default risk as explicitly priced in the CDS market to the default risk as it is implicitly priced in the stock market (Schweikhard and Tsesmelidakis, 2012)
\triangleright Merton (1974) views equity and debt as contingent claims on the asset value and models the dependence between default risk and equity
\triangleright Empirical literature confirms that default risk is indeed implicitly valued in stock prices (e.g., Vassalou and Xing, 2004)
\triangleright Use the link between equity and debt markets that structural credit pricing models establish, i.e., calculate theoretical, stock-implied CDS spreads
\Rightarrow Contrast default risk as explicitly priced in the CDS market to the default risk as it is implicitly priced in the stock market (Schweikhard and Tsesmelidakis, 2012)
\triangleright Exploit the divergence between the model-implied and actual CDS prices and adjust for counterparty risk to derive the funding advantage financial institutions enjoy from being TBTF

2. Setup

Default barrier

\triangleright Stochastic default barrier, which is only revealed at default

- Barrier $B=L D$, where $L \sim L N(\bar{L} ; \lambda)$
\Rightarrow Increases short-term default probabilities by capturing the possibility of instantaneous default

3. Model estimations

Predicted vs. observed CDS spreads

Firm-level results

3. Model estimations

Predicted vs. observed CDS spreads

Sector aggregates

3. Model estimations Predicted vs. observed CDS spreads

Relative deviations

3. Model estimations

Relative deviations

(a) Acquisition of Bear Stearns by JPMorgan
(b) TARP
(c) Rescue package for Bank of America

3. Model estimations

Counterparty risk adjustment

3. Model estimations

Funding advantage

*All numbers are in basis points per annum.

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Fix-to-floating ratio

Fixed-Rate to Floating-Rate Breakdown of New Bond Issues

floating rate percentage
il........ fixed rate percentage

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Average Maturity of Bond Issues

4. Descriptives

Maturities

Maturity Structure of Bond Issues

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Bond data

		Offering Amounts					Maturities				Weighted Maturities				Trading Volumes				
	$\underline{\text { Issues }}$	FCB	VCB	ZCB	Σ	$\frac{\text { OAO }}{T D}$	FCB	VCB	ZCB	\varnothing	FCB	VCB	ZCB	\varnothing	$V_{T \leq 5 y}$	$V_{5 y<}$ 任 $10 y$	$V_{T>10 y}$	V_{Σ}	TT
							Pre-Crisis Period												
Sectors																			
Banks	4,587	213.41	545.90	34.81	794.13	0.28	7.99	5.51	2.34	5.41	14.55	5.64	3.36	7.93	148.21	369.77	901.52	1,419.51	3,104
Insurance	1,292	50.02	63.09	0.12	113.22	0.56	8.71	9.44	14.96	8.87	12.10	16.32	9.52	14.45	94.20	132.82	220.86	447.88	2,613
Real Estate	91	35.10	2.46	0.00	37.56	0.70	11.12	6.84	0.00	10.70	12.48	3.83	0.00	11.91	5.50	36.17	104.62	146.29	151
Others	8	1.88	1.25	0.00	3.12	0.11	8.04	28.38	0.00	15.66	8.50	47.47	0.00	24.09	0.00	0.00	17.00	17.00	9
Financials	5,978	300.40	612.70	34.93	948.03	0.30	8.35	6.10	2.39	6.25	13.86	6.82	3.38	8.92	247.91	538.76	1,244.00	2,030.68	5,877
										Crisi	Period								
Sectors - - Cris Per																			
Banks	5,513	517.45	255.01	45.06	817.53	0.29	2.50	8.54	2.17	2.96	5.77	4.78	2.58	5.28	692.97	312.51	425.76	1,431.24	2,923
Insurance	761	46.03	35.51	0.61	82.15	0.47	7.80	12.30	5.88	8.27	9.64	26.44	12.20	16.92	13.12	56.14	133.50	202.75	999
Real Estate	34	13.57	0.80	0.00	14.37	0.73	9.44	4.98	0.00	9.30	10.01	4.98	0.00	9.73	0.00	12.26	15.31	27.56	390
Others	12	7.34	1.95	0.00	9.29	0.15	4.38	2.50	0.00	4.21	4.49	1.86	0.00	3.94	14.32	4.50	5.00	23.82	28
Financials	6,320	584.39	293.27	45.68	923.34	0.30	3.66	9.02	2.18	3.64	6.16	7.38	2.71	6.37	720.40	385.41	579.57	1,685.37	4,340
										Post-Cr	isis Peri	riod							
Sectors - Post-Cris Period																			
Banks	5,078	177.11	60.05	30.22	267.38	0.28	2.87	14.51	2.17	4.83	8.14	11.17	1.99	8.12	1,061.56	3,459.59	3,794.43	8,315.57	6,3375
Insurance	71	39.80	5.60	0.00	45.40	0.61	11.21	2.07	0.00	10.18	9.24	1.98	0.00	8.34	45.28	146.86	718.05	910.18	1104
Real Estate	47	21.99	0.00	0.00	21.99	0.76	10.33	0.00	0.00	10.33	9.81	0.00	0.00	9.81	0.00	276.25	363.08	639.32	690
Others	10	4.10	0.25	0.00	4.35	0.26	6.07	3.01	0.00	5.77	6.45	3.01		6.25	3.75	39.51	35.70	78.96	88
Financials	5,206	243.00	65.90	30.22	339.12	0.30	3.35	14.40	2.17	4.95	8.44	10.36	1.99	8.24	1,110.59	3,922.20	4,911.26	9,944.03	65,257

*Monetary amounts are in billions of US\$.
**The pre-crisis period is from June 2005 to July 2007, the crisis period ranges from August 2007 to September 2009, and the post-crisis period lasts until November 2011.

