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ABSTRACT

This paper develops a new method for approximating dynamic competftive
equilibria in economies in which competitive equilibrium is not necessarily
Pareto optimal. The method involves finding approxinate equilibrium policy
functions by iterating on the stochastic Euler equations whfth characterize
the economy’s equilibrium. Two applicauons are presented: the stochastic
growth model of Brock and Mirinan (1971) modified to allow distortionary
taxation, aM a model of inflation and capital accumulation based on Stockman
(1981). The computational speed and accuracy of this a~5proachsuggests that
it nay be a feasible method for studying suboptimal economies with large
state spaces.
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I. Introduction

Many central research questions necessarily involve the study of

suboptinni dynamic equilibria. For example, one might be Interested in

studying the effect of a change in the income tax laws on the joint time

seriesbehavior of investment,production, andasset returns under the

assumptionof rational expectations. But because the wedge betweenprivate

arad social returns induced by the tax policy meansthat the resulting dynamic

equilibrium is suboptimal. this problem cannot generally be studiedwith

methods which require the Pareto optinality of competitive equilibrium.

This paper develops a new method for approxirrating dynamic competitive

equilibria which can be applied to a wide variety of economic environments.1

Within the model economy, individual agents are assumed to nake their

decisions in a privately rational n~nner. The result of this n~ximization is

a set of first—order necessary conditions or “stochastic Euler equations” for

the individual’s problem; these conditions restrict the dynamic evolution of

the lndividuals choice variables. When combined with aggregate consistency

conditions, the stochastic Euler equations restrict the dynamic behavior of

the entire economic system. A dynamic competitive equilibrium, then, is a

set of functions that satisfy the stochastic Euler equations. The properties

of equilibrium can be explored by finding approxlnntlons to these equilibrium

functions. This paper presents a method for approxinating the equilibrium

functions that solve the stochastic Euler equations. A virtue of this method

is that it is applicable to economies in which competitive equilibrium Is not

necessarilyParetooptinal.
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Approxtuate equilibria are computed by an algorithm which involves

discretization of the state space as In Bertsekas (1976) and Sargent (1980),

combined with iteration on the stochastic Euler equations. This paper

provides a detailed discussion of this method, and demonstrates Its use by

application to two examples. The first example Is based on the stochastic

one—sector neoclassical growth viodel of Brock and PUritan (1982) modifled to

allow distortlonary taxation. The second example is a model of a monetary

economy. Stocknan (1981) takes the deterministic one—sector growth model,

imposes a cash-in—advance constraint on purchases of consumption goods and

investment goods. and characterizes the steady state levels of capital arid

inflation under a constant money growth rule. The present paper approximates

equilibrium capital accumulation rules within a stochastic version of the

cash—in—advance model, where the uncertainty stems from random monetary

growth.

While this paper Is organized around two problems of capital accumulation

in the presence of distortions, the basic computational approach Is

applicable to a wide variety of problems In which competitive equilibrium can

be characterizedas a system of Eu’er equations. For example, this method

can be used to study overlapping generations (OLG) economies with long—lived

agents, as discussed in Baxter (1987). Because equilibria In OLO economies

are generally suboptinnl. these equilibria cannot be studied using methods

that rely on the optiwality of cixnpettttve equilibrium. Other types of

monetary economies that can be studied include those in which money is

introduced via the utility fzmctlon or via an explicit transactions

technology. This methodology Is also potentially applicable to the study of
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economies in which suboptinality of competitive equilibrium is due to the

existence of monopoly power at the firm level, as In Blanchard and Klyotaki

(1987); due to productive externalities of the types studied by Romer (1986).

Lucas (1988) and Baxter and King (1988); or due to incompleteness in asset

narkets, as in Persson and Svensson(1967) and Svensson(1988).

The paper Is organized as follows. Section 2 describes the method of

obtaining approxinate equilibrium policy functions via iteration on Euler

equations. The presentation is organized around the stochastic one—sector

growth model with distortionary taxation, and highlights the conceptual

similarity between this method and the more familiar method of value function

Iteration. The section concludes with the presentation of policy functions

computed for several example economies and evaluates the computational

accuracy of the approach. This is done by comparing approxinate policy

functions to exact policy functions in the context of an example economy

possessing a closed—form solution for the policy function. Section 3

presents the results of applying this computational method to a stochastic

version of Stockynan’s (1981) model of capital accumulation in a

cash-in—advance model. Section 4 contains concluding renarks and discusses

directions for future research,

2. The equilibrium Euler eqintion approach

The equilibrium Euler equation approach is illustrated within the basic

dynamic framework of the neoclassical model of capital accumulation under

uncertainty. In this model. Individuals reximize expected utility:



