Macro Theory III. Spring (1), 2000. Edward C. Prescott.

Lecture 6: Calibrating the Hansen Economy

Preferences:

People either work h = 0.5 or not at all. Labor is indivisible. Their period utility function is

 $\log c + \alpha \log(1-h).$

The measure that work is *n* and the total measure of people is 1. The period utility function for this group is $\log c + \alpha \log(0.5) n$. Assume the household owns the capital and rents it to the firm. The date *t* commodities are (c,x,k,n). The initial capital stock owned by each individual is $k_0 > 0$. The utility function of the stand-in household is

$$E\sum_{t=0}^{\infty} \frac{1}{(1+\rho)^{t}} [\log c_{t} + \alpha n_{t} \log(0.5)]$$

Constraints are $n_t \in [0,1]$ and $c_t \ge 0$ for all *t*.

Technology: $c + x \le k^{\theta} n^{1-\theta}$ $k' = (1-\delta)k + x$

$$\kappa = (1 - O)\kappa +$$

Steady State Observations:

c/y = .75; k/y = 15; (w n) / y = .70; n = .80

This is a quarterly model. This is important in interpreting discount rate ρ and depreciation rate δ . It is important for interpreting the capital-output ratio as well.

A Set of Necessary Conditions for Steady State:

(1)
$$\delta k = x$$

(2)
$$r = i + \delta$$

(3)
$$r = \theta k^{\theta - 1} n^{1 - \theta}$$

(4)
$$w = (1 - \theta) k^{\theta} n^{-\theta}$$

(5)
$$c+x=k^{\theta}n^{1-\theta}$$

$$(6) \qquad i = \rho$$

(7)
$$\frac{1/c}{\alpha \log(1/2)} = \frac{1}{-w}$$

An **algorithm** to solve these equations for the three prices (i,r,w) and four quantities (c,k,n,x) is as follows:

Step 1: Solve (6) for *i*.

Step 2: Solve (2) for *r*.

Step 3: Solve (3) for k/n.

Step 4: Solve (4) for *w*.

Step 5: Solve (7) for *c*.

Step 6: Use (1) to eliminate x in (5) and solve the resulting equation for k.

Step 7: Solve (1) for *x*.

Step 8: Given k/n and k, compute n.

Note: In an algorithm, only numbers that have already been computed in an early step can be used in the given step.

Calibration to Steady-State Observations:

A good principle is to list the observations to which the measurement instrument, that is the artificial economy, is being calibrated. Here there are four parameters, (α , ρ , θ , δ) and four observations.

$\delta k/y = x/y = 1 - c/y$	\Rightarrow	$\delta = .0167$
$(\rho + \delta) k / y = .30$	\Rightarrow	$\rho = .0200$
n w/y = .70	\Rightarrow	$\theta = .300$
$\alpha = -\frac{1}{\log(1/2)} \frac{w/y}{c/y}$	\Rightarrow	$\alpha = -\frac{7/8}{\log(1/2).75} = 2.33$

The measurement instrument (the model economy) has been calibrated to a set of growth facts. I emphasize that the model has *not* been estimated. Estimating or measuring how big a model is makes no sense.

The Theory of the Aggregate Production Function

See Prescott, "Business Cycle Theory: Methods and Problems," pp. 8-11. See Chapter 1 in Cooley (ed.), *Frontiers of Business Cycle Research*.