4. Descriptives

Trades

5. Capitalized subsidies

Estimate implicit subsidies resulting from the funding cost advantage.

$$
P=P V(\text { Bond })=\sum_{t=1}^{T} \frac{c N}{(1+y)^{t}}+\frac{N}{(1+y)^{T}}
$$

Shareholders' subsidies
Q. How much more would a bank have to pay (in PV terms) to raise the debt?
\triangleright Re-value bond issues by increasing coupon rate to obtain non-guaranteed issue price $P_{C_{N G}}$

$$
P_{c_{G}}<P_{c_{N G}} \Rightarrow S_{c}=P_{c_{N G}}-P_{c_{G}}
$$

5. Capitalized subsidies

Estimate implicit subsidies resulting from the funding cost advantage.

$$
P=P V(\text { Bond })=\sum_{t=1}^{T} \frac{c N}{(1+y)^{t}}+\frac{N}{(1+y)^{T}}
$$

Shareholders' subsidies
Q. How much more would a bank have to pay (in PV terms) to raise the debt?
\triangleright Re-value bond issues by increasing coupon rate to obtain non-guaranteed issue price $P_{C_{N G}}$

$$
P_{c_{G}}<P_{c_{N G}} \Rightarrow S_{c}=P_{c_{N G}}-P_{c_{G}}
$$

Bondholders' subsidies

Q. By how much is the deterioration of bond prices offset due to the guarantee?
\triangleright Re-value transactions by increasing YTM to obtain non-guaranteed transaction price $P_{y_{N G}}$

$$
P_{y_{G}}>P_{y N G} \Rightarrow S_{y}=P_{y_{G}}-P_{y N G}
$$

5. Capitalized subsidies

Bondholders' subsidies are estimated in two ways:

5. Capitalized subsidies

Bondholders' subsidies are estimated in two ways:
\diamond Incremental secondary-market subsidies
\triangleright Merge TRACE transaction data with issue information from Mergent FISD.
\triangleright Calculated once per issue, i.e., for each reference entity that is traded between 2007-2010, select the day with the largest funding advantage and calculate the subsidy S_{y}.
\triangleright Scale the resulting S_{y} by the corresponding offering amount.
\triangleright To avoid double-counting, subtract any primary-market subsidy, if there is.

5. Capitalized subsidies

Bondholders' subsidies are estimated in two ways:
\diamond Incremental secondary-market subsidies
\triangleright Merge TRACE transaction data with issue information from Mergent FISD.
\triangleright Calculated once per issue, i.e., for each reference entity that is traded between 2007-2010, select the day with the largest funding advantage and calculate the subsidy S_{y}.
\triangleright Scale the resulting S_{y} by the corresponding offering amount.
\triangleright To avoid double-counting, subtract any primary-market subsidy, if there is.
\diamond Continuous secondary-market subsidies
\triangleright Calculated daily.
\triangleright Combine contemporaneous values for the funding advantage with the day-matched trading volume as inferred from TRACE.
\triangleright Trading volume replaces the issue volume and gives an impression of the actual impact through time.

5. Capitalized subsidies

Subsidy-to-Issue-Volume Ratios

*All numbers are in millions of US\$.

5. Capitalized subsidies

Panel A - Primary Market Subsidies Implied by a Lower Coupon Rate					
	2007	2008	2009	2010	Total
Banks	3.31	38.25	77.15	2.58	121.29
Insurance	0.17	1.76	1.44	2.05	5.42
Real Estate	0.14	0.11	0.83	0.24	1.32
Others	0.00	0.27	0.86	0.01	1.14
Total	3.62	40.39	80.28	4.88	129.17
Panel B - Secondary Market Subsidies Implied by a Lower Yield					
	$\underline{2007}$	2008	2009	2010	Total
Banks	0.47	93.34	109.13	0.00	202.94
Insurance	0.04	6.13	19.56	0.00	25.73
Real Estate	0.01	3.71	2.89	0.00	6.61
Others	0.00	0.27	0.51	0.00	0.78
Total	0.52	103.45	132.09	0.00	236.06
Panel C - Overall Subsidies					
	2007	2008	2009	2010	Total
Banks	3.78	131.59	186.28	2.58	324.23
Insurance	0.21	7.90	21.00	2.05	31.16
Real Estate	0.16	3.82	3.71	0.24	7.93
Others	0.00	0.54	1.36	0.01	1.91
Total	4.15	143.85	212.35	4.88	365.23

5. Capitalized subsidies

Panel A - Primary Market Subsidies Implied by a Lower Coupon Rate					
	2007	2008	2009	2010	Total
Banks	3.31	38.25	77.15	2.58	121.29
Insurance	0.17	1.76	1.44	2.05	5.42
Real Estate	0.14	0.11	0.83	0.24	1.32
Others	0.00	0.27	0.86	0.01	1.14
Total	3.62	40.39	80.28	4.88	129.17
Panel B - Secondary Market Subsidies Implied by a Lower Yield					
	$\underline{2007}$	2008	2009	2010	Total
Banks	0.47	93.34	109.13	0.00	202.94
Insurance	0.04	6.13	19.56	0.00	25.73
Real Estate	0.01	3.71	2.89	0.00	6.61
Others	0.00	0.27	0.51	0.00	0.78
Total	0.52	103.45	132.09	0.00	236.06
Panel C - Overall Subsidies					
	2007	2008	2009	2010	Total
Banks	3.78	131.59	186.28	2.58	324.23
Insurance	0.21	7.90	21.00	2.05	31.16
Real Estate	0.16	3.82	3.71	0.24	7.93
Others	0.00	0.54	1.36	0.01	1.91
Total	4.15	143.85	212.35	4.88	365.23

5. Capitalized subsidies

Secondary market

_- subsidies of financials in mn USD (left axis)
--------- subsidies of banks in mn USD (left axis)
subsidies in percent of trading volume of financials (right axis)
subsidies in percent trading volume of banks (right axis)

