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ABSTRACT

This paper presents a model of growth through technical progress. The
nature and scope of what is learned is derived from a set of axioms, and
optimal search behavior by agents is then analyzed. Agents can search
intensively or extensively. Intensive search explores a technology in greater
depth, while extensive search yields new technologies., Agents alternate
between these two modes of search. The economy grows forever and the growth
rate is bounded away from zero. The growth rate is on average higher during
periods of intensive search than during periods of extensive search. Epochs
of higher growth are initiated by discoveries that call for further intensive
expleration. This mechanism is reminiscent of the process described by
Schumpeter as causing long-wave business cycles. Serial correlation properties
of output and growth stem from the presence of intensive rather than extensive
search, The two key parameters are technological opportunity, o, and the cost

of extensive search, c.
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1. Introduction

This paper presents a model of growth through technical progress. The
nature and scope of what is learned is derived from a set of axioms, and
optimal search behavior by agents is then analyzed. Agents can search
intensively or extensively. Intensive search explores a technology in greater
depth, while extensive search yields new technologies., Agents alternate
between these two modes of search. The economy grows forever and the growth
rate 1s bounded away from zero. The growth rate is on average higher during
periods of intensive search than during periods of extensive search. Serial
correlation properties of output and growth stem from the presence of
intensive rather than extensive search. The two key parameters are
technological opportunity, o, and the cost of extensive search, c.

Models in which growth does not eventually peter out have of late been
of increased interest among economists, Recent examples are Lucas (1985),
Roper (1987), and Prescott and Boyd (1987)., The need for a more systematic
look into the process of the growth of knowledge has motivated recent work by
Nelson (1982), Telser (1982), Jovanovic and Reob (1987), as well as the work on
learning when agents hold minimal prior beliefs about the structure, e.g.
Frydman (1982), Marcet and Sargent (1986), and others.

The present paper tackles the same issues as the literature cited
above, but it takes a different line of attack on the technological learning
process that agents undergo. It is assumed that agents have a priori perfect
knowledge of all avallable techniques that they might try out, but ne
knowledge of the level of output generated by them. Thelr past experience
with some of these techniques enables them to make productivity inferences,

and then make a& decision as to which techniques would be sultable for future
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experimentation. The state of knowledge 1s thereby constantly incremented.

At the heart of our formulation is a set of probabilistic axioms regarding the
"true" productivity of techniques, axioms that seem appropriate in
nonparametric situations. What the agents see is not in violation of these
axioms, and their behavior is optimal. Through their efforts to search for
new technologles, long-run growth results,

The environment turns out to be a natural one for Investigating the
significance of a distinction long emphasized in the development literature
(e.g., Rosenberg (1972)), the distinction between intensive and extensive
search, as well as the distinction between applied and basic research.
Intensive search (i.e., appllied research) is the exploration in greater dépth
of a given technology, while extensive search (basic research) is the process
by which new technologies are discovered. 1In our framework this distinction
turns out to have emplrical content: periods of intensive search result when a
technology is discovered which it is optimal te explore further. The option
to concentrate on extensive search is then passed over in favor of Intensive
search, because the latter yilelds higher growth. Thus the economy grows
faster during such periods. This is roughly the intuition behind the result.

The point can be made in another way. 1In our structure, the expected
returns to intensive search or applied research fluctuate over time, while the
expected returns to extensive search or basic research are constant. One
might justify this as follows: extensive search 1s the exploration of the
unknown, and what is not known cannot be perceived to fluctuate. On the other
hand, intensive search builds on tﬁe {random) outcome of extensive search, and
conditional on the available information, its returns can be expected to vary

over time. For instance, the discovery of nuclear power was the outcome of



basic research, or what we call extensive search. Once discovered, the rate

of return to further development (i.e., intensive search) was ralsed above
that to further basic research, and resources shifted to such more applied
research. Thus our model predicts that periods in which agents concentrate on
development résearch are high-return, high-growth periods, because agents are
capitaliziﬁg on successes stemming from pasé efforts in basic research., When
there are no such opportunities to be cafitalized on, agents will focus on
basic research, and the growth rate will be slower. This is intended as a
model of an economy, or a firm, over time.