4

E ~ ptu(c)IAk (1)

where (3 is a discount factor between zero and one, where the utility function

tiC.) is assumed to be twice continuously differentiable, and where the

expectation taken at time zero is conditioned on the initial capital stock Ico

and the initial value of the technology shock. A0. Agents face a sequence of

resource constraints of the form

A~f(k~) + (1—o)k~� + k~+i (2)

where is a technology shock; is the capital stock, predetermined as of

the beginning of period t; f(.) is the production function, assumed to be

twice continuously differentiable; and 6 Is the rate of depreciation of

capital. The technology shock. A~. follows a discrete Markov process with

state transition nntrix II. Agents In this model are viewed as owning the

capital stock arid directly operating the technology. In period t. they

receive output from production. A~f(k~). and there is undepreclated capital

left over after production In the wnount (1—6)k~. They allocate this gross

output between current consumption. c~. and capital to be used in production

in the subsequent period, k~+i. Thus the period t+1 capital stock is

determined at the end of period t. and cannot be adjusted after the period

technology shock is realized at the beginning of period t+1. We shall

assume that there Is a unxlmum sustainable capital stock so that stationary

distribution of capital is bOUnded.

The first—order necessaryconditions for the consumersproblemare:

rxz(c~)=flE{[A~+1Df(k~÷i)+(1_o)]Du(c~+1)} IAt.kt+i. (3a)

E {lim fitDu(c )k 1)1A0.k0 = 0 (3b)
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and the resource constraints, (2). Since this problem Is recursive (I.e..

does not involve time In an essential way) we let unprimed variables denote

period t. single primes denote period t+l. ax~ddouble primes denote period

t+2. Making these substitutions, and using the resource constraint to

substitute for c, equation (3a) becomes:

Du(Af(k)+(1—ó)k—k’)=13E {{AIDf(k)+(1~~o)]Du(AtfØe)+(1_b)kt~kt)}jA,k1. (4)

Under the 4ssumptionsimposed on this problem, there is unique function

relating the optin~1choice of Ic’ to the current level of Ic and the current

technology shockA; call this function h:

= h(k.A). (5)

To take a specific example, suppose that there are only two possible

realizations of the technology shock, � {A, A}. and that A~follows a

Markov process with transition function F. Graphed below are the functions

relating k to k and the technology shock. One steady state (or fixed point)

with a constant level of k is at k=k; this is the level of capital that would

obtain if the economy turned out always to have the high realization of the

technology shock, At=A for all t (even though, each period, there is positive

proimbility that A=A in some future period.) There is a second steady state

with a constant level of k. at k=E. which Is the level of capital that would

obtain if the economy always had the low realization of the technology shock.

for all t. In addition, all the points in the Interval (Ic k) generally

have positive nass In the stationary distribution of k.
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Except under very special conditions on preferences and technologies. it

is not possible to solve (4) to obtain a closed—form solution for the

function h(k,A). We turn now to a discussion of two approaches to computing

approximations to the equilibrium policy (unction. The first is the approach

of stochastic dynamic progranring and value function Iteration. This method

relies on the equivalencebetween competitive equilibrium and Pareto optimum

in the economy under consideration. (Two examples of papers which use this

couiputational approach are Sargent (1979) and Greenwood. Herco,ltz and

Huffasn (1988).) The secondapproachis new, and involves Iteration on a

stochastic Euler equation. This approach does not rely on the Pareto

optitrality of competitive equilibrium.

b(k.A)

b(k,A)
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2.1 Stochastic Dyp~inic Prozrrming and Value Function Iteration

Since the problem described above has a recursive structure, it can be

studied using the methods of stochastic dynamic progranulng. Thus, the

problem can be rewritten as:

= u(c~) + ~E (6)
c~.k~+i

subject to the constraint (2). The function v Is coirinonly referred to as the

value function: It gives the value, in utility terms, of entering a period

with capital equal to and encountering the technology shock A~. assuming

that the agent rrtkes individually optinal decisions. EquatIon (6) is a

functional equation in the unknown function v. Using (2) to substitute for

in equation (4). we obtain:

v(ktAt) = max + ~ (7)

t+ 1

Define the operator T by

Tv = max + (8)

Since the form of (8) does not depend on the time period. t, time subscripts

can be suppressed and (8) can be written:

Iv = nax {u(Af(k)+(1—b)k—k’) + f3Ev(k’,A’)}jlc’.A (9)
IC

where, as above. variables without superscripts refer to the current period

(t) and primed variables refer to the subsequent period (t+I).

Solving for the unknown function ~‘ involves finding a fixed point (in the

space of continuous functions) of the napping T, i.e.. finding the function v

for which Tv=v. Because the napping T defined by equation (8) Is a

contraction napping. iteration on the napping converges to the function v
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which Is the unique fixed point of the ~pptng. This indicates that

iteration on the napping can be used as a computational approach to finding

an approxitratlon to the optinal value function. The approxinate nature of

the solution Is due to the computational necessity of “discretizing the state

space”. i.e., choosing a discrete grid for k and A over which the value

function .111 be defined. Having done this, the computational prob]em

involves finding the value function defined on the (k.A) grid that solves the

equation Tv=v.