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{r s}^{D F}$							4.002	2.47	**									
MES										144.255	3.37	***	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	+	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	14.4										11.230	5.64	***	2.824	2.61	**
$\beta_{r s}^{D F}$							4.002	2.47	**									
MES										144.255	3.37	***	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	300	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	122		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{r s}^{D F}$							4.002	2.47	**									
MES										144.255	3.37	***	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
r_{S}	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{\text {rs }}^{\text {DF }}$							4.002	2.47	**									
MES										144.255	3.37	***	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{r_{S}}^{\text {DF }}$							4.002	2.47	**									
MES										144.255	3.37	**	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{r_{S}}^{\text {DF }}$							4.002	2.47	**									
MES										144.255	3.37	***	33.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

5. Capitalized subsidies

Determinants of subsidies

	(1)			(2)			(3)			(4)			(5)			(6)		
	Coef.	t																
VIX	0.190	3.27	***	0.196	3.23	***	0.180	3.19	***	0.137	2.41	**	0.130	2.59	**	0.126	2.48	**
Rating (AA)				12.743	3.11	***	12.613	3.09	***	9.807	2.81	***						
Rating (A)				1.540	3.00	***	1.767	3.81	***	-0.446	-0.54							
Rating (BBB)				0.458	1.22		1.565	2.75	***									
rs	-1.343	-0.85		-1.196	-0.72		-1.763	-1.06		-6.871	-2.19	**	-6.501	-2.51	**	-6.100	-2.65	**
Size	12.116	5.39	***										11.230	5.64	***	2.824	2.61	**
$\beta_{r_{S}}^{\text {DF }}$							4.002	2.47	**									
MES										144.255	3.37	***	133.754	3.70	***	137.554	3.91	***
TARP													0.466	0.28				
TARP Amounts																0.414	7.80	***
Constant	-5.172	-3.14	***	-5.091	-3.12	***	-8.953	-3.18	***	-7.442	-3.30	***	-9.319	-3.62	***	-8.739	-3.44	***
Observations	34143			34273			34273			23937			23835			23835		
Adj. R^{2}	0.221			0.138			0.151			0.199			0.274			0.345		
Coef. Estimates	OLS																	
Standard Errors	CL-F																	

*Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ***, **, and *, respectively.

6. Conclusion

6. Conclusion

\triangleright Estimate the pecuniary subsidies financial institutions enjoy from being TBTF.
\triangleright Estimate the pecuniary subsidies financial institutions enjoy from being TBTF.
\triangleright Apply a structural model framework and adjust for counterparty risk to calculate the funding advantage.
\triangleright Merge with bond issue and transaction data and re-value bonds to calculate subsidies to share- and bondholders.
\triangleright Capitalized subsidies amount to $\$ 365.2$ billion in total.
\triangleright Banks shifted financing to short-term fixed-rate bond issues to further profit from their TBTF status.
\triangleright Estimate the pecuniary subsidies financial institutions enjoy from being TBTF.
\triangleright Apply a structural model framework and adjust for counterparty risk to calculate the funding advantage.
\triangleright Merge with bond issue and transaction data and re-value bonds to calculate subsidies to share- and bondholders.
\triangleright Capitalized subsidies amount to $\$ 365.2$ billion in total.
\triangleright Banks shifted financing to short-term fixed-rate bond issues to further profit from their TBTF status.
\triangleright CDS prices are biased to the downside and thus unreliable for monitoring the health of the financial system.

A. Appendix

Counterparty risk

Role of counterparty risk in CDS markets

\triangleright Degree to which counterparty risk affects CDS prices depends on the joint default probability of the insurer and the reference entity.
\Rightarrow High in the case of contracts written on major financials as they happen to be the primary CDS dealers.
\triangleright In periods of high systemic risk, both the value of guarantees (the wedge) and counterparty risk rise, moving market premiums downwards.

A. Appendix

Role of counterparty risk in CDS markets
\triangleright Degree to which counterparty risk affects CDS prices depends on the joint default probability of the insurer and the reference entity.
\Rightarrow High in the case of contracts written on major financials as they happen to be the primary CDS dealers.
\triangleright In periods of high systemic risk, both the value of guarantees (the wedge) and counterparty risk rise, moving market premiums downwards.

Adjust CDS-equity wedge for counterparty risk

1. Construct a primary dealer CDS index.
2. Measure each firm's daily beta between its CDS and the index.
3. Regress wedge on betas and control variables related to liquidity, business climate, and ratings.
4. Multiply the coefficient estimates with the beta values to obtain the counterparty risk adjustment for a given firm, maturity, and date.

A. Appendix

Determinants of the bond structure

	$T_{\text {issue }}$									$\frac{V_{f x}}{V_{f i x}+V_{f 0}}$									
	(1)			(2)			(3)			(4)				(5)			(6)		
	Coef.	t		Coef.	t		Coef.	t		Coef		t		Coef.	t		Coef.	t	
$T_{\text {mat }}$	0.362	2.84	***	0.298	1.99	**	0.253	2.25	**										
$T_{\text {issue }}$											0.006	3.41	***	0.006	3.39	***	0.01	2.72	***
$V_{\text {fix }}$				1.511	2.26	**													
$\frac{V_{f i x}}{V_{\text {fix }}+V}$	3.563	3.25	***				2.367	2.63	***										
$\begin{aligned} & V_{f x}+V_{f i v} \\ & V_{\text {fixs }} \\ & \hline \end{aligned}$																			
$\frac{V_{\text {fix }}}{V_{\text {mix }}+V_{\text {fict }}}$											0.253	7.85	***	0.251	7.92	***	0.16	5.04	***
Term Spread	-0.826	-3.32	***	-0.342	-1.07						0.059	6.38	***	0.057	6.28	***	0.06	6.73	***
Funding Adv.	-0.172	-1.93	*	-0.244	-2.05	**					0.027	4.71	***	0.025	4.87	***	0.03	5.28	***
Bank Dummy							-1.564	-2.04	**								-0.11	-4.25	***
Crisis Dummy														0.206	5.65				
Post-crisis Dummy														0.212	2.48	**			
$V_{f i \times} \times$ Bank Dummy				-1.732	-2.68	***													
AA							3.880	2.71	***										
A							4.178	3.03	***								0.10	4.02	***
BBB							4.212	2.76	***								0.31	8.97	***
Constant	5.854	9.11	***	8.199	7.20	***	2.330	1.42			0.296	10.91	***	0.279	10.31	***	0.36	9.77	***
Observations	636			245			773				636			636			636		
Adj. R^{2}	0.062			0.056			0.046				0.197			0.231			0.29		
Coef. Estimates	OLS			OLS			OLS				OLS			OLS			OLS		
Standard Errors	robust			robust			robust				robust			robust			robust		

Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ${ }^{ * *}$, ${ }^{* *}$, and ${ }^{*}$, respectively.

A. Appendix

Determinants of the bond structure

	$T_{\text {issue }}$									$\frac{V_{f x}}{V_{f i x}+V_{f 0}}$									
	(1)			(2)			(3)			(4)				(5)			(6)		
	Coef.	t		Coef.	t		Coef.	t		Coef.		t		Coef.	t		Coef.	t	
$T_{\text {mat }}$	0.362	2.84	***	0.298	1.99	**	0.253	2.25	**										
$T_{\text {issue }}$											0.006	3.41	***	0.006	3.39	***	0.01	2.72	***
$V_{\text {fix }}$				1.511	2.26	**													
$\frac{V_{f i x}}{V_{\text {fix }}+V}$	3.563	3.25	***				2.367	2.63	***										
$\begin{aligned} & V_{\text {fix }}+v_{\text {fig }} \\ & v_{\text {fixi }} \end{aligned}$																			
$\frac{V_{\text {fix }}}{V_{\text {mix }}+V_{\text {fict }}}$											0.253	7.85	***	0.251	7.92	***	0.16	5.04	***
Term Spread	-0.826	-3.32	***	-0.342	-1.07						0.059	6.38	***	0.057	6.28	***	0.06	6.73	***
Funding Adv.	-0.1.72	-1.93	+	-0.244	-2.05	**					0.027	4.71	***	0.025	4.87	***	0.03	5.28	***
Bank Dummy							-1.564	-2.04	**								-0.11	-4.25	***
Crisis Dummy														0.206	5.65				
Post-crisis Dummy														0.212	2.48	**			
$V_{f i \times} \times$ Bank Dummy				-1.732	-2.68	***													
AA							3.880	2.71	***										
A							4.178	3.03	***								0.10	4.02	***
BBB							4.212	2.76	***								0.31	8.97	***
Constant	5.854	9.11	***	8.199	7.20	***	2.330	1.42			0.296	10.91	***	0.279	10.31	***	0.36	9.77	***
Observations	636			245			773				636			636			636		
Adj. R^{2}	0.062			0.056			0.046				0.197			0.231			0.29		
Coef. Estimates	OLS			OLS			OLS				OLS			OLS			OLS		
Standard Errors	robust			robust			robust				robust			robust			robust		

Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ${ }^{ * *}$, ${ }^{* *}$, and ${ }^{*}$, respectively.

A. Appendix

Determinants of the bond structure

Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ${ }^{ * *}$, ${ }^{* *}$, and ${ }^{*}$, respectively.

A. Appendix

Determinants of the bond structure

	$T_{\text {issue }}$									$\frac{V_{f i x}}{V_{f_{i x}+V_{\text {fo }}}}$									
	(1)			(2)			(3)			(4)				(5)			(6)		
	Coef.	t		Coef.	t		Coef.	t		Coef		t		Coef.	t		Coef.	t	
$T_{\text {mat }}$	0.362	2.84	***	0.298	1.99	**	0.253	2.25	**										
$T_{\text {issue }}$											0.006	3.41	***	0.006	3.39	***	0.01	2.72	***
$V_{f i x}$				1.511	2.26	**													
$\frac{V_{f x}}{V_{f x}+V_{t p_{p}}}$	3.563	3.25	***				2.367	2.63	***										
											0.253	7.85	***	0.251	7.92	***	0.16	5.04	***
	-0.826	-3.32	***	-0.342	-1.07						0.253 0.059	6.38		0.057	6.28	***	0.16	6.73	***
Funding Adv.	-0.172	-1.93	*	-0.244	-2.05	**					0.027	4.71	4	0.025	4.87	***	0.03	5.28	***
Bank Dummy							-1.564	-2.04	**								-0.11	-4.25	***
Crisis Dummy														0.206	5.65				
Post-crisis Dummy														0.212	2.48				
$V_{f i \times} \times$ Bank Dummy				-1.732	-2.68	***													
AA							3.880	2.71	***										
A							4.178	3.03	***								0.10	4.02	***
BBB							4.212	2.76	***								0.31	8.97	***
Constant	5.854	9.11	***	8.199	7.20	***	2.330	1.42			0.296	10.91	***	0.279	10.31	***	0.36	9.77	***
Observations	636			245			773				636			636			636		
Adj. R^{2}	0.062			0.056			0.046				0.197			0.231			0.29		
Coef. Estimates	OLS			OLS			OLS				OLS			OLS			OLS		
Standard Errors	robust			robust			robust				robust			robust			robust		

Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ${ }^{ * *}$, ${ }^{* *}$, and ${ }^{*}$, respectively.

