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A cash—in—advance constraint on consumption is incorporated into a

standard model of consumption and capital accumulation. Monetary policy

consists of lump-sum cash transfers. Methods are developed For

establishing the existence and uniqueness of an equilibrium, and for

explicitly constructing this equilibrium. The model economy’s

dependence on monetary policy is explored.



Money. Interest, and capital in a Cash-in—Advance Economy

Wilbur John Coleman II’~

1. INTRODUCFION

Does monetary policy induce a substitution between consumption and

capital? Savings—based models1 of money demand exhibit a substitution:

higher inflation increases the relative cost of saving via money and

hence leads to a substitution from money to capital (and, in

equilibrium, out of consumption). In, however, transactions—based

models of money demand, inflation i~y have no real effect: the

inflation tax nay act like a constant proportional consumption tax, a

tax which acts like a lump-sum tax. Clearly money holdings in a

cash—in—advance economy contain a significant transactions—based

component, but does it also contain a savings—based component; can, for

example, the cash—in—advance constraint be slack in a deterministic

economy? Monetary policy, though, generally consists of more than a

deterministic money growth rate, and a varying monetary growth rate

should have an effect similar to a varying consumption tax. In this

paper I set up a general equilibrium model to address these issues.

MI wish to thank Robert E. Lucas. Jr., Lars P. Hansen, and Robert N.
Townsend for their many helpful comments, and Heidi Lyss for the
excellent graphics. The author is a staff economist in the
International Finance Division. This paper represents the views of the
author and should not be interpreted as reflecting the views of the
Board of Governors of the Federal Reserve System or other members of its
staff.
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The framework of this paper stems from Lucas and Stokey [19]. and

Townsend [26J. Townsend endogenizes the demand for money by carefully

spelling out a trading environment for capital, home produced goods, and

narket produced goods. Lucas and Stokey develop an endowment economy

consisting of cash and credit goods in which, depending upob the timing

of infonation and monetary shocks, one of tinny joint distributions

describes the relationship among the economy’s variables. Insofar as

Townsend includes capital, and Lucas and Stokey do not, the model

developed here is closer to his. But in terms of monetary policy.

exploring its interactions with the real economy, and the recursive

methods used to solve the model, the model developed here is much closer

to Lucas and Stokey. In some sense, this paper can be viewed as

extending Lucas and Stokey’s recursive methodology to Townsend’s model.

With this setup I can pose some important questions which Lucas and

Stokey could not, and I can answer these questions at a level of detail

which Townsendcould not.

Overview of the Model.

The model developed here is based on the infinite horizon Planned

Growth (PG) economy of. say, Brock and Mirman [2]. Think of a market

based extension where capital is either entirely carried over from the

previous period or purchased along well—established lines (fixed

suppliers), but consumption is purchased in a decentralized market.

Thus while consumption requires cash, cash is not required to carry over

existing capital or to accumulate new capital. Agents begin a period

with money and a value of output, and purchase consumption, capital, and

end—of—period money. Consider a monetary policy which consists of

beginning—of-period lump-sum cash transfers. Using this Monetary Growth
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(MG) economy. I will try to address the consumption—capital substitution

questions ,2

A surprising result is that the cash—in—advance constraint can be

slack in a deterministic MG economy. This is possible because the

return on capital——the real interest rate——mustbe greater than or equal

to the return on money——minus inflation. Suppose the cash—in—advance

constraint is always binding. This means that the rate at which cash is

spent is equal to the rate at which output is consumed,which is equal

to the inflation rate (fix the money supply). Nothing guaranteesthat

minus this inflation rate is not greater than the real interest rate.

In situations where money’s return is greater than capital’s, inflation

must rise. This can only happen if cash is spent at a rate faster than

the rate at which output is consumed, which can only occur if excess

cash is held. Hence a savings motive to holding money can occur.

Much more straightforword results are obtained in addressing the

variable inflation tax issue. Clearly if money supply shocks are

unpredictable, then so is the consequent inflation tax, thus this

monetary policy is neutral. But if money varies predictably, relatively

high expected inflation increases the cost of consuming in these

episodes, thus leading to a substitution out of consumption and real

balances and into capital. A wide variety of comovements between real

and nominal variables exists, where the one selected depends upon the

correlation between money supply shocks and production shocks.

The Sotut ton Methodotogy

The Monetary Growth economy could quickly lead to a dead end. This

economy should not be Pareto Optimal, hence a central planner cannot,

via Debreu [8]. be invoked to solve the model. Competitive equilibrium
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conditions can be obtained by other means, but the central planner’s

approach is amenable to explicitly constructing the solution (the value

function is usually the fixed point of a contraction napping). Can the

solution be constructed by other means? I spend a fair amount of time,

in this paper, doing just that. First, to make matters simple, this

alternate approach is developed in a similar setting, the underlying PG

economy, where the central planner’s method is at hand. Clearly success

here is a prerequisite to success in richer models. This approach is

then extended to the MC economy.