The implication that periods of intensive search or periods of heﬁvier
reliance on applied research are higher-growth periods can be tested using
time-series data for countries or For firms. At the firm level, Scherer
(1984, chapters 1 and 2) provides some anecdotal evidence in favor of this
implication, but Grilliches (1986) and Mansfield (1980) provide evidence
against it. There is some question however, whether their measure of "basic
R&D". also includes measures of what we have here termed "intensive search”,
and their results stem essentially from the cross-section variation over firms
in basic R&D and growth-rates, and not from phe time series fluctuations of
these variables.

Major innovations such as the steam engine, railyoads, electric power
and nuclear power have been argued to be the cause of long waves in abnormally
high economic activity, or long-wave business cycles (Schumpeter, 1939;
Kuznefs, 1940). The model captures this, and following the development of the
model and its implications in section 2, we focus, in section 3, on some time-
series properties of output, with special references to the long-wave

hypothesis. Then, we derive results on the duration of epochs of intensive



search (an upper bound on their length is given), on the time-series
properties of the growth rate, and on the matrix of transition probabilities
between the state of extensive search and the state of intensive search.
Search decisions turn out to depend only on the ratio a/c; the first
parametey measures technological opportunitj and has a positive effect on the
returns to both types of search, while the second is & measure of the
costliness of extensive search relative to intensive search.

The fourth and concluding section briefly discusses the relation of
this model to the multi-arm bandit wodel in particular, and to Bayesian

analysis in general.

-2. The mode

There is a countable Infinity of technolopy-types, and a continuum of
each type. Let X, € [{0,1] be the level of use of technology of type 1.
There is a single output =z(x) assoclated with each technology-vector = €
[0,1}°.

The funection =z 1s not known. At each date, t, there is a body of

empirical knowledge, H* (history):

H* = lxi,zl,xz,zz,...,xt,zt}, where z% = z(xt).
. & o
Let & = (x€& [0,1]%x = (x;,...,x,0,....)}, & -sEl.An, X, € 4,.

1

Search means choosing a vector xb’, and evaluating =z at that

vector, There are two types of search; intensive and extensive.
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Intensive Search: Let n_ = N(H") be the smallest integer for which

{x!

,...xt) C A“ . Choose a vector X & Ht, a coordinate 1 x k = n, and a
t

value x/ € [0,1). Interpretation: We are experimenting with a different

level of use of the kth technology (which has been sampled before), to

determine what impact it has on output, holding other components of x’

constant. Then we observe z(x'!x;) =z This experiment is costless.

Extensive Search

Pick a value X ., € [0,1], and a vector x' € H®, Observe

t+1

) L+l

z(x'lx m 7z ", Unlike Intensive search, this is search in a new (i.e.,

ng+1

(r%+1)th) dimension. This type of search costs th, where 0 < c¢c <1 and

Zt = Hax[zl....zt}. As we shall see, this amounts to assuming that each
extensive search lead to a fraction ¢ of current output being foregone.

Beliefs. The following axioms are imposed on the agents' beliefs.

They will lead to a prior measure over the outputs of all technologies,

Al. Continuity. =z {is continuous in each variable separately. That is, each
type of technology is given a locationalrcontext. As a consequence, optimal
sampling within each dimeunsion will be systematic, not random, as we shall
see.

A?. Zero drift. For each ‘x € A, each k, and each %, such that L
E{z(xlx;)lz(x) =2z} = z. This axiom expresses complete ignorance about
whether a new techmology, or the further development of an existing technol&gy
(in the direction of a larger xk), will raise output or reduce it.

A3, Constant proportional uncertalnty. Var{z(xlx{)[z(x) - Z)] - az(x]:-xk)z2

for x/ > x,. This makes the standard deviation of the output resulting from



the trial (in dimension k) proportional to =z, and to (x{-xk)”%. The
proportionality to z implies that as 2z grows, more will be at stake at
each new search. This captures the well-known argument that returns to
information are proportional to the operating scale at which the information

is used [Wilson 1975). The propertionality of the variance to (x/-x% ) means

that in each dimension, sampling far away from the previously-known technology

X, leads to greater variance. The fact that this variance is linear in x/-

%, 1Is just a matter of choosing units of x appropriately.