A. Appendix

Determinants of the bond structure

Statistical significance at the $1 \%, 5 \%$, and 10% levels is denoted by ${ }^{ * *}$, ${ }^{* *}$, and ${ }^{*}$, respectively.

Asset dynamics

\triangleright Firm assets V are assumed to evolve by the diffusion

$$
\frac{d V_{t}}{V_{t}}=\mu_{V} d t+\sigma_{V} d W_{t}
$$

where W_{t} is a Brownian motion, σ_{V} the asset volatility, and μv the drift

B. Appendix

Asset dynamics

\triangleright Firm assets V are assumed to evolve by the diffusion

$$
\frac{d V_{t}}{V_{t}}=\mu_{V} d t+\sigma_{V} d W_{t}
$$

where W_{t} is a Brownian motion, σ_{V} the asset volatility, and μv the drift
\triangleright On average the level of leverage tends to maintain constant over time even as firms grow (Collin-Dufresne and Goldstein (2001))

B. Appendix

Asset dynamics

\triangleright Firm assets V are assumed to evolve by the diffusion

$$
\frac{d V_{t}}{V_{t}}=\mu_{V} d t+\sigma_{V} d W_{t}
$$

where W_{t} is a Brownian motion, σ_{V} the asset volatility, and μ_{V} the drift
\triangleright On average the level of leverage tends to maintain constant over time even as firms grow (Collin-Dufresne and Goldstein (2001))
\Rightarrow Hence, we assume a stationary leverage, implying $\mu_{E}=\mu_{D}=\mu_{V}$

B. Appendix

Asset dynamics

\triangleright Firm assets V are assumed to evolve by the diffusion

$$
\frac{d V_{t}}{V_{t}}=\mu_{V} d t+\sigma_{V} d W_{t}
$$

where W_{t} is a Brownian motion, σ_{V} the asset volatility, and μv the drift
\triangleright On average the level of leverage tends to maintain constant over time even as firms grow (Collin-Dufresne and Goldstein (2001))
\Rightarrow Hence, we assume a stationary leverage, implying $\mu_{E}=\mu_{D}=\mu_{V}$
\Rightarrow Pricing credit is rather about the relation between μ_{V} and μ_{D} than about μ_{V} per se, therefore set $\mu_{V}=0$ for simplicity

B. Appendix

Survival probability

The risk-neutral survival probability $P(t)$ that the firm value does not hit the default boundary until time t, i.e.,

$$
V(\tau)>L D, \quad \forall \tau<t
$$

is given by the approximate closed-form solution

$$
P(t)=\Phi\left(-\frac{A_{t}}{2}+\frac{\log (d)}{A_{t}}\right)-d \cdot \Phi\left(-\frac{A_{t}}{2}-\frac{\log (d)}{A_{t}}\right)
$$

with

$$
d=\frac{S_{0}+\bar{L} D}{\bar{L} D} \exp \lambda^{2} \quad \text { and } \quad A_{t}^{2}=\sigma_{V}^{2} t+\lambda^{2}
$$

$$
\underbrace{(1-R)\left[1-P(0)+\int_{0}^{t} d s f(s) e^{-r s}\right]}_{\text {protection leg }}
$$

$$
\underbrace{(1-R)\left[1-P(0)+\int_{0}^{t} d s f(s) e^{-r s}\right]}_{\text {protection leg }} \stackrel{!}{=} \underbrace{c \int_{0}^{t} d s P(s) e^{-r s}}_{\text {premium leg }}
$$

$$
\underbrace{(1-R)\left[1-P(0)+\int_{0}^{t} d s f(s) e^{-r s}\right]}_{\text {protection leg }} \stackrel{!}{=} \underbrace{c \int_{0}^{t} d s P(s) e^{-r s}}_{\text {premium leg }}
$$

$$
\Rightarrow c=r(1-R) \frac{1-P(0)+e^{r \xi}(G(t+\xi)-G(\xi))}{P(0)-P(t) e^{-r t}-e^{r \xi}(G(t+\xi)-G(\xi))}
$$

where $\xi=\frac{\lambda^{2}}{\sigma^{2}}$ and R is the expected recovery rate to a specific debt class

Asset volatility estimation

B. Appendix

Asset volatility estimation

\triangleright In the Merton model, it follows from Ito's lemma that

$$
\sigma_{S}=\frac{V}{S} \underbrace{\frac{\partial S}{\partial V}}_{0 \leq \ldots \leq 1} \sigma_{V} \Leftrightarrow \sigma_{V}=\frac{S}{V} \underbrace{\frac{\partial V}{\partial S}}_{\geq 1} \sigma_{S}
$$

\triangleright In the Merton model, it follows from Ito's lemma that

$$
\sigma_{S}=\frac{V}{S} \underbrace{\frac{\partial S}{\partial V}}_{0 \leq \ldots \leq 1} \sigma_{V} \Leftrightarrow \sigma_{V}=\frac{S}{V} \underbrace{\frac{\partial V}{\partial S}}_{\geq 1} \sigma_{S}
$$

\triangleright CreditGrades:

$$
\begin{array}{ll}
V=S+\bar{L} D & \text { and the following approximation } \\
\frac{\partial S}{\partial V}=1 & \text { result from boundary conditions } \\
\sigma_{S} \approx \sigma_{S}^{i m p} & \text { ATM implied volatility }
\end{array}
$$

$$
\Rightarrow \sigma_{S}=\frac{S+\bar{L} D}{S} \sigma_{V} \quad \Leftrightarrow \quad \sigma_{v}=\frac{S}{S+\bar{L} D} \sigma_{s}
$$

\triangleright In our boundary examinations we focus on the distance to default since its behavior is relevant for determining the survival probability:

$$
\eta=\frac{1}{\sigma} \log \left(\frac{V}{L D}\right)=\frac{V}{\sigma_{S} S} \frac{\partial S}{\partial V} \log \left(\frac{V}{L D}\right)
$$