In the Planned Growth economy. my approach is to obtain convergence

by iterating some fixed point equation, call it A. which can be

motivated without the use of a central planner. Most of the problems

arise because in general A will not be a contraction, and its donnin

Is likely to be infinite dimensional (e.g. a space of consumption

functions). The difficulty in establishing an equilibrium is thus

finding a continuous A under which some conqxxct subset is invariant.

Once this function and compact subset are constructed, Schauder’s fixed

point theorem guarantees the fixed point’s existence. A further

difficulty arises since Schauder’s fixed point theorem (versus, say.

Banach’s) does not guarantee the fixed point’s uniqueness nor does it

provide a method for the fixed point’s construction. For the PG

economy, however, an A is found which is monotone and concave: a

unique fixed point, obtained by iterating A. thus exists.

Although the Monetary Growth economy’s fixed point equation is

similar to the Planned Growth economy~sA. I cannot prove any general

existence or uniqueness theorems except for the special case of log

utility.3 Since this special case does not duplicate the underlying

PG’s equilibrium, it is worth presenting here. The fixed point equation
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is similar enough, though, so that the algorithm based on it exhibits

essentially all the desirable properties which A does (for the

examples I tried). Another way to view this paper is one in which the

concept of a particular algorithm is developed, proven to work, and

shown to work for the core PG economy, and an extension to the MC

economy is shown to work as well.

OutLine or the Paper

The PG and MG models-—and algorithms to solve them——are developed

in the following two sections. The specific questions posed in this

Introduction are then addressed, via some simulations, in Section 4.

Section 5 concludes this paper.



2. THE PLAM4ED GROWTH MODEL

Probtem Statement

The Planned Growth problem is this: for any discount rate j3 �

(0,1). utility function u � I), arid production function F � F, find a

time stationary consumption function c � Cf(K) which maximizes, for

any initial capital stock x0 � K. the quantity

E ptu[c(x)]
t=O

subject to:

c(x) + x~31= f(x~).

U Is the set of u’s such that

u:1R+ ~ IR.

u Is twice continuously differentiable.

u’(c) ) 0. limu’(c) = °, limu’(c) = 0.
c-O c-cO

u”(c) < 0. limu”(c) = —s, limu”(c) = 0.

F is the set of f’s such that

6
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f:jR 4R~. f(O) = 0.

f is twice continuously differentiable,

f’(x) > 0, f”(x) < 0, flf’(O) > 1. f’(O)

f(x) = x for some i~ > 0.

The set of maintainable capital stocks is

K = [0,x].

The feasible set of c’s consists of

f c:K -* K is continuous,
C~(K) = cc:

1 0. ‘C c(x) � f(x).

Equip Cf(K) with the sup norm. As is well known, the solution to the

PlannedGrowth problem is a c � Cf(K) such that

u’[c(x)] = flu’{c[f(x) — c(x)]}f’[f(x) — c(x)] for x � K. (2.1)

The task at hand is to find such a c.

Existence

My attack on (2.1) is to construct a continuous self—map A

defined on a convex, compact subset Cf(K) C Cf(K). Define, first,

— f c:K 4 K is continuous,
Cf(K) = Ic: 0 � c(x) � f(x),

I O� c(y) —c(x) � fly) — f(x) fory �x.



The third condition defining Cf(K) is equivalent to requiring

both c and f — c are increasing functions. Clearly Cf(K)

convex, and the following proposition establishes its compactness.

S

that

is

Proposition 2.1. Cf(K) is compact

Proof. I first show that Cf(K)

for any e > 0 there exists a 6

jc(y) — c(x)I C e holds for any

satisfying ly — xl C O.~ Choose

Cf(K) and F,

is equicontinuous. This is true if

> 0 such that the following is true:

c � Cf(K) and any two points x.y � K

6 = e/f’(O) > 0. Using properties of

~c(y) — c(x)l � jf(y) — f(xfl � f’(O)b = e.

Cf(K) is thus equicontinuous. Cf(K) is also norm—bounded so by the

Arzela—Ascoli theorem6 it is relatively compact; ~f(K) is compact

since it is closed. I

Define the fixed point equation A by

u’[(Ac)(x)] = 13u’(cff(x) — (Ac)(x)]}f’[f(x) — (Ac)(x)] (2.2)

Proposition 2.2. A unique

satisfies (2.2).

Proof. Define A(c) pointwise

A(c), A:Cf(K) -* Cf(K).

as the y for which

exists which

z = Pu’{c[f(x) — yJ}f’[f(x) — y] — u’(y)

4

equals zero. Clearly (unless y = 0 is the root) z is negative for
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y close to 0. positive for y close to f(x). and strictly increases

as y increases . This proves the existence of a unique A(c). Since z

increaseswith y and decreaseswith x, A(c) is increasing in x; by

(2.2) f — A(c) is increasing in x. Hence A:Cf(K) C C~(fQ.