The iterative procedure begins by choosing an initial v function (defined

on the (k,A) grid) from the donnin of T; call this function v0. Civen v0.

apply the operator T yields a new v function; call this new function

= Tv0 = max {u(Af(k)+(1—6)k-IC) + fiEv0(k~ .A)Ik’.A}
Ic’

where the nexlmizatlon is over values of k in the chosen grid, and is

conditional on the current value of A. Subsequent Iterations proceed In the

same wag, generatinga sequence of v functions, Because the operator T

defined in (8) Is a contraction, this sequence of functions converges to the

true value function: Jim V = V.

j-~j

Often the value function chosen as the starting point for the iterative

procedure is the zero function. v0=O. This choice of means that the

sequence of functions produced by application of the operator T has an

economic interpretation as the sequence of value functions for finite

economies. Thus. Is the value function for an economy with one period

left to go, is the value function for nit economy with two periods left to

go. and so forth. In this problem, the limit of the value functions for the
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finite horizon economies is the value function for the infinite horizon

economy. We will return to this interpretation when discussing Iteration on

Euler equations below, except that there we will be generating a sequenceof

policy functions instead of a sequenceof value functions.

If the economy under study satisfies the conditions of the second welfare

theorem, the optinal solution obtained by value function Iteration nay be

interpreted as a competitive equilibrium. In caseswhere competitive

equilibrium Is not optinal. the approach outlined above Is generally invalid.

It can be used only if there is a way to rewrite the competitive problem as

an optimum problem which properly reflects the constraints of the competitive

problem. The class of problems for which this Is possible, however, is not

very large. Studying suboptinal equilibria generally requires a dh’ect

attack on the first—order necessary conditions of the individual’s problem;

it is to this approach that we now turn.

2.2 The Equilibrium Euler Eeuation Approach

Unlike value function iteration, the method described here does not rely

on the second welfare theorem. For illustrative purposes, we consider the

the neoclassical model of capital accumulation described above, modified to

allow distortioriary taxation in the form of an Income tax with lump—sum

rebates of the proceeds of the tax. In this example, taxes can be functions

of the Markoviari technology shock and the level of the aggregate capital

stock. Per capita aggregate capital will be denoted by K. and the agent’s

choice of capital will be denoted by k. The tax function Is denoted i-(K.A).
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The problem facing the representative agent in this economy j~:

£ { ~ pt u(c~)}fAo.ko (10)
{c~. k~+i}

subject to:

+ � (1_r(K~.A~))A~f(k~)+ (1_O)k~+ {T(K.A)A ((K)] (11)

= H(K~. A~) (12)

where all variables are as defined earlier. EquatIon (11) is the

individual’s resource constraint; the first two terms on the right hand side

are after tax gross output. and the last term Is the lump sum rebate of the

government’s tax revenues. Equation (12) is agents perceived law of motion

for aggregate capital. K~. As before, it is convenient to suppress time

subscripts, and the arguments of the tax function are suppressed as well:

r should be read as r(K.A). The first—order necessary condition for

nwcimization with respect to choice of capital j
5

:

Du(c) =PE{[(1—r’)A’Df(k’)+{l—b)JDu(&)}IA.k

Using (11) to substftute for c~yields:

Dufll—T)Af(k)+(1—6)k+T(A,K)f(K)—k’) = (13)

PE{[(1—r)Atf(k)+(I—6)JDu((1—t’)A’f(ki+(1—6)k’4r’A’f(IC)—k”)} jA.k’.

Individual raximizatlon yields equilibrium decision rules of the form

IC = h(k,A;K.H). (14)

In equilibrium, the capital agentschoose to carry out of the period is a

function of capital brought into the period. k. and the current technology

shock. A. Individuals take as given the current level of the aggregate

capital stock1 K, and condition on their beliefs about the law of rotion for

aggregatecapital as sunmnrized by the function H.
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A rational expectationsequilibrium requires, in the case of a single

representative agent, that the law of motion for coincides the the

perceived law of motion for

h(k,A;K,H) = }{(K,A). (15)

This condition is sometimes referred to as a “consistency condition”, meaning

that Individual’s beliefs are consistent with the outcomes of the economy’s

equi1ibriu~i: in equilibrium. k (capital chosen by the representative agent)

must equal aggregate capital, K. Imposing this consistency condition on the

first order condition yields:

Du(Af(k)+(1—6)k—k’) = PE{(1—T’)A’Df(k’)+(1—6)]Du(A’f(k’)+(1—&)IC--k”)}. (16)

Finding the competitive equlibriuni means finding the function h of the form

given by (15) which solves (16) and for which the implied function H is such

that h(k,A;X,H) H(}CA). Below, we use the notation h(k,A) when referring

to equilibrium policy functions. functions for which h(k.A:K.H) = }I(K.A).

2.3 An Iterative Approach to Approxinating Stochastic Euler Equations

This subsection provides a detailed description of the computational

procedure for computing approxirrate equilibrium policy rules.2 This

procedure is similar in spirit to the method of iterating on the value

function described earlier. As before, the first step is to discretize the

state space by choosing a grid for k and A. And as with value function

iteration, the method of iterating on Euler equations can be viewed as

generating a sequence of optiual policy rules for finite economies with the

horizon lengthening one period at each Iteration. This perspective will be

used in the following discussion of the computational algorithm. Under this
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perspective, we view ourselves as working backward from the end of the

econoir~y. In a g2nner similar to stochastic dynamic progruring.