A4. Independent increments. Let x! < x < x'. Then z(x|x/) - z(x) and
z(x'x:) - z(x}) are Independent. This axliom expresses maximum ignorance. An
increase, say, in output as one moves from x; to X contains no

information on what will happen to output if we should experiment with X

Remark. We assume throughout that ¢ 1is known. 1If it were unknown, precise
inference about it would be made falrly quickly (say within 50 periods), so

that our model captures whatever takes place following these initial periods.

Lemms 1 (Billingsley (1968), p. 154): (A.Ll)-(A.4) imply that for each k,
(2(x)-2(x|0,)1/2(x{0,) 1is Browmian Motion with incremental variance o, the

percentage increase in output follows Brownian Motion in each technological

dimension.

Corollary: The expliclt representation of 2z(-} 1is
o

(1) z(x) = kI_Il[l+aWk(1%)], X €A

N



where (W;(-)):_l i1s a sequence of Brownian motions with Wk(O) - 0, all k.

Proof: From the Lemma, we have z(x) = z(xlOK){1+aW¥(xk)] for all k =
1,2,... and for all x. But =z(x|0) = z(x[ok,oj)[l-mwk(&)][1+owj(x3)} for
some j = k. Since x € A, we can, through a finite number of substitutions

for z, reach eq. (1) as the unique representation, Q.E.D.

Remark: Eq. (1) says noting about possible forms of dependence amongst the
W, (e.g., symmetric, or geometrically declining in k, ete.). Such
dependence allows for a sort of transfer of knowledge across technologies.

While we shall comment later on the likely consequences of such dependence,

our formal analysis will assume that the W, are mutually independent.

Cholices avallable to agents.

There are overlapping generations that pass on information to each
other, The transfer is free. Each generation can make just one search, and
can then consume from the optimal technology hithertc sampled. Thus

consumption and search investment are not bundled together. This is in

contrast to the multi-armed bandit formulations in which it is assumed that
the agent is forced to consume the payoff of the arm that he pulls. If =z!

is the output of the new technology that is sampled at t+l, then gross
consumption {excluding the cost of search) is max(z’,z;). Members of each
generation are risk-neutral, and each generation consists of exactly one
member. The only decision is whether to sample extensively or intensively,
and, given the chosen mode of search, exactly which technology to sample., The

payoff to each type of search will now be described in turn.
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Optimal extensive search. If extensive search is the chosen option, then

Theorem 1. x .. =~ 1, and the expected payoff to extensive search is
t
(2> Z,(1 + o/fIx - <)

Proof: When searching extensively, z' = Zt(l + oW (x Y - ¢). Since

n 1 0 +1

(x

_ and is independent of prior history, we find
t

» = N(0,x, L)

A+l
(&) E{Zt(l + max(O,aWntﬂ)-clxntﬂ} - Zt[l + axiiflfﬁ; - cl,

and the assertion follows. Q.E.D.

Since intensive search is costless, and its expected payoff is hence

at least Z , a necessary condition for extensive search to ever be chosen is
(B.1) offIn = c.
this assumption is maintained from this point on,

Optimal intensive search. A history, H®, induces a partition on each of the

first n_ coordinates. Sufficilent statistics for the beliefs concerning the
outcome of sampling within each interval of that partition are the values of

z at its endpoints. This follows from (A.4).

< —



Three stages are involved in Intensive search. Stage 1: the agent
selects a coordinate k, 1 s k = n; Stage 2: he selects an interval
belonging to the history-induced partition of k; Stage 3: he chooses a value

xi within that interval.