Proposition 2.3. A is continuous and monotone

Proof. Since Cf(K) is equicontinuous and

follows from the pointwise convergence of

which follows from the continuity of

Monotonicity requires c c to imply A(c)

(Ac)(x) for this particular value of x. then

K is compact, continuity

A(c) 4A(c) as cn 4 c,7

the composing functions.

� A(c). Suppose (Ac)(x) >

u’[(Ac)(x)] <f3u’{c[f(x) - (Ac)(x)]}f’[f(x) - (Ac)(x)].

This implies

I’
c{f(x) — (Ac)(x)J > c[f(x) — (Ac)(x)3,

which contradicts c c I

The existence of A’s fixed point can now be established. To do

so I will make use of a Schauder fixed point theorem which states that a

continuous self—map of a non—empty convex and compact subset of a normed

spacehas at least one fixed point.8

Theorem 2.4. There exists a c � ~f(K) such that

c = A(c).
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Proof. By Proposition 2.1 Cf(K) is a convex and compact subset of the

normed space Cf(K). By Proposition 2.2 A maps into itself;

Proposition 2.3 establishes A’s continuity. Hence, via Schauder, a

fixed point exists. I

One shortcoming of the set Cf(K). however, is that

0 C ~f(K). 0 = A(0).

as is obvious from (2.2). so any existence theorem for a fixed point in

C1(K) does not guarantee the existence of a non—zero fixed point. In

the Appendix, though, the existence of a fixed point in the set C1(K) —

0 is established.

The following property of the solution(s) c will, be needed.

Proposition 2.5. A nonzero fixed point c = A(c), c � Cf(K) - 0. must

satisfy c(x) > 0 for x > 0.

Proof. Since c is an increasing function, if c(x0) = 0 then

c(x) = 0 for x � x0. The solution, though, cannot be of this form.

Qioose x0 such that c(x0) = 0 and c(x) >0 for x > x0. At

the solution must satisfy

u’[c(xo)] = flu’{c[f(x0) — c(x0)]}f’[f(x0) — c(xO)].

But, since c[f(x0)] > 0 (f(x0) > x0), the right hand side is bounded

while the left is not. I
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Wit queness

I will prove the uniqueness of a positive solution by developing

and exploiting the concavity of A.9 Unfortunately, I need an

additional (sufficient, but not necessary) restiction on U to

guarantee A’s concavity.

Define the set U’ as

U’ = U fl {u: u’(xy) = u’(x)u’(y)}.

For example, u(c) = c1
— U/(

1
— a), a > 0. is in U’. Consider, now,

the following definition of concavity.

Definition. Call the monotone function A:Cf(K) 4 C~,(K) f—concave if

the following two properties hold for any arbitrarily small x0 > 0.

(1) For each c � Cf(K) such that c(x) >0 for x >0. an a exists

such that

a(c.x0)f(x) � (Ac)(x) � f(x) for x � x0, a >0. (2.3)

(2) For any- Oct Ci, an r~ exists such that

(Atc)(x) � rj(t,c.x0)t(Ac)(x) for x � x0. t~> 1. (2.4)

Proposition 2.6. For any u � U’. A is f—concave. -

Proof. Define a(c.x0) by

a(c,x0) = mm — (Ac)(x) > ~•

x0�x�x f(x)



12

This it satisfies (2.3). For condition (2,4) note that (Atc)(x) <

(Ac)(x) for x � x0, hence

u’[(Atc)(x)] C pu’{tc[f(x) — (Ac)(x)]}f[f(x) — (Ac)(x)] for x ~ xO.

Since u � U’, the right hand side above is just u’[t(Ac)(x)]. hence an

r~which satisfies (2.4) is

71(t,c,x0) = mm — (Atc)(x) > 1. I
x0 � x � x t(Ac)(x)

Theorem 2.7. The fixed point of A is unique in Cf(K) — 0 if, as in

Proposition 2.6. A is f—concave.

Proof, Assume there exist two nonzero solutions c1 and c2. By

Proposition 2.5 c1(x) > 0 and c2(x) > 0 for x > 0. Suppose, for

now,

c1(x) = c2(x) for 0 � x � x0, x0 > 0,

where x0 can be arbitrarily small, Assume, without loss of

generality.

c1(x) K c2(x) for some x > x0. (2.5)

Since A is f—concave,

c1(x) = (Ac1)(x) for all x,

� a(c1,x0)f(x) for x � x0.
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Since ci and c2 are equal for x � x0, and since c2(x) � f(x) for

all x,

c1(x) � a(c1.x0)c2(x) for all x. (2.6)

Because of conditions (2.5) and (2.6). there exists a t0 (a(c1,x,~) �

t
0

C 1) such that

c1(x) � t0c2(x) for all x,

and, for any t > t
0

.

c1(x) C tc2(x) for some x � x0. (2.7)

Combine theseresults and use the monotoneityof A to obtain, for

every x � x0, /

c1(x) = (Ac1)(x)

� (At0c2)(x)

� ~(t0,c2,x0)t0(Ac2)(x)

- � ~(t0,c2,x0)t0c2(x).