Therefore, consider an economy that will tertinate at the end of period

N. In an N—period economy agentswill plan to consume all of their capital

by the end of period N. setting kN4j=O regardless of the levels of and AN.

Thus, the equilibrium policy function relating k’ to (k.A) for an economy

with zero periods to go Is the zero function: k.d4.j=ho(kN.Afl)~. Now, step

back one period and consider the problem of the optimal choice of capital in

period N—I. This involves solving the period N—i version of equatIon (16).

using the fact that Thus, the period N—I version of (16)

1s

=

PE{[(i_tN)ANDf(kN)+(1_ô)JDU(ANf(kN)+(l_O)kN)) Ik~.ANl. (17)

This is a first—order stochastic difference equation In k. Solving the

equation means finding, for each (kN 1,A.~ j) pair, the equilibrium amount of

capital to take out of the period. kN. That is. the solution Is a function:

Thus we will use the initial policy function. h0. together

with the stochastic Euler equation to generate a new policy function. h1.

A two step computational procedure is used to trace out the new policy

function. h1. The first step is to caipute the “narginal value” of k’——the

right band side of (16)——for each (kN.Atd I~ pair in the grid. This generates

a “rargthal value gatyj,C’, call it KV(k.~.A.d_j). The second step is to find,

for each (kN 1.A.~1) pair, the value of Ic In the catrix which cones closest

to solving (17); i.e.. the value of which comes nearest to solving



13

Af(kl)+(1_ó)kl_kN)=MV(kN.A~l). This yields a function giving kN as a

function of AN1 and call this function h1: kN = hj(kNl.A.dl). We

now have the equilibrium policy function yielding k’ as a function of (k.A)

for an economy with one period left.

Now, step back again, and consider the version of equatIon (16) that

applies to the economy In period N—2. This equation is:

= (18)

~E{[(i_rfll)AN_lDf(kNI)+(1_o)]Du(ANlf(kN)+(1_6)kNl_kN)) ~N~1 ~N-2’

This is a second order difference equation in k. But in the previous

paragraph, we discussed how to find the function We can

therefore use this function to substitute for in equaUon (18), obtaining

A.~2f(kN2)+(1_&)kN2_kNl) =PE{[(l_TN_I)AN_IDf(kfl_l)+(I_ä))

flu(A~1f(k~1)+(1—6)k~1—h1(k~1.AN1))} Ik~l.AN2 (19)

Now we have only a first—order difference equation in k. Proceeding as In

the first iteration, compute the right—hand—side of (19) to yield

for every pair. Now, for each pair (AN_2.k~2)

find the value of k in the grid which, when substituted for comes

closest to solving (19). Call this function h2. (kNl=h2(kN2.AN2)).

The way to proceed In the third and subsequent steps should, by now, be

clear. At step j, the policy function is used to replace It’t on the

right— band side of equation (16). end the resulting equation is solved to

obtain a new policy function as described above.

Iteration continues until the sequence of functions. {h~} converges.

i.e., when h~changes only a snail amount between Iterations. Thus, one

might choose a tolerance level d and stop when
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nnx [h.(k,A) — It 1(k.A)) � d.
A.k

In the applications presented in this j~per, however, the iterative procedure

was TV.!) a fixed number of times (usually 100) and then terminated.3

To sun7nrlze. the computational strategy begins by choosing an Initial

policy function, h0. Using h0 to evaluate k” as a function of Ic’ and A’.

equatIon (16) becomes a first—order stochastic difference equation

determining Ic’ as a function of k and A; call this function h1(k.A).

However, this function Is not the equilibrium function h. The Iterative

process Involves replacing the snitial function with the function

computed as described above; in the second Iteration, evaluate }c” using

k”=h3(k’,A’). Now, equation (16) is a new difference equation determining k’

as a function of k and A; call this new function h2(k1A). Step J of the

iterative process involves replacing by as the function determining

k”, and solving (26) for a new function yielding k as a function of k and

A. The iterative process stops when the sequence of functions {h~}

converges.

In the course of implementing this algorithm, the initial function h00

has been found to work well in the sense that convergence is quite rapid.

With h0=O. the sequence of functions (h~}generated by the iterative

procedure has a natural econo~nic Interpretation In much the same vay as in

value function Iteration discussed earlier. The sequence (h~} can be viewed

as an approxination to the sequence of equilibrium policy functions for

finite economies with j periods left to go. But computation is more rapid

still if the initial function is a positive, nondecreasing function of k

and A. The Interpretation of a positive Is that the economy is required
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to end with a positive level of the capital stock. The reason is that

iterative scheme essentially Involves exploiting the “turnpike” property of

the finite horizon economy. Thus, loosely speaking, the nearer you are to

the turnpike when you start, the sooner you arrive on the turnpike (i.e.. the

sooner the policy function converges to that for the infinite horizon

problem).