Notationally, the setup is as follows. Let wu - max.Wj(x Y. We
- xeB®
assume that x =0 1s, for any k, an option that is always available to
the agent. Hence, w; > 0. Prior to search at t, the agent can guarantee

himself consumption

(4) 7 = 1 (1+aw }.
a=1

Following an intensive search in dimension k at technology x; he gets
[] - o ’ *
(5) max{z’',Z) jh(l+a\5)[l + amax(uk(xk),wk)],

(since =z’ -_Sk(l + aw;)[l + oU}(x{)]). Thus, letting x(H") be the expected

payoff to Intensive search at t+l, we have

(6) n(H*) = max(maxE[max(z' Z)]) = max II(1+aw)[l + omax E{max[W OQ),W‘])].
1SkSnt Xk l_kSnb Sk k

Since Z  is given at the start of the period, each generation will, in its

decision about type of search, compare the expression in (2) (where Zn is
now given by (4)) with the expression in (6), and will choose extensive search

if and only 1if



(6°) (L+aw ) (l+e/f2x - ¢) > 1l +o maxE{max{w,,¥ (x)])), 1 =k=n_.
i
(We have eliminated the multiplicative factor E (1+aw;) which is common to
%k

(2) and (6).) We next investigate the RHS of (6)’ and the optimal x;.

Stage 3: When learning along the kth dimension, we are learning about Wi(-),
because of the multiplicative separability in eq. (1). Let [a,8) C [0,1] be
a subinterval in the kth dimension, with W (a) = W* and W (8) = ¥. That is,
W* and W are values associated with previously-experimented with
technologies x, =a and x = f. (Note that intensive sampling can never be
in an interval with an unobserved endpoint, because W (0) = 0 by Lemma 1,
while extensive search of k must precede intensive search of k, and it
yields an observation of W&(l), by theorem 1).

Conditional on intensive sampling within [a,8], the optimal choice of
X, induces a Wk whogse distribution conditional on (W*,a) and (Wﬁ,ﬁ) is
normal [see Billingsley (1968), p. 65 for details on the Brownian bridge]

with mean

(7 m = W{B-x)/(B-a) + W(x -a)/(B-a)
and with variance
(8) s = (8% (X -a).

In the sequel we shall need the following result:

-10-
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lemma 2 If ¢ ~ N(m,sz) and ¢ is a constant, then
u(m,s,¢) = E max{e,¢) = m + (?-m)F((?~m)/s) + (s/Jf;)exp[—(?-m)%/Zsz},
where F is the standard normal GDF.

Given the dimension k and an interval [a,8), it is evident that the
maximization of (6) is equivalent to maximizing u(m,s,w;) subjeet to the
constraints (7),(8). Let v(a,ﬂ,wa,wp,w:) be the maximized value of that
program, i.e., the incremental percentage value of intensive search.

Intensive search in {e,8} will take place if and only if
(10) 1+ ovie,f,W W w) > (l+ow)(l+o//Zr - ),

because by the discussion preceding (6)'the RHS is the incremental value of
extensive search. Note that Inequality (10) is time invariant, so that once a
new dimension is explored, none of the previous dimensions will ever be
further explored.

We now turn to characterizing those technologles which, upon their

discovery, are developed further. These belong to the set

D= {we R|v(0,1,0,w,max(0,w)) > (1+0/J§; -¢ymax{(0,w) + l/Jf; - c/o},

where w = W _ (1). Note that the agent can always guarantee himself at least
t

max(0,w) from technology n{+1.

-11-
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Theorem 2: (i) D 1s non-empty if and onlylif ¢ > a/2/2n.
(i1) In that case, D ~ [w,w] where w< 0 <w, and w and w are

the two solutions for « to the equation
(11) ' v{0,1,0,w,max(0,w)] =~ (i+o//2x -c)max(0,0) + 1//%r - c/o.

Proof: The "if" part of (i) is shown by demonstrating that (0,1,0,0,0) >
1//2x - ¢/o. But because the optimal x/ is then 1/2, and eq. (8) yields

s? - 1/4, lemma 2 yields +v(0,1,0,0,0) = a/2J§;, and the assertion follows, The
“only if" part of (i) is demonstrated by looking at the derivatives of the 2.

sides of (11). By applying the envelope theorem to v, we find that
(12) avfow = (1-Fyx_+ I(w)F

{where I{w) =1 1if o 2 0, and zero otherwise), Also,

(13 3max(0,w)/3w - TI{w).