Since n(t0,c2.x0)t0 > t0. (2.7) contradicts this last inequality. Thus

if c1 and c2 agree on [0.x0] for an arbitrarily small x0, then

they agree on [0,x]. In the limit, then, as x0 40. if c1 and c2

agreeat 0 (which they must) then they agree on {0.~]. I

See Krasnosel’skit and Zabretko [i5] for a version of the concavity

definition and Theorem 2.7 where a(c,x0) does not depend on x0.
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Constructing the Solution

The result of this section is stated in the following theorem.

Theorem 2.8.10 The sequence {cn} defined by

c~1 = A(c), c0 � Cf(K) — 0 given.

converges to the unique nonzero fixed point, say cM. if A is

f—concave.

Proof. Since c0 � Cf(K) — 0, there exists a nonzero c such that

0 � 2 � c0 ~ f.

and because A is monotone,

A”(c) � A”(c0) � A”(f).

Since Cf(K) is compact, both An(c) and An(f) converge and by

Theorem 2.7 they converge to the unique solution cM (it can be easily

shown that A”(c) does not converge to zero; use, e.g.. a s of the

form defined in the Appendix). Thus, in the limit,

K n M
c ~ lim A (c) � c

Convergence here is pointwise but, as in Proposition 2.2, since Cf(K)

is equicontinuous and K is compact,

Illim An(c) - cTMII = 0. I
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Figure 1 displays an actual converging sequence of consumption

functions based on the foregoing algorithm.1~ As this figure shows.

convergence is obtained fairly rapidly and smoothly. These results are

not specific to the particular values of the parameters.
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3. THE MONFIARY GROWTHMODEL

Probtem Statement

The Monetary Growth economy is comprised of a single representative

consumer whose ex post utility from a consumption sequence {c~f.~ is

I f3t(~)
t=O

Considerutility functions in the set

U 0 (U: cu’(c) � B ( w for c � K, K redefined below}.

Treat this consumer as an expected utility maximizer, To complete the

description of the consumer’s problem I will specify the distribution

with respect to which expectations are taken and specify what the

consumer is choosing to nnximize expected utility.

The economy’s exogenousvariables are suirrarized in a sequenceof

shocks

� 5, S is a finite set.

16
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At time 0, the shock � S is known. The joint distribution of

these shocks is determined by the Markov probabilities

Pr{s~+1 = ~ = s} = ‘ir(sIs). t � 0,

Aggregate capital at time t is denoted as X~, which is

determined recursively by

X~1= g(X~.s). t ~ 0. � K given. g:KxS 4K.

To the representativeconsumer, the aggregateinvestment function g is

a known and fixed function. Denote the representative consumer’s

capital stock as x~. which produces, at time t, an output of

f(xt.st).

Consider production functions in the set F(S). where

F(S) is the set of f’s such that

f:IR~xS~ f(0.s) = 0 for every s �S,

f( .s) is twice continuously differentiable,

o < f’(x.s) K ~. f”(x.s) < 0 for every x � lR~. s � 5,

an x > 0 exists such that x > x implies f(x,s) K x

for every s � S. and f(x.s) = x for some s � S. -

Define K = [0,x] as before, but with this new value of ~c. As in

section 2; f(KxS) C K.
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The aggregate money supply at time t is denoted as M~. where the

sequenceof money, {M~}. is determined recursively by

= h(st+1)M~. M0 � (0,w) known, h:S 4 (Q,w),

Refer to h as the monetary policy function; this function is known and

fixed. Consider only h � H. where

H = {h: h(s) >0. j3 I r(s’Is) K 1 for any s�
s’�S h(s)

Denote the representativeconsumer’s time t money holdings, after any

monetary transfer, as m~.and the consumer’s time t denend for money

to be carried into t + 1 as m+1. At t + 1. the single

representative consumer receives the lump—sum monetary transfer

[h(st+i) — 1]M~.

Post—transfer money. m~+1. then is

m~1= m~1+ [h(s1) — l]Mt.

Refer to m+1 as pre—transfer money.

The price of consumption (and capital) at time t in terms of. time,

t money is denotedas P. which is determinedby -

= M~p(X~.s~).pKxS 4 (O.w].

The function p is time-stationary and known, The discount on a bond
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is denoted as where

= q(X~.s). q:KxS -* [0.1].

Denote the representative consumer’s time t demandfor a bond maturing

at t + 1 as b~+i. This bond is thus purchasedwith ~ dollars

and pays b~+i dollars, both payments made with contemporaneous money.