There do not appear to be any general theoretical results available which

give the conditions under which this procedure will converge to the infinite

horizon solution. The following subsection presents approximate policy

functions for a several examples of the distorted stochastic growth model.

including one exaniple with a nonmoriotonic, discontinuOUs tax function. The

algorithm is well behaved and converges even in this case. Based on

experimentation with a variety of economies, It is conjectured that the

iterative scheme described above converges for any economy which possesses a

turnpike property. in the sense that the limit of the sequence of equilibrium

policy functions for finite horizon economies is the equilibrium policy

function for an Infinite horizon economy. However, this conjecture has not

yet been formally established.

2.4 Some examples

This section presents the results of applylx% the equilibrium Euler

equation approach to several specific examples of capital accumulation

problems in distorted economies. It begins by exaznlnthg a special case of an

undistorted economy for which a closed form solution exists. The approximate

policy rules are compared to those computed from the closed form.
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Subsequently,an example of an economywith distortionary taxation is

presented.

A closed—form example

As an Initial apppllcatlon of the approxiwation methodology, we study an

economy possessing a closed form solution for the policy function

Ic’ = h(k.A). This closed form Is used to check the accuracy of the

approxination methodology. In this economy. individuals ,inximize an

objective function of the following form:

E ~ L3tln(ct)JAO.ko. (20)

The production function Is Cobb-Douglas and is subject to Markovian

technology shocks, A:

Af(k) = Ak°. (21)

and there is 100% depreciation of capital in each perIod: 6=1. Thus the

resource constraint is given by:

• (22)

In this economy, the solution for the equilibrium path of capital is given

by:

Ic = (aJi)ftJ? (23)

Figure 1 plots the exact equilibrium policy Functions for this economy

with a grid containing 500 points for k and two points for A. with the

following parameter values: (3=95, a=.4. A=1.O. A=1.2. On the graph there

Is one policy function for each value of the technology shock, and one fixed
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point or steadystate correspondingto eachvalue of the technology shock.

Figure 2 exhibits the approxinateequilibrium policy functions for this

economy, computedwith the same capital grid of 500 points, and for 100

iterations. Figure 3 exhIbits the approxlnnte functions together with the

exact functions. As seen from Figure 3. the approximate function Is

essentially indistinguishable from the exact function. To get a closer look

at the approxilTatlon error. Figure 4 graphs the approxhration error

(approxinate minus exact) against the capital stock for each of the two

policy functions. In the range of k containing the stationary distribution

for k (roughly .30 to .65) the average approxination error is less than 1%.

Convergence of the policy functions is quite rapid, and after only 20

iterations the approximate policy rule is visually indistinguishable from the

exact policy rule, in the sense that these functions are indistinguishable In

Figure 3. The initial function was a constant function close to zero.

Other examples

Figure 5 plots equilibrium policy functions for the economy described

above with the modification that depreciation is a more realistic 10% per

year. A notable feature of the policy fujictions is that they appear

approxinately linear in the capital stock. There arc two steady states, one

for each value of the technology shock; the upper one Is at a level of

capital of 6.75, ax~d the lower one is at a level of 4.98. The stationary

distribution of capital is contained in the interval (4.98.6.75). Figure 6

plots equilibrium policy functions for the economy with 10% deprecIation, and

in which there is also a 25% tax on output (not including the undepreciated
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component of the capital stock). The tax rate is not state—dependent. In

this economy, the steady states are at 4.669 and 2.645. The upper steady

state in the taxed economy is 31% below that of the untaxed economy, and the

lower steady state Is 47% below the corresponding steady state In the untaxed

economy. Thus a tax rate of 25% on output leads to a greater than

proportional decline in the stationary distribution of the capital stock in

this economy. Computation of the stationary distribution of capital is

straightforward, and would be preliminary to answering questions about

relative welfare in the taxed arid untaxed economies.

Finally, Figure 7 graphs the equilibrium response of the economy with 10%

depreciation a particularly strange tax function: the tax is zero for

capital stocks between zero and 3.2 and between 4.4 and Infinity, and is

equal to 30% for capital stocks between 3.2 and 4.4. ThIs example is

presented to demonstrate that convergence does not depend on smooth or

nonotonic tax functions. As one would guess, the tax depresses capital

accumulation in the range over which it operates. The fact that the

algorithm converges easllyeven In the presence of such a strange tax

function suggests that it nay be possible to develop a theoretical proof of

the conjecture that convergence requires only fairly weak conditions on the

structure of the economy; i.e.. the turnpike condition discussed earlier.

3. AnticIpated Inflation and the capital stock ft a ash-In-advance economy

In a paper with the above title. Alan Stocknnn (1981) presented a model

in which higher expected inflation leads to a fail In the capital stock. The

adverse effect of inflation stems from the fact that the models economic
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environment requires that money be accumulatedin advance of purchases of

Investment goods so that Inflation acts as a tax on investment. In his

paper, Stockman characterizes the steady state of the economy under a

constant rate of monetary growth and no uncertainty elsewhere in the model.

