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Lecture 11

Solving for Pareto Optima in the Kehoe-Levine Debt-Constraint Economy

See Lecture 7 for a specification of the economy. Let {¢;} be a set of positive weights

that sum to one. The ¢-social planner problem is

max 3. ¢; OZO Wit ui[xf(zt)]

i t=0,t

subject to the resource constraints, the continuing participation constraints, and non-negativity

constraints.
Assumption: The process {z;} is a finite state Markov Chain with strictly positive transition

probabilities g(z, z).

This is not a discounted dynamic programming problem, but discounted dynamic
programming methods can be used to find the solution. The analysis first requires finding the set
of feasible utilities W(z) c R" for each z. Note that the set of feasible utilities depends upon the

current value of the exogenous state variable.

The resource constraints are

() XA (x; — €(2)) £0;

The promise keeping constraints are

@ W =1, () + B g (2,2 W)

The continuing participation constraints are

3) w; 2v;(2),

where v;(z) is the expected discounted utility if an individual chooses not to participate and

consume his(her) endowment in the current and future periods.
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The feasible utility constraints are
(4) w()e W () c R V7.
Finding W(z) Sets.

The W(z) sets must be known before discounted dynamic programming methods can be

used to find the solution.
A mapping T from sets W = {W(2")} into itself is first defined as follows:
T,(W)={we R | st.3 {x;}and {w(Z')} that satisfy (1) — (4) given w}

The mapping 7 is monotonic. It maps bigger sets into bigger sets. Further the economics of the
problem can be used to find a closed, bounded and convex set that contains all the feasible utility

vectors as well as some infeasible vector. This set is denoted W, .
Proposition 1: 7' maps convex compact sets into convex compact sets.

Proposition 2: If W oW’ ,then TW) 2 T(W").

Proposition 3: The sets of feasible utility vectors (there is one set for each z) is lim 7" (W) .

An appropriate W, is the one defined by the following set of inequalities:
vi(2) < w; <vi(2) Vi,

where v;(z) is type i expected utility if type i consumes the entire endowment.
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Dynamic Program

The state variables are the vector we W (z) and z. The decision variables are the state-
contingent utility continuations w'(z’) = {w;(z")} for all z" and the consumptions {x;}. The period

return function is

Rx) =3¢ u' (x;).

The functional equation is

vw2)=  max, { R+ BTz, Mw().21}
xAw(z")} z

subject to constraints (1) — (4). Observe that the objective is bounded, continuous, and concave.

Observe that the constraint set is convex in (w, x, { w(z")}). This is a well-behaved concave,

discounted, dynamic program.
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