With output f(x~.st). post—transfer money holdings m~. and bonds

bt. the consumer must choose current consumption c~. capital stock

pre—transfermoney holdings m~+1.and bonds bt+l. This choice

imist obey the budget constraint

+ x~+1) + ____ + ____ = p(Xt.st)f(xt.s~) + +

(3.1)

and the cash—in—advanceconstraint

p(X~.s~)c~� .-!. (3.2)

From a functional perspective, then, the representative consumer chooses

four functions such that

- nib
ct =C(x~.X~.±.±.s~). (3.3)

M~M~

- x~÷1= G(xt.Xt.L~.±s~). (3.4)
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it’ it b
t+1 = ~ (3.5)

M~M~

mb
t+ = B(xt.X~.i._i.s~). (3.6)

M~M~

For a fixed C. G. L and B. expected utility is a well—defined

quantity.

in0 bc~
Define v(x0.X0._._. ~ as the naximized objective function.

N0 N0

The value function v satisfies (us!ng the shorter expressions C0,

C1, etc.. to denote values of functions evaluated at time 0 or time 1

variables respectively)

mb
= (3.7)

N0 N0

f + (h1-1)M0 B0M0nax (u(C0) + P 1 vjG0.X1. . .5~ n’(s11s0)}
C,G,L.B ~ ~ h1N0 h1N0

where the maximization is subject to (3.1)—(3.2), using the functions in

(3.3)-(3.6).

A stattonary equilibrium for this economy is a v, C, G, L, B,

g. p and q such that, for any x � K and s � S.

v satisfies (3.7)

C. C, L and B nnximize the right hand side of (3.7)
subject to (3.1)—(3.2)
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C(x,x,1,0.s) = g(x.s). (3.8)

1 = L(x.x.1.0.s). (3.9)

0 = B(x,x,1,0,s), (3.10)

C(x.x,1.0.s) + G(x,x,1,0,s) = f(x,s), (3.11)

p(x,s)C(x,x,1,0.s) � 1. (3.12)

Define c(x.s) C(x.x,1.0.s). Equation (3.8) equates the single

representative consumer’s capital with the economy’s, and (3.9) equates

money demand to money supply, Equation (3.10) requires the equilibrium

number of bonds to equal o,13 Equation (3.11) requires the consumer to

lie on his budget constraint and (3,12) requires the cash—in—advance

constraint to hold. -

rob mb
Let ~ and ~ be the multipliers

associatedwith (3.1) and (3.2). respectively, in the maximation problem

in (3.7). The first order conditions for this maximization problem are

0 = u’(c0) — ~~“o+

L +h —lB
0 = Plvi[Go.Xi. 0 h1 ‘~‘5l}~(5l150) —

L0+h1—1B0 ~ —

o=pIv3C,x. ‘‘al —A0.

1 1 1
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L9+h1-180 ir(s11s0) -
0 = ~1v4 G0,X1, h1 ‘~‘

5~ h1 - X0q,~.

From (3.7) obtain, at the optimum.

mb
v1(x0.X0..,.s0) =

00

in0 b
v3(x0.X0...s0) = +

00

m0b0 —
v4(x0,X0,,,s0) = A

0
.

00

Define

A(x,s) K(x,x,1.0.s), ‘p(x,s) E ;(x.x.1.o,s).

Impose the market equilibrium conditions and combine the above equations

to arrive at six equations in the six unknown functions c, g. p. q,

X,and p mapping KxS-*K (c and g) or KXS9Dt1, (p. q, A,and

if,)

c(x,s) + g(x,s) = f(x,s). (3.13)

p(x,s)c(x,s) � I with equality if cp(x,s) > 0, (3.14)

u’[c(x.s)] = [X(x,s) + ‘p(x,s)]p(x,s). (3.15)
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A(x,s)p(x.s) = j
3

fl[g(x,s),s’)p[g(x.s),s’]f’[g(x,s).s’]ir(s’ Is). (3.16)

A(x.s) = ~!{A[g(x,s).s’] + p[g(~,~)~IJ}1T(5 Is), (3.17)
h(s’)

A(x.s)q(x,s) = p1A[g(x.s).s’f~~1~~. (3.18)
h(s)

Existence and Uniqueness

I address existence and uniqueness questions only as they pertain

to (3.13)—(3.lS). These lix equations embody two choices between today

and tomorrow (equation (3,16) and (3.17)). so these six equations in six

unknowns should collapse into two nontrivial fixed point equations in

two unknowns. These unknowns will turn out to be the two functions A

and c. -

To this end, begin with equations (3.14) and (3.15).

Proposition 3.1. Equations (3.14) and (3,15) can be written as

p(x,s) =nex{c(x,s)u’[c(x.s)] — X(x.s), 0), (3.19)

p(x.s) = min{ 1 u’[c(x.s)]} (3.20)
c(x,s) A(x,s)

Proof. Obtain, from (3.19).