Abel (1965) studIes a version of Stoeknan’s economy which has been linearized

about the steady state. He develops expressions relating the

near—steady—state speed of adjustment in the economy to preference parameters

and the monetary growth rate.

Using the computational methods developed In this paper, we can assess

the quantitative effects of money growth on capital by looking directly at

numerical approxin~tions to the equilibrium policy rules, obviating the need

for linear approxinations of the sort used by Abel. In particular, we are

not constrained to studying deterministic money growth, and the productive

environment can easily be generalized to allow technology stocks and

distortionary taxation of output as in the economy of Section 2 above. Thus,

we nay ask the questions: (1) given reasonable parameters for preferences,

technology, and the stochastic process for money growth, what is the

quantitative effect of money growth and aiiticipated inflation on the steady

state level of the capital stock? (ii) quantitatively, what is the welfare

Loss associated with inflation? (lii) what Is the nargina~ welfare loss from

inflation (I.e.. Is 7% inflation much worse than 6% inflation)?, and (iv)

what Is the joint stationary distribution of money and capital? After

describing the model, we shall present a first attempt at answering some of

these questions.
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3.1 The mode]

This model Is identical to that in Stockr~nn (1961) except that money

growth Is permitted to follow a Markov process. The representative

individual Is assumed to nnximtze

E { ~ pt u(c~)}Iko.wo (24)
t=O

subject to two constraints——a resource constraint and the cash—in—advance

Constnint

f(k~) + (m~i(l+u~))/p~ - - k~+i + (1—6)k~— (m~/p~) = 0 (25)

� c~— + (1b)k~ (26)

where denotes the random lump-sum monetary transfer paid out at the

beginning of period t, is the post—transfer nominal money

holdings at the beginning of period t, and rn~ is “money den~nd’. the amount

of money held at the end of period t. The random monetary growth rate is

assumed to follow a discrete Narkov process with state transition rintrix 11.

The force of the cash—In—advance constraint (26) is that both consumption and

investment must be paid for in cash out of money carried over from the

previous period plus current period monetary transfers. Let ?~. and L1 be the

Kuhii—Tucker multipliers for the constraints (25) and (26). The first—order

conditions for this problem are:

Du(c~)= + (27)

+ (1—5)] + I3w~÷1(l—a)= + ii (28)

+ = (29)

f(k~) + (m~_i(w~))/p~ - — + — (rn/Pt) = 0 (30)

� [c~— + (1o)k~)ii~= o. [.J�o. ~~~�0• (31)



I

21

The multiplier X nay be thterpretated as the narginal utility of wealth, anid

the multiplier ji nay be Interpreted as the sarginal utility of real cash

balances. Under conditions guaranteeing that the nominal rate of interest is

always positive, which we shall impose, the cash—In—advance constraint (26)

always holds with equality, so that the imsitipiler ~s is always positive.

Under these assumptions. (29)—(31) can be solved to yield the fundamental

dynanic equation of the system:

Du(c) = E {f32(p’/p”)Df(k’)Du(c”) + (32)

where unprimed variables denote the current period (period t). single primes

denote next period (period t+1). double primes denote period t+2. and triple

primes (which will occur below) denote period t+3. Becausethe

cash—in—advance Is assumed always to bind, consumption is equal to:

c = 1(k) + (1—b)k — k’. (33)

and the price level is equal to:

p = + k’ — (1—6)k). (34)

so that (32) becomes

Du(f(k)+(1—b)k—k’) =

E {j32Df(k’)(l/(l+w”))(f(k”)/f(k’))Du(f(k”)+(l—&)k”— k’’’) +

j3(i—a)Du(f(k’)+(l—ó)k’--k”)}jw.k’ (35)

Thus, the basic equation of the system Is a a third—order nonlinear

stochastic difference equation fri k. As before, we seek a solution in the

form of an equilibrium policy function k=h(k.w) yielding next period’s

capital stock. k’, as a function of the current capital stock, k and the

current realization of the monetary transfer, w, given the state transition

natflx TI.
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3.2 Computation of Eciullibrium

Despite the fact that this equation is one order higher than the one

studied In the last section, it can be attacked in exact’y the same way. In

the model of the last section. an initial function, was chosen giving

as a function of and AN. This function was used to evaluate terms In

k” In equation (16). that economy’s analogue to equation (28). In thts

environment, we must specify a pair of initial functions. and that

will be used to evaluate Ic” and Ic’’’ In equation (28). Thus, in the first

iteration, let

IC’ = h0 (k’ .w’)

=

In the case where = = 8. where B Is a snail positive nu,nber,we retain

our earlier economic interpretation of the iterative process as finding

equilibrium policy functions for a sequence of finite horizon economies (with

the terminal condition that the economy end with a level of capital equal to

As before, the first iteration involves finding, for each (k,w) pair,

the value of k’ that solves (35), conditional on the functions and h1.