Figure 1 makes it clear that if v is not above the RHS of (11) at w = 0, it
can not exceed it for any w, because for w > 0, the RHS of (12) is no
greater than the RHS of (13) (which, in turn is equal to 1), and for w < 0,
the RHS of (12) 1s non-negative while the RHS of (13) is zero. This proves
the "only if" part of (1).

Turning to (1i), assume that D is non-empty. The existence of
w < 0 <w solving (11) will follow if we can show that (a) limv =~ 0 and

[V adal ]

(b) lim[v - (1+a/J§; -c}w] = 0. Now (a) follows because 1lim u = 0, For (b),
W o

o+

-12-
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note that the derivative of v 1is no greater than 1 [see (12)], whereas the

derivative of (1+0/J2n -¢)w 1s strictly greater than 1 by (B.1). Q.E.D.

Next, looking at an interval [a,8], we provide a pegessary condition

for the continuation of (intensive) search on that interval.

Theorem 3: In order for search to take place on an interval [a,f], we must

have
(1) B-a = 2(1 - cfZxnfo)(l+ow’),

where w' 1s the maximal sampled W along the dimension to which the

interval [«,f] belongs.

Proof: The incremental value of intensive search on [a,8] 1s given by

v[a,ﬂ,W“,wﬁ,max(w',w“,wﬂ)], which cannot exceed v(a,8,w ,w ,w) (since v 1s
increasing in W' and W and since w = max (W“,W’) by (9)). On the other
hand, the incremental value of extensive search is w + o f2r. Furthermore,

when W* = W - w‘, the optimal choice for x; is (a+ﬂ)/2 which by (7), (8)

and lemma 2 implies
via,Bw W W) = v+ (-0)/2/7x.
On the other hand, the incremental value of extensive search is

w‘(l+a/j§; -¢) + 1/f2Zx - ¢/o.

-13-
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Hence, an intensive search on [a,f] is preferred to an extensive search only

1£

w o+ (ﬁ-a)/ZJﬁ; > w*(1+a/J§; -c) +‘1/J§; - c/o.
But this, by a slight rearrangement, is equivalent to (14). Q.E.D.

In particular, setting w = Q (which by the assumption preceding
equation (4) is smaller than the true v, we get a history-independent lower

bound on the length of [«,8].

(15) B -a = 21 - cf2x/o).
A corollary of theorem 3 concerns T, which we define as the (random)
duration of intensive search. The largest number of times that one can sample

within an interval of unit-length without sampling an interval shorter than A

is Al times. Therefore, taking the inverse of (14) yields
(16) T.s of2(0-c/2x), w.p.l.

3. The growth rate and long-wave business gycles.

Although the true state space is H®, it is helpful to think of the
economy as being in one of two states: E = extensive search, and
1 = intensive search., Then 1if Qr is defined to be the probability that the

economy stays in I for an additional period, given that it has been there

-14-



for T consecutive periods, the transition probabilities can be summarized by

the matrix

E I
E F(u/o)+1-F(u/a) F(w/o)-F(w/a)
I 1-Q Q,

While the first row is time-invaxiant, the second is not, Indeed, eq. (16)
implies that Q =0 for T > q/2(a-cJ§;), while for values of ¢ «close to
o//2x (which render extensive search a relatively unattractive optiom), it is
easily shown that Q, 1is strictly positive. On average, therefore, Q. 1is
decreasing in T, and the escape probability from I therefore exhibits

positive duration dependence.

Letting g, and g, denote the expected growth rates of the economy

in its two states, we have:
Bgg = © J2n - ¢

g, = oE[maxW(x}) - v, O].