A(x,s) + p(x.s) = max{c(x,s)u’(c(x,s)], A(x.s)}. -

To show that (3.15) holds, write
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[A(x.s) + ‘p(x.s)]p(x,s)

1 u’[c(x.s)]= nex{c(x.s)u [c(x,s)], A(x.s)}min{ . }
c(x,s) A(x.s)

J u’[c(x.s)] if c(x.s)u’[c(x,s)] � Mx.s)

u’[c(x,s)] if c(x,s)u’[c(x.s)] � X(x.s).

To show that (3.14) holds. derive, from (3.20).

c(x,s)u’[c(x,s)]p(x.s)c(x.s) = min{I. } ~ I.
A(x,s)

and derive, from (3.19).

.p(x,s) > o ~f’ c(x.s)u’[c(x.s)] >
X(x.s)

To formulate the equation in A. use (3.19) in (3.17) to obtain

X(x.s) = f3lmax{A[f(x,s) — c(x,s),s’], (3.21)

c[f(x,s) — c(x,s),s’]u[c(f(x,s) — c(x,s),s’)]}~~ js)
h(s)

To formulate the equation in c, use (3.20) in (3.16) to obtain

u’[c(x,sfl) (322)
c(x,s)

= pmin{ — ~ u’[c(f(x,s) — c(x,s),s’)]}
c[f(x.s) — c(x,s),t]

f’[f(x.s) — c(x,s),s~)1r(s’ Is).
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Consider fixed points A and c in sets rB(KxS) and Cf(KXS).

respectively. Let C(KxS) be the space of continuous functions taking

KxS -~Ilk, equipped with the sup norm, and define r3(KxS) C C(KxS) as

A: KxS ~ A(.,s) is continuous.

18(KxS) = ~ A:
I O�A(x,s) �B.

Let Cf(KXS) be the obvious extension of Cf(K) to stochastic

production and define, also, the subset Cf(KXS) C C~,(KxS) as

— f c:KxS 9K, c(,s) is continuous,

Cf(KXS) = c: 0 � c(x,s) � f(x,s),
1 0 � c(y,s) — c(x.s) � f(y,s) — f(x,s) for y � x.

Clearly r0(KxS) is a complete metric space and Cf(KXS). as the

similar set Cf(K) in section 2. is a compact subset of a normed space.

The Fixed Point Equation in A

The result of this subsection is stated as

Theorem 3,2. For any c � C1(KxS). there exists a unique A � 13(KxS)

which satisfies (3.21); this defines a continuous function A =

Proof. Define, for a fixed c � C1(KXS), the function T:FB(KxS) .3

T(FB(KXS)) as the right hand side of (3.21). I first show that

T(FB(KxS)) C r~(KxS). CLearly 1(A) is continuous for continuous A.

The upper bound B holds for T(A) since

(TA)(x,s) � P!max{B. B}T(5 js) � ~
h(s)
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T is a contraction. To prove this, choose a A1 and A2, both in

rB(Kxs). Then (writing g = f(x.s) — c(x.s) to shorten the equations).

IIT(A1) — T(X2)II

= nøx ~J3~[max{A1(g.s’), c(g.s’)u’(c(g.s’))} —

max{X2(g,s~). c(g.s’)u’(c(g.s’))}]~~ Is)j
h(s’)

� max [J3,~5IS)]
s h(s~)

max~max{A1(x.s’). c(x.s’)u’[c(

nnx{A2(x.s), c(x.s~)u’[c(

x.s’)]) -

The following four cases arise for this last inequality.

For cases (i) and (ii). clearly

lnex{A1(x.s’). c(x,s’)u’[c(x,s’)]} — max(A2(x,s’), c(x,s’)u’[c(x,s’)]}I

� 1X1(x.s’) — X2(x,s’)I.

case i: A1(x,s’) � c(x,s’)u’[c(x,s’)J. A~(x.s~) � c(x,s’)u’[c(x.s’).].

case ii: A1(x,s’) < c(x.s’)u’[c(x,s~)]. ?¼2(x.s’) < c(x,s’)u~[c(x,s’)].

case iii: A1(x,s’) � c(x.s’)u[c(x,s~)], A2(x.s) < c(x,s’)u’[c(x,s’)].

case iv: A1(x,s’) < c(x,s’)u’[c(x,s’)], A2(x.s’) � c(x.s’)u’[c(x,s)].

For case (iii),
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Imax{A1(x,s’). c(x,s’)u’[c(x,s’)3} - max{X2(x.s’), c(x.s’)u’[c(x.s’)]}l

= jA1(x.s’) —c(x.s’)u’[c(x.s’)]j

� 1A1(x.s’) - A2(x.s)l.

This last inequality follows since

0 � A2(x,s’) � c(x.s’)u’[c(x,s’)] � A1(x,s’)

is true by hypothesis. Case (iv) is similar to case (iii).