This gives a new value of the equilibrium policy function, call It Ic’ =

For the second iteration, we replace the function with the

function and we replace the function with the newly calculated

function. h1. Thus, we view ourselves as stepping back one period In time.

and evaluating IC’ and k’’’ by:

k”

IC’’

Iteration continues In this way until the policy function h converges.
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The Increased order of the difference equation does not mean that

computation of equilibrium policy functions is significantly more time

consuming. Recall that the computational strategy involves fixing k’ and w.

and computing the right—hand—side of (35). which we can think of as the

marginal value of k’ conditlor2l on to. The second step is to find a value of

k that rakes the right—hand—side of the equation equal to the left—band—side.

The only effects of having a high order system are (1) to increase slightly

the amount of arithmetic involved In computing the mrginal value of k’. and

(ii) to carry along an additional h. function at each step.

3.3 The Quantitative Effects of Inflation on Catital Accumulation

The time Interval is taken to be a year, and parameter values for the

economy were chosen as follows: a=.40, a number roughly consistent with

estinates of capitaUs share itt GNP; fi=.95, implying a steady state real

Interest rate of about 5%; a=1 which Is logarithmic utility; and, unless

stated otherwise~ b=.iO implying a 10% annual rate of depreciation of

capital.

As a check on the computational accuracy of the program, we computed the

equilibr$um policy function for a closed form examplewhich is essentially

Identical to that of Section 2.4. With 100% depreciation (6=1) and a

constant money growth rate w. the equilthrlum policy function has the form:

2
= czj3 ka. (36)

(1+w)

Figure 8 plots exact and approximate policy functions for this special cases

with the constant money growth rate equal to —.05. This rate was chosen by
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setting (1/(1+w))=j3; i.e.. the money supply contracts at the rate of time

preference. This Is the optinal rate of monetary growth, and the result of

choosing this monetary growth rate is that the equiitbrium of the

cash—in—advanceeconomy is identical to the equilibrium of the undistorted

economy studied in Section 2. (Notice that when (I/(1+w))=P, the equilibrium

policy rule (36) becomes k’~x~k”. exactly the equilibrium policy rule (23) in

Section 2.4.) Thus another check on the cash—th--advance computer program is

provided by setting (I/(l’sw))=fi and comparing the results to those cocTputed

with the programs for Section 2. ThIs check can be used even for economies

with less than 100% depreciation of capitaL Finally, in economies with

deterministic money. growth. Stoclaiøn provides the foflowing equation

implicitly determining the steady state level of capital:

DICk) =

This equation can be used to check that the algorithm delivers the correct

steady state with deterministic money growth. All of these checks were

carried out for a variety of parameter values. and the approxin~tion error in

each case was found to be very snnll.

Figure 9 graphs the equilibrium policy function for the econon~y with 10%

depreciation and two possible values for the monetary growth rate:

and w2=.O7. The average steady state inflation rate is 5X. a figure roughly

consistent with recent U.S. experience. The states are serially independent;

every element of the state transition untrix is equal to .5. (in U.S. data,

however, Inflation is more persistent; we consider an example of persistent

inflation below.) As seen from Figure 9. there Is a single equilibrium

policy function for this economy despite the fact that inflation Is
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stochastic. The reason is that the states are independently distributed over

time, and examination of equation (35) shows that only conditional expected

Inflation Is important for capital accumulation. Since the states are

1.14.. conditional expected inflation is invariant to the current state.

For comparison, the upper line in Figure 9 Is the equilibrium policy function

for the same economy except that capital and consumption goods nay be

obtained by barter: the cash—in—advance constraint is removed from the

problem. The steady state capital stock in that economy is 4.96; in the

cash—In—advance economy the steady state capital stock is 4.19. a level of

capital which is 16% below that of the barter economy. Steady state utility

is 11% lower in the cash-in--advance economy relative to the barter economy.

The average rate of monetary growth in this economy is 5%. If the

monetary growth rate was a constant 5% rate, the steady state capital stock

would be 4.25. Thus there is a sense in which there is an additional loss

because of the stochastic nature of money growth and inflation.

Figure 10 plots the equilibrium policy functions for an economy with the

same parameters as above, except that money growth is either .02 or .11. The

probability of staying in the same monetary growth stat~ is .95 (i.e. the

probablitty of 2% monetary growth next year conditional on having 2% monetary

growth this year is .95). These parameter values were chosen to simulate an

economy which experiences either high Inflation or low inflation, and in

which the inflation rate is very persistent. In this example, the expected

duration of the current inflation rate is 20 years (expected duration is

(1—p)1 where p is the probability of staying In the san* state next year.)

The upper steady state, corresponding to the policy function for 2% current
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monetarygrowth. is at a capital level of 4.26. The lower steady state.

corresponding to the policy function for 11% current monetary growth. Is at a

capital level of 3.95. In this model, the stationary distribution of capital

is not a point, as It was with LI.d. money supply growth rates. Instead.

the stationary distribution of capital is contained fri the interval

(3.96,4.20). As In the examples of SectIon 2, the equilibrium decision rules

are very close to linear. Thts suggests that for some applications the

linear approxinntions used, for example, by King. Plosser anM Rebelo

(1988a.b) tiny be good approxlnations to the exact decision rules, and they

have a definite advantage In terms of speed of computation.

