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Macro Theory III.
Spring (1), 2000.
Edward C. Prescott.

Lecture 13

Hopenhayn’s Technology Draw Model

Technology: A technology at a point in time is indexed by +ℜ⊂∈ Ss , and the measure of

technologies is x(ds). Technology 0∈S. Technology s, if operated using n units of labor services,

produces output

)(nfs .

For simplicity, ],[ maxmin nnNn =∈ , where nmin > 0.  The function f is increasing and continuous.

Further f is convex in the region ],[ min nn  and concave in the region ],[ maxnn . Technologies are

“small” relative to the size of the economy. If a technology is not operated, the technology is

lost.

The processes on the s are identical with transition function Q(s,ds′).  Further, the law of

large numbers holds.  For purposes of this presentation, the process is a finite state Markov chain

with transition probabilities, q(s,s′). Thus, q(s,s′) = Q(s,{s′}). These probabilities are such that

qn(s,0) > 0 for some ns. Further, q(0,0) = 1, so state s = 0 is absorbing. [The qn(st,st+n) are the n

stage transition probabilities.] The reason for this assumption is to guarantee the ultimate death

of a firm in equilibrium.

Composite output is used for consumption, c, and technology draws, d. The resource cost

of a technology draw is 0>ϕ .

Let zs(A) denote the measure of operated technologies of type s using n∈ A∈B(N) units of

labor.  Note that I have not restricted all plants using a technology of type s to have the same

input, n. The aggregate resource constraint is

��≤+
s

s dnznfsdc )()(ϕ .
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The number of technologies of type s operated must be less than or equal to the number of type s

technologies. Thus, for all s ∈ S

� ≤= )()()( sxdnzNz ss

where x(s) is the number of type s technologies.

Technology draw technology: As previously stated, the resource cost of a technology draw is

ϕ . If a draw is made, the probability that the resulting technology is of type s′ for use next

period is π(s′). It is assumed that π(0) > 0. Thus, the law of motion for x is

+= )'()'(' sdsx π � �
s

sdzssq )',( .

Preferences: There is measure one of identical individuals with preferences over infinite

consumption streams ordered by

�
∞

=0
)(

t
t

t cuβ .

The function u is strictly increasing, strictly concave and continuous. All people own an equal

share of every technology and one unit of every date labor.

State variable: The state variable is the vector x.

Problem: Add physical capital accumulation to this structure. Note k must be part of the state

variable.

Finding and characterizing the steady-state:

The steady-state wage is denoted by w. The steady-state interest factor is equal to β. This

comes from the preference side. The problem is to find the steady-state (c, d, {x(s)}, {zs}) and

plant employments, {n(s)}.

Given the steady-state prices, the dynamic program facing the operator of a technology is

�+−=
'

)}}',()|'()({max,0max{)|(
sn

ssqwsvnwnfswsv β .
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Here, v is the present value of dividends. Given the assumptions, this is a well-behaved dynamic

program. The optimal employment function, conditional on a s-technology being operated, is

denoted )|( wsn . This notation emphasizes that these functions depend upon the wage, w.

The first step is to find steady-state w.  An equilibrium condition is that the present value

of the dividend stream generated by a technology draw must be ϕ . Thus,

�=
'

)|'()'(
s

wsvsπβϕ .

(Note that this implies that the left-hand argument of the max operator above is 0.)

Exercise: Verify that v is positive, decreasing, and continuous in w with v(s′| ∞) = 0. This

guarantees that a unique steady-state wage w exists.

Exercise: An assumption is needed to insure that the steady-state w is strictly positive.  Specify

an assumption that insures this is the case.

For some s, the value of the technology may be the same whether or not exit occurs. If so,

there is a multiplicity of steady states. To be concrete, I assume that firms exit if the value of

staying is equal to 0. Let So be the set of plant types that are operated.

Let p(s,s′) = q(s,s′) for s ∈ S0 and p(s,s′) = π(s′) for oSs ∉ . Let y(s) denote the steady-

state technology fractions that are of type s.  They must satisfy for s′∈ S

�=
s

sysspsy )()',()'(' .   (1)

These equations define an operator T* taking the space of probability vectors into itself. The

space of probability vectors is convex and compact, and the mapping T* is continuous.