Hence. -

IIT(A1) — T(A2)II � rr~x[f3f(5 1~~]llA1— A211.
5 h(s’)

Since 0 < ~jTr(tIs) < 1 for every 5. T is a contraction. FB(KXs) is

h( t)

a complete metric space, so by Banach’s fixed point theorem there exists

a unique N � 18(KxS) which solves (3.21). Since T is a contraction

which is continuous in c. - the dependence N = ‘P(c) - is continuous, •

The Fixed Point Equation in c

In general I would like to prove the existence of a c to (3.22)

where 41(c) replaces A. This I am unable to do. Here I only consider

the existence and uniquenessof a fixed point c for the special case

of log utility. With u(c)= log(c). (3.22) simplifies to

A(s) = A(t) f’[f(x,s)-c(x,s),s’]lr(s’Is), (3.23)

c(x,s) c[f(x,s)—c(x.s). tJ

where
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N(s) = pylf(5’15)
h(s’)

Note that A is independentof the consumption-function and capital,

and the notation on x is suppressed. Equation (3.23) is quite similar

to the first order condition from the stochastic PC model. The

existence proof for a c which solves (3.23) is roughly the same as

section 2’s PG existence proof, so I will not spell the proof out here,

Also, if a positive solution c(x,s) > 0 for x > 0 exists, the proof

of this solution’s uniqueness in the set ~f(KXS) — 0 is similar to

section 2’s proof.

Constructing the SoLution

To explicitly construct the solution. I will rely more on a joint

determination of the solution)4 Beginning with some A0 and c0,

recursively update to a A1 and c1 such that

A1(x,s) = j3luax{X0[f(x.s) —

c0[f(x.s) - c1(x.s),s’]u’[c0(f(x.s) — c1(x,s).si]}~~ ~s)
h(s)

N1(x,s)
min{ , u’[cl(x.s)]}

c1(x,s)

X0[f(x.s) — c1(x,s).t]

flY2min{ , u[c0(f(x.s) — c1(x,s).s)]}
c0[f(x.s) — c1(x,s).t]

f’[f(x,s) — ci(x.s).s’Jlr(s’ Is).

Figure 2 displays a particular sequence 0’n’ c} computed according to

the above algorithm. In general. this figure exhibits the same rapid
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and smooth convergence as did Figure 1. It is striking how similar the

consumption sequence in Figure 2 is to that in Figure 1. Note also that

the A sequence is non—monotone towards the origin.

1.0 1.0

c 0.9 0.9

Oo.s 0.8

N
80.7 Lo,7

A
U 0.6 0.6

M M
po.s B05

A0.4
00.3 0.3

N
b.2 0.2

0.1 0.]~

0.0 0.0

0,0 0.2 0.4 0.6 0.8 1.0 0.0 0,2 0.4 0.6 0.8 1.0

CAPITAL CAPITAL

= .95, u(c) = c~, flx) = {[1 + t6x]1 —1)/i

FIG. 2. MG (DNVERGENCE

Welfare and Optimal Monetary Growth

For any solution to the MG economy, the discounted expected utility

obtained, starting from (x,s). is v(x.s), where v solves

v(x,s) = u[c(x.s)3 + (32v{g(x,s),s’]ir(s’~s).

Since c and g depend on h. v also depends on h. This section

considers an optimal h. one which maximizes v. It should come as no

surprize that optimality is obtained when h = /3.

Clearly v is at its maximum when c and g solve the underlying

stochastic PC model. This solution is obtained when c and g

stat is fy

Co = I
Ao = pfu’U)

Aco
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c(x.s) + g(x.s) = f(x,s),

- u’{c(x,s)] = fiIu’{c~g(x.s).s’]}f’(g(x,s).s’)r(s’~s).

But these two equations, along with the following ones, solve the MG

model:

h = p,’5

.p(x.s) = 0. X(x.s) = f for any if > B.

p(x,s) = u’fc(x.s)’j/f, q(x,s) = 1.

Equation (3.13) is obviously satisfied. For (3.14).

p(x.s)c(x.s) = c(x,s)u~[c(x.s))/if < 1.

which is consistent with .p(x.s) = 0. (3.15) holds since, per above.

the right hand side is

[X(x,s) + p(x.s)Jp(x.s)

= fu’[c(x.s)]/f = u’[c(x,s)].

(3.16) holds since A(x.s)p(x,s) = u’[c(x.s)] and (c.g) solve the

underlying stochastic PC model, (3.17) holds since

pI{N[g(x,s).s’3 + c[g(x.s),s]}t~ ~s)
h(s’)

= 2fr(s’ Is) = if.
p
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Finally, q(x.s) = 1 (zero nominal int~rest rate) clearly solves (3.18).