4. Conclusions

This paper has developed a new method for obtaining equilibrium policy

functions by means of iteration on stochastic Euler equations. The chief

advantage of this method is that it can be used to study economies In which

competitive equilibrium Is not Pareto optinni. Previously, such economies

could only be studied if the problem could be recast as a fictitious

planner’s problem, rendering the problem amenable to stu~iy by means of value

function Iteration. This new method is computatlonally fast and accurate, as

demonstrated In Sections 2 and

With this new technology In hand, we can quantitatively evaluate a nuich

wider range of theoretical economies. Our hunch is that the class includes

any model whose equilibrium are characterized by a set stochastic Euler

equations and which possesses a kind of turnpike property. Thus, the

stochastic neoclassical growth model with distortionary tantion which was
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the focal point of this paper could be generalized to allow variable labor,

other kinds of tax policies, productive externalities, and additional sources

of randomness such as preference shocks or labor augmenting technical change.

But the applications are not limited to neoclassical capital theory. For

example. one could study economics whose equilibria are suboptinal because of

(1) monopolistIc irarket structure; (11) absence of complete narkets. perhaps

due to private infonration, or (111) money introduced via money in the

utility function or via an explicit transactions technology.

Another application of these methods Is to the study of stochastic

overlapping generations models with agents who live for realistic lengths of

time. Because the state space in such a model Is very large (the state

variables include the beginning—of—period wealth positions of everyone alive

In the economy) it is essential that the computational algorithm is one which

runs rapidly for economies with snail state vectors. The results presented

here are encouraging. Thus, while the economic structure of the OLC economy

raps neatly into the framework developed here(see Baxter (1987)). the next

step in this line of research is to determine whether applicatiotis of these

methods to this problem is computationally feasible.

Another use of this method Is as a check on the computational accuracy of

the sort of linear approxin~t1on methods currently used in studying

equilibrium business cycle models. The fact that unny of the decision rules

computed in this paper are so nearly linear suggests that, for unny

applications, linear approxinntions will work well (and run nany tines

faster!).

Finally, it is important to address the question of how to evaluate the

“fit” of a model constructed and simulated along the lines developed In this
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paper. One method, popular in the study of real businesscycle models.6

begins by choosing key parameters from microeconomic studies and the national

accounts, together with parameters for the stochastic processes of the

exogenous shocks. Then, moments of the s1mu~ated time series are compared to

a subset of the moments of actual time series. The model Is said to fit well

If the moments i~tch up in a sense chosen by the researcher. But vany

researchers prefer an evaluation procedure grounded in classical statistical

theory and are consequently uncomfortable with this tnfortral approach. In a

recent paper. Singleton (1988) discusses econometric methods for evaluation

of real business cycle models. The methods he discusses are also applicable

to the class of models for which the methods in this paper were developed.

An Important component of future work in this area is statistical evaluation

of the empirical adequacy of these models along the lines suggested by

Singlet on.
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Footnotes

1Th1s paper develops in more detail the computationalstrategyoutlined

in Baxter (1987). That paper presenteda Markovian representationof

equilibrium in overlapping generationsmodels with long—lived agents.

togetherwith an algorithm for generatingnumerical approxinations to

equilibrium decision rules in that economy. To keep the size of the state

spacesnalj. the computationalalgorithm was developedand discussedin the

context of the stochastic one—sector growth model.

2The computer code to execute the algorithm described in this paper was

written in Fortran. The programs were run using Microsoft Fortran Version

3.31 oti IBM-cornpatibepersonalcomputers. On an IRE Personal System 2/ Model

80, the computation time for 100 iterations with a capital grid of 500 points

and two values of the technology shock was about six and a half minutes.

3By a variety of reasonable convergence criteria, the functions presented

in this paper have generally converged after 40 iterations.

4The cash-in--advance constraint guarantees that money is valued In a

finite horizon economy since without holding money, one literally cannot eat.

In other monetary economies——theOLC economy, for example——this Is not the

case. In order to ensurethat the limit of the finite horizon economies

converges to the infinite horizon equilibrium with valued money, it would be

necessary to impose a terminal condition requiring positive money holdings.

5tnfornal “horseraces” suggest that this method is significantly faster

than value function Iteration when studying economies£ or which value

function iteration is a valid computational approach.

6See for example. Rydland arid Prescott (1982. Hansen (1985). and Prescott

(1986).
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Figure 1

Long—Plosser example: cap. share.40
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Figure 2

Eq. policy functions: deltal.OO, cap. share=.40
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Figure 3

12 example: exact and approximate; cap. share = .4, beta.05
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Approximation error: Approximate minus exact
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Eq. poiiey functions:

Figure 5

deltaz.10, cap. sharez.40
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4.

kprirne = h(k,A)
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Figure 7

Tax rate =30% for 3.2<k<4.4: (delta.1U. cap. share.40)
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Figure 8

a!

optimal rate of deflation, 1007. depreciation example
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Figure 9

inflation and the capital stock: i.i.d. 3% and 7% inflation
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inflation of 2% or 11%; perslstence=.95
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