\triangleright First (at/near to default) boundary condition

- Assume that as default approaches, $S \rightarrow 0$
- Thus at the boundary, $\left.V\right|_{s=0}=L D$, and near the boundary $V \approx L D+\frac{\partial V}{\partial S} S$
- Substituting into η gives $\eta \approx \frac{1}{\sigma_{S}}\left(1+\frac{\partial V}{\partial S} \frac{S}{L D}\right) \approx \frac{1}{\sigma_{S}}$
\triangleright Second (far from default) boundary condition
- Assume that as V goes to infinity, $\frac{S}{V} \rightarrow 1$, i.e. V and S increase at the same rate, $\frac{\partial S}{\partial V} \rightarrow 1$
- Substitution leads to $\eta \approx \frac{1}{\sigma_{S}} \log \left(\frac{S}{L D}\right)$
\triangleright The simplest expressions satisfying both boundary conditions are:

$$
\eta=\frac{S+L D}{\sigma_{S} S} \log \left(\frac{S+L D}{L D}\right) \quad \text { and } \quad V=S+L D
$$

$$
\sigma_{S}=\frac{V}{S} \frac{\partial S}{\partial V} \sigma_{V} \Rightarrow \sigma_{S}=\frac{S+\bar{L} D}{S} \sigma_{V}
$$

How sensitive are our results to $\frac{\partial S}{\partial V}<1$?
$\Rightarrow \sigma_{V} \nearrow$ as $\frac{\partial V}{\partial S} \nearrow$, i.e. stock-implied credit spreads would be even higher!
Alternatives:
\triangleright Obtain σ_{V} from $P\left(S, t, B, \sigma_{V}\right)$, the price of an equity put option as a function of σ_{V}, which can be equated to the market price of a put (Finger and Stamicar (2006)). Our own test runs confirm their conclusion that the differences to the baseline approach are marginal.

- Iterative approach suggested by Crosbie and Bohn (2003) and Vassalou and Xing (2004) applies to strict Merton setup (in which default may not occur at any point in time):
\diamond Using either the historical or implied stock volatility as initial value for σ_{V} and applying the BS formula, one can infer a time series of asset values to calculate the historical asset volatility, which is used as input for the next iteration. The described procedure is repeated until the historical volatility estimates from consecutive iterations converge.
\diamond Iterative approach was shown to provide hardly any improvement over the direct approach (Bharath and Shumway (2008)).
\diamond Through our calibration over \bar{L}, we determine V and σ_{V} simultaneously to be consistent with market observations.
\triangleright Implied equity volatility is approximately an average of local volatilities (Derman, Iraj, and Zou (1995)):

$$
\sigma_{S}^{i m p} \approx \frac{1}{X-S} \int_{S}^{x} \sigma_{S} d S
$$

\triangleright Substituting the local relation $\sigma_{S}=\sigma\left(1+\frac{B}{S}\right)$

$$
\sigma_{S}^{i m p} \approx \sigma\left\{1+\frac{B}{X-S} \log \left(\frac{X}{S}\right)\right\}
$$

\triangleright At the money, i.e. for $S \rightarrow X$,

$$
\sigma_{s}^{i m p} \approx \sigma\left\{1+B \lim _{s \rightarrow X} \frac{\log \left(\frac{x}{s}\right)}{X-S}\right\}
$$

\triangleright Applying l'Hôpital's rule gives

$$
\sigma_{S}^{i m p} \approx \sigma \frac{S+B}{S} \approx \sigma_{S}
$$

\triangleright The standard deviation of the adjustment factor L, λ, is set to 0.3 (Finger et al. (2002)).
\triangleright The debt class specific recovery rate, R, is set to 0.5 (Yu (2006)).
\triangleright The debt per share, D, is calculated as $\frac{\text { total liabilities }}{\# \text { common shares outstanding }}$.
\triangleright The risk-free interest rate, r, is assumed to be the five-year constant maturity zero-coupon swap rate inferred from swap rates.
\triangleright The equity volatility, σ_{S}, is the one-year at-the-money implied volatility from put options.
\triangleright Apply the Act/360 day counting convention.

B. Appendix

Constant default barrier

\triangleright Determine \bar{L}_{i} by minimizing the sum of squared errors between model ($\overline{C D S}$) and market spreads (CDS) over a number of observations N in the period 01/2003-07/2007:

$$
\min _{\bar{L}_{i}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i}\right)-C D S_{i, n}\right)^{2}
$$

B. Appendix

\triangleright Determine \bar{L}_{i} by minimizing the sum of squared errors between model ($\overline{C D S}$) and market spreads (CDS) over a number of observations N in the period 01/2003-07/2007:

$$
\min _{\bar{L}_{i}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i}\right)-C D S_{i, n}\right)^{2}
$$

Ival	Whole Sample Period					Pre-Crisis Period		Crisis Period		Post-Crisis Period	
	\bar{N}	$\overline{\bar{L}}$	cRMSE	ME	RMSE	ME	RMSE			ME	RMSE
50	16	1.053	40.97	20.14	159.70	-9.17	46.92	68.38	246.92	30.48	141.67
10	76	1.070	39.80	20.60	158.14	-8.90	44.79	69.16	246.30	31.05	138.96
3	253	1.076	39.35	20.47	158.40	-8.84	44.71	68.85	246.89	30.54	138.76
1	757	1.077	38.93	19.94	158.77	-8.93	44.72	67.84	247.60	29.27	138.75

B. Appendix

\triangleright Determine \bar{L}_{i} by minimizing the sum of squared errors between model ($\overline{C D S}$) and market spreads (CDS) over a number of observations N in the period 01/2003-07/2007:

$$
\min _{\bar{L}_{i}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i}\right)-C D S_{i, n}\right)^{2}
$$