Therefore, by Brower’s fixed-point theorem, equation (1) has a solution.

Definition: An ergodic set (for a Markov chain) is a set of states with the property that the

probability of exiting the set is zero and the probability of going from any state to any other state

in the set in some finite number of periods is positive.
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Definition: A point is in the support if any open set containing the point has positive probability.

If the space is discrete, as it is for this problem, the support is the smallest set that has probability

one.

Exercise: Show that T* maps the set of probability measures with support in a given ergodic set

into itself. Show that T* has at least one fixed point given any ergodic set as support.

Lemma: The process with transition probabilities P has a unique invariant distribution.

Proof outline: There is a single ergodic set, namely those states that can be reached from state 0.

There are no cyclically moving subsets given π(0) > 0. By Lemma 11.3 in Stokey and Lucas

(page 332), the operator T* is a contraction operator (the metric is defined by the �1-norm). The

set of probability measures with this metric is complete given that S is finite.

The steady-state employment for operated plants is n(s) = n(s|w), where w is the steady

state w. Let y be the unique invariant distribution of the P process. Define ε as the steady state

fraction of technologies, which are not operated, i.e.

�
∉

≡
oSs

sy )(ε .

Each period, measure d of new technologies are drawn, (1-ε) of which survive to the next period.

Thus, in the steady state there is measure d + (1-ε)d + (1-ε)2d + (1-ε)3d +…= d/ε of

technologies. (Note that if ε technologies were drawn in the steady state (i.e. if d=ε) then the

measure of technologies would be one.)

Market clearing in the labor market then requires

1)()( =� ∈ oSs
snsyd

ε
.

This equation determines steady-state d.

The steady-state state, x(s), are (d/ε) y(s) for s ∈ S. Finally, the steady-state zs are defined by zs(A)

= x(s) if both oSs ∈ and n(s) ∈ A, and zs(A) = 0 otherwise for all Borel measurable sets A.
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Equilibrium Path

Let x0 be the initial value of the state.  The problem is to find the equilibrium sequence of

prices, state, and quantities:

∞
=∈+ 01 })}({,,,,,{ tSstttttt sndcxrw .

Price wt is the date t real wage and rt is the real interest factor.

The dynamic program facing the operator of a firm is

� ′′+−= +
'

1 })}(),()({max,0max{)(
s

tttt svssqrnwnsfsv .

An approximate equilibrium:

The approach requires that 3T equations in 3T variables be solved. The variables are

.},,{ 1
0

−
=

T
tttt drw  At dates t = 0,1, …, T-1, the labor market clears; the inter-temporal marginal rate

of substitution between ct and ct+1 equals the interest factor rt; and the expected present value of

a technology draw is ϕ  if dt  > 0 and less than or equal to ϕ otherwise.

The steps in finding these equations are as follows:

1. Solve the dynamic program given the prices 1
0},{ −

== T
ttt rwp . You need vT(s) to start the

backward induction. Set vT(s)=v*(s), where v*(s) denotes the steady state value function; and

pick T large enough. You know that you've picked T large enough if increasing it further

doesn't change the result.

2. The value of a draw in period t is � ′′= +
'

1 )()(
s

ttt svsrV π . The first set of equations is

( ){ } 0,,max =−−− ϕϕ tttt VVdd for t = 0, …, T-1. This says: dt cannot be negative; if

ϕ<tV , then dt = 0; and finally that ϕ>tV  is not possible.
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3. The employment functions are 1
0)}|({)( −

== T
tt psnpn . The exit sets are 1

0)}({)( −
== T

tt pEpE .

Compute the sequence T
tt pdxpdx 1)},({),( ==  given x0, and 1

0}{ −
== T

ttdd . Given the exit set

and x0, find x(d,p).

4. Compute the labor demand functions for each date using x(d,p), E(p) and n(p). These

equations are �
∉

=
tEs

tt pdsxpsn 1),|()|(  for t = 0, …, T-1. This is the second set of T

equations.

5. Compute ϕ�
∉

−=
tEs

tttt dpdsxpsnfspdc ),|()|((),( . The final set of equations is

t
t

t r
pdcu

pdcu =+
)],(['

)],([' 1β  for t = 0,1, …, T.

6. After solving this system of equations using numerical methods, check whether xT is near the

steady-state x*.
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