Since extensive search is always feasible, we certainly have B = B Thus,
one implication of our model {s that the economy will grow faster during

perliods of intensive search. Since under (B.l) and the assumption of theorem 2

=15«
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neither state is absorbing, the long-run growth-rate is a welighted average of
g, and g, the weights being the stationary-state probabilities,

Each uninterrupted spell in state I can be thought of as a "wave" of
activity sparked by the discovery of a new technology. Not all technological
discoverieé lead to such waves: Only those'technologies, k, with Wg(l) €D
will lead to transitions into I. Under this interpretation of Schumpeter’s
long waves, such waves will exist if and only if c¢ > a/2j§; (see theorem
2(1)), and they can last at most a/2(a‘cJ§;) periods (see eq. 16). Figure 2
summarizes the parametric configuration necessary to produce long waves of
activity. Since both extensive search (which produces the spark) and
intensive search (which is defined as the long wave) are necessary for long
waves to exlst, the (c,o0) pairs must be in the shaded region, whose shape is
based on (B.1) and theorem 2(1).

If ¢ + », the set D (defined just prior to theorem 2) becomes the
entire line, so that the (1,1) cell of the above matrix becomes zero. The
economy will never be in state E, and we are in the south-east region of
figure 2. Moreover, if the economy is in I, any growth that takes place will
be a short-run phenomenon, because aleong each technological dimension, the
sample paths are bounded with probability one. On the other hand, if the
parameters are such that D is empty, the economy will always stay in E, and
we will get serially uncorrelated, 1.i.d. long-run growﬁh rates, with mean
given by g.. We would then be in the north-west region of the figure.

These predictions hinge on the assumptlon that the W, are
uncorrelated random functions. But, as we emphasized following Lemma 1, our
axioms do not preclude the possibility of correlation amongst the W,

Positive correlation between some of the W _ would significantly alter the

-16-



model’s implications. For instance, suppose that W_ and WJ are known to
be positively correlated, and that agents experiment with technology j. If
this turns out to be a failure, they will not try technology k but will turn
elsewhere instead. But if j turns out to be a productive technology, they
will then try k and will then expect an unusually high growth-rate of
consumption. Thus the correlation of the W _ introduces (a) positive
autocorrelation between the successive growth-rates during periods of
extensive search, and (b) the possibility that during epochs of extensive
search, gfowth on average will exceed that attained during epochs of intensive
search. If, as Grilliches (1986) contends, (b) turns out to be the
empirically-relevant case {in the time-series as well as in the cross-
section), then further theoretical research ought to pursue the case where the
W rare positively correlated. If, however, one is to reconcile the positive
serial correlation property of aggrepate growth rates (Nelson and Plosser,
1982) with the apparent absence of serlal correlation of growth rates at the
firm level (Grilliches 1986, p. 152), one will, it appears, have to take into
account rivalry amongst firms.

Returning to the Grilliches and Mansfield finding that faster-growing
firms tend to do more basic research relative to applied research, we note
that this is in accord with our model in the following basic sense. As noted
in the previous section, without extensive search (basic research), the model
yields a long-run growth rate equal to zero. Economies or firms that face
(o,c) palrs that allow faster growth will do more basic R&D. Whether they
will also do more basic R&D relative to applied R&D will depend on how
_ hetefogeneous these firms or economies are with respect to the parameter ¢

that they face.

-17-



4, GConclusion

We end by éommenting on the relationship of our work to (a) multi-arm
bandit analysis, and (b) Bayeslan analysis in general. New technologies are
samﬁled infinitely often in this model. This is in contrast to the usual
multi-armed bandit result (see Rothschild (1974) for a survey) that eventually
the agent settles on one arm and pulls it forever. The reason for the
difference between the results of the bandit formulation and our own is that
the multi-arm bandit formulation bundles the consumption and investment
decisions: to learn about arm k, one must consume the payoff it yields. As
soon as one unbundles the two, new arms will be pulled infinitely often, and
this is what the present formulation does.

Although this paper makes minimal functional-form assumptions on the
relationship between technologies and outputs, the approach we take has a
well-defined probabilistic structure, based on the representation in (l1). We
have not abandoned the Bayeslan approach to learning; the prior distribution
on the functions W (-) 1s in each case just the Wiener measure discussed in
Billingsley (1968). So long as certain axioms are imposed, it is thus
possible to analyze optimal adaptive behavior even when prior information is

minimal.

-18-
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