Ival	Whole Sample Period					Pre-Crisis Period		Crisis Period		Post-Crisis Period	
	\bar{N}	\bar{L}	cRMSE	ME	RMSE	ME	RMSE	ME	RMSE	ME	RMSE
50	16	1.053	40.97	20.14	159.70	-9.17	46.92	68.38	246.92	30.48	141.67
10	76	1.070	39.80	20.60	158.14	-8.90	44.79	69.16	246.30	31.05	138.96
3	253	1.076	39.35	20.47	158.40	-8.84	44.71	68.85	246.89	30.54	138.76
1	757	1.077	38.93	19.94	158.77	-8.93	44.72	67.84	247.60	29.27	138.75

\triangleright Results very robust to choice of grid density. Reducing the interval from 50 to 10 slightly improves the estimates, therefore, focus on an interval of 10 in the following.
\triangleright Determine \bar{L}_{i} by minimizing the sum of squared errors between model $(\widehat{C D S})$ and market spreads (CDS) over a number of observations N in the period 01/2003-07/2007:

$$
\min _{\bar{L}_{i}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i}\right)-C D S_{i, n}\right)^{2}
$$

Ival	Whole Sample Period					Pre-Crisis Period		Crisis Period ME RMSE		Post-Crisis Period ME RMSE	
	\bar{N}	\bar{L}	cRMSE	ME	RMSE	ME	RMSE				
50	16	1.053	40.97	20.14	159.70	-9.17	46.92	68.38	246.92	30.48	141.67
10	76	1.070	39.80	20.60	158.14	-8.90	44.79	69.16	246.30	31.05	138.96
3	253	1.076	39.35	20.47	158.40	-8.84	44.71	68.85	246.89	30.54	138.76
1	757	1.077	38.93	19.94	158.77	-8.93	44.72	67.84	247.60	29.27	138.75

\triangleright Results very robust to choice of grid density. Reducing the interval from 50 to 10 slightly improves the estimates, therefore, focus on an interval of 10 in the following.
\triangleright In the pre-crisis period the model underpredicts observed spreads due to nondefault components, like illiquidity, in line with the literature (Eom, Helwege, and Huang (2004), Longstaff (2004), Tang and Yan (2007)).

B. Appendix

Time-varying default barrier

\triangleright Determine $\bar{L}_{i, t}$ daily by minimizing the sum of squared errors between model $(\widehat{C D S})$ and market spreads (CDS) based on a trailing window (with $N=5$ and an interval between calibration points $=2$):

$$
\min _{\bar{L}_{i, t}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i, t}\right)-C D S_{i, n}\right)^{2}
$$

B. Appendix

Time-varying default barrier

\triangleright Determine $\bar{L}_{i, t}$ daily by minimizing the sum of squared errors between model $(\widehat{C D S})$ and market spreads (CDS) based on a trailing window (with $N=5$ and an interval between calibration points $=2$):

$$
\min _{\bar{L}_{i, t}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i, t}\right)-C D S_{i, n}\right)^{2}
$$

	Whole Sample Period					Pre-Crisis Period			Crisis Period			Post-Crisis Period		
	β	p-value	\bar{L}	ME	RMSE	\bar{L}	ME	RMSE	\bar{L}	ME	RMSE	$\overline{\bar{L}}$	ME	RMSE
All	$-7.95 \mathrm{E}+07$	0.97	1.133	-4.10	48.84	1.284	-0.87	11.35	0.935	-9.11	74.07	1.081	-3.36	37.48
Fin	-0.0004991	0.01	0.549	-1.92	76.67	0.616	-1.75	7.46	0.455	2.80	111.89	0.524	-14.02	129.38
Nonfin	$-1.57 \mathrm{E}+08$	0.95	1.232	-4.47	43.98	1.402	-0.71	12.03	1.013	-11.05	67.47	1.168	-1.68	22.08

\triangleright The default boundary generally lowers during the crisis and slopes upwards in economic recovery without necessarily closing up to pre-crisis levels.

B. Appendix

Time-varying default barrier

\triangleright Determine $\bar{L}_{i, t}$ daily by minimizing the sum of squared errors between model $(\widehat{C D S})$ and market spreads (CDS) based on a trailing window (with $N=5$ and an interval between calibration points $=2$):

$$
\min _{\bar{L}_{i, t}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i, t}\right)-C D S_{i, n}\right)^{2}
$$

	Whole Sample Period					Pre-Crisis Period			Crisis Period			Post-Crisis Period		
	β	p-value	$\overline{\bar{L}}$	ME	RMSE	\bar{L}	ME	RMSE	$\overline{\bar{L}}$	ME	RMSE	$\bar{\tau}$	ME	RMSE
All	-7.95E+07	0.97	1.133	-4.10	48.84	1.284	-0.87	11.35	0.935	-9.11	74.07	1.081	-3.36	37.48
Fin	-0.0004991	0.01	0.549	-1.92	76.67	0.616	-1.75	7.46	0.455	2.80	111.89	0.524	-14.02	129.38
Nonfin	$-1.57 E+08$	0.95	1.232	-4.47	43.98	1.402	-0.71	12.03	1.013	-11.05	67.47	1.168	-1.68	22.08

\triangleright The default boundary generally lowers during the crisis and slopes upwards in economic recovery without necessarily closing up to pre-crisis levels.
\triangleright The average percentage decrease of \bar{L} is about 25% over all sectors.

B. Appendix

\triangleright Determine $\bar{L}_{i, t}$ daily by minimizing the sum of squared errors between model ($\widehat{C D S}$) and market spreads (CDS) based on a trailing window (with $N=5$ and an interval between calibration points $=2$):

$$
\min _{L_{i, t}} \sum_{n=1}^{N}\left(\widehat{C D S}_{i, n}\left(\bar{L}_{i, t}\right)-C D S_{i, n}\right)^{2}
$$

	Whole Sample Period					Pre-Crisis Period			Crisis Period			Post-Crisis Period		
	β	p-value	$\overline{\bar{L}}$	ME	RMSE	\bar{L}	ME	RMSE	$\overline{\bar{L}}$	ME	RMSE	$\bar{\tau}$	ME	RMSE
All	-7.95E+07	0.97	1.133	-4.10	48.84	1.284	-0.87	11.35	0.935	-9.11	74.07	1.081	-3.36	37.48
Fin	-0.0004991	0.01	0.549	-1.92	76.67	0.616	-1.75	7.46	0.455	2.80	111.89	0.524	-14.02	129.38
Nonfin	$-1.57 \mathrm{E}+08$	0.95	1.232	-4.47	43.98	1.402	-0.71	12.03	1.013	-11.05	67.47	1.168	-1.68	22.08

\triangleright The default boundary generally lowers during the crisis and slopes upwards in economic recovery without necessarily closing up to pre-crisis levels.
\triangleright The average percentage decrease of \bar{L} is about 25% over all sectors.
\triangleright However, a trend regression of daily percentage changes of \bar{L} against time points t reveals a significant negative trend only in the case of financials, not for the other companies.

B. Appendix

Time-varying default barrier

B. Appendix

Default barrier with a regime shift

\triangleright The level of \bar{L} can change exactly once from \bar{L}_{1} to \bar{L}_{2} at split date t_{2}. The estimation window ranges from 01/2004-12/2009 with a grid interval of 10. The minimization problem under these assumptions becomes:

$$
\left.\left.\bar{L}_{i, 1} \bar{m}_{i, 2}, t_{i, 2} \sum_{n=1}^{N} \widehat{(C D S}_{i, n}\left(\bar{L}_{i, 1}\right)-C D S_{i, n}\right)^{2} I_{\left\{\tau_{i, n}<t_{i, 2}\right\}}+\widehat{(C D S}_{i, n}\left(\bar{L}_{i, 2}\right)-C D S_{i, n}\right)^{2} I_{\left\{\tau_{i, n} \geq t_{i, 2}\right\}}
$$

	Whole Sample Period					Pre-Crisis Period ME RMSE		Crisis Period ME RMSE		Post-Crisis Period ME RMSE	
	$\overline{\bar{L}}_{1}$	$\overline{\bar{L}}_{2}$	Median t_{2}	ME	RMSE						
All	1.056	0.920	09/30/2008	-14.84	91.96	-6.68	53.74	-10.01	110.24	-60.63	125.71
Fin	0.465	0.246	11/04/2008	-26.16	124.73	-16.86	39.84	-21.41	171.21	-81.82	258.29
Nonfin	1.159	1.038	09/30/2008	-12.90	86.24	-4.84	56.17	-8.14	99.60	-57.30	103.43

B. Appendix

Default barrier with a regime shift

\triangleright The level of \bar{L} can change exactly once from \bar{L}_{1} to \bar{L}_{2} at split date t_{2}. The estimation window ranges from 01/2004-12/2009 with a grid interval of 10. The minimization problem under these assumptions becomes:

$$
\left.\left.\bar{L}_{i, 1} \underline{L}_{i, 2}, t_{i, 2} \sum_{n=1}^{N} \widehat{(C D S}_{i, n}\left(\bar{L}_{i, 1}\right)-C D S_{i, n}\right)^{2} I_{\left\{\tau_{i, n}<t_{i, 2}\right\}}+\widehat{(C D S}_{i, n}\left(\bar{L}_{i, 2}\right)-C D S_{i, n}\right)^{2} I_{\left\{\tau_{i, n} \geq t_{i, 2}\right\}}
$$

	Whole Sample Period					Pre-Crisis Period ME RMSE		Crisis Period ME RMSE		Post-Crisis Period			
	$\overline{\bar{L}}_{1}$	$\overline{\bar{L}}_{2}$	Median t_{2}	ME	RMSE			ME	RMSE				
All	1.056	0.920	09/30/2008	-14.84	91.96	-6.68	53.74			-10.01	110.24	-60.63	125.71
Fin	0.465	0.246	11/04/2008	-26.16	124.73	-16.86	39.84	-21.41	171.21	-81.82	258.29		
Nonfin	1.159	1.038	09/30/2008	-12.90	86.24	-4.84	56.17	-8.14	99.60	-57.30	103.43		

\triangleright The median split date falls well within the tumultuous period following the bankruptcy of Lehman Brothers on 09/15/2008.
\triangleright The level of \bar{L} can change exactly once from \bar{L}_{1} to \bar{L}_{2} at split date t_{2}. The estimation window ranges from 01/2004-12/2009 with a grid interval of 10. The minimization problem under these assumptions becomes:

$$
\left.\left.\overline{m i n}_{i, 1}, \bar{L}_{i, 2}, t_{i, 2} \sum_{n=1}^{N} \widehat{(C D S}_{i, n}\left(\bar{L}_{i, 1}\right)-\operatorname{CDS}_{i, n}\right)^{2} I_{\left\{\tau_{i, n}<t_{i, 2}\right\}}+\widehat{(C D S}_{i, n}\left(\bar{L}_{i, 2}\right)-C D S_{i, n}\right)^{2} I_{\left\{\tau_{i, n} \geq t_{i, 2}\right\}}
$$

\triangleright The median split date falls well within the tumultuous period following the bankruptcy of Lehman Brothers on 09/15/2008.
\triangleright The post-crisis period is poorly fitted with negative mean errors, suggesting a second upward regime shift around mid 2009.

B. Appendix

Default barrier with a regime shift

B. Appendix

Term structure of deviations

B. Appendix

Term structure of deviations

\triangleright The anticipation of bailouts matters most to short-term investors.