The above analysis also makes clear that, for an arbitrary monetary

policy, the MG economy nay not be Pareto Optimal. Consumption and

investment in the monetary economy may differ from its underlying real

economy. Subject to the NC technology, a central planner can improve on

welfare by letting c and g solve the PG model, and setting

p(x,s) = 1/c(x.s).

This divergence, of course, is the reason for this section.



4. MONEFABYPOLICY AND THE ECONOMY

Monetary policy’s effect on consumption and capital can best be

understood indirectly through its effect on nominal interest rates: if

monetary policy does not affect relative nominal interest rates, then it

should have no effect on real variables, Clearly a varying monetary

growth rate can alter relative interest rates, thus leading to a

non—neutrality. I will explicitly look at this effect later in this

section. A somewhat more interesting question, developed a bit in the

introduction, is whether or not a constant increase in the rate of

monetary growth can alter relative rates. This effect. it turns out,

hinges on the possibility of zero nominal interest rates (a slack

cash—in—advance constraint).

I expect zero nominal interest rates in the Monetary Growth economy

whenever rates are negative in the corresponding economy where

consumption is subject to an equality cash—in—advance constraint. Call

this latter economy the Constrained Monetary Growth economy. In the

deterministic constrained economy. nominal interest rates (r~) are

defined, in sequence notation, as

32
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1 + r~ = ~ f’()

flc~+i

for some optimal consumption sequence. With log utility, the

interaction between real rates16 (marginal productivity) and inflation

= c~/c~+i) is large enough to produce a constant positive

(h > /3) nominal rate

1 + r~ = h/fl.

This rate is also the deterministic MC economy’s rate at the

stationary state, for any utility function.17 Consider now a more

concave utility function (cu’(c) decreasing). Consumption should then

grow slower close to the origin (where small changes in consumption lead

to larger changes in marginal rates of substitution) and hence interest

0. Z4

1 0.22

N
0.20

E 0.1.8

H 0. 16

E
s 0,14

T 0.12

T 0.06

E 0.04

002
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0.0 0.1. 0.2 0-3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 3. MG NOMINAL INTEREST RATES
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rates should be relatively higher close to the origin. If interest

rates approach negative values, then this will occur to the right of the

stationary state for more concave than log utility functions and towards

the origin for less concave ones. This pattern for the MG economy is

exhibited in Figure 3. A surprising aspect of this figure is the large

set of capital values for which interest rates equal zero,

Consider raising the monetary growth rate. As exhibited in Figure

4, higher rates of monetary growth predictably lead to a spending of

excess cash. But also exhibited in FIgure 4 is a substitution out of

investment and into consumption, the opposite change of what I expected.
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The reason for this substitution is that with no excess cash balances.

money is spent at the rate at which output is consumed, and thus in the

region where previously excess cash balanceswere heid. where money was

h =2

C

h=l

h=l
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spent at a faster rate, relative inflation rates have dropped. This

makes consumption relatively cheaper. In a nutshell, intertemporal

substitution determines the location of the slack cash—in—advance

region, inflation determines the size of this region, and relative

inflation rates determine the substitution between consumption and

capital.

A variable monetary policy has a much more straightforward (and

probably more relevant) effect. First, if monetary policy is

stochastic, but the expected monetary growth rate is a constant, then

this uncertainty has no real effect. This result can be easily proven

by manipulating the first order conditions using this type of monetary

policy. This fact dispells the notion that monetary policy has an

effect by making the cash—in—advance constraint ex post binding or not

binding depending upon a negative or positive monetary shock. Second.

if expected monetary growth varies, then so will nominal interest rates,

This leads to a real inflation tax effect by lowering consumption in

relatively high nominal interest rate states and conversely. Lower

consumption means higher investment, lower real interest rates, and

lower real balances, etc.

When production is also stochastic, various correlations between

monetary shocks and these real shocks will result in quite different

effects of monetary policy on the real economy. Consider, for example.

a pro—shock monetary policy as one with a positive correlation.

Consumption will be (suboptimally) smoothed since when output is

relatively high, nominal interest rates are relatively high and hence

consumption will be lower than with, say, a constant monetary policy.

Conversely, consumption will become more variable with a counter—shock

monetary policy. These effects are exhibited in Figure 5. Note that
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even the ordering of consumption is changed with the pro—shock monetary

policy

fi = .95. u(c) = C2, ttx.s) = {(1 +
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5, CDNCLUDINC REMARKS

This paper has been an attempt to integrate a transactions theory

of money into a general equilibrium theory of capital, with the result

being a computable model economy capable of picturing a rich dependence

of the real economy on monetary policy. This model economy was able to

address a particular consumption—capital substitution question, and

appears well—suited for handling other questions. This exercise has. I

think, shed light on the workings of a theoretical cash—in—advance

economy as well as on an effect of monetary policy in an actual economy.

Equally as significant was the derivation of an algorithm capable

of constructing solutions to these types of models. We currently are

somewhat short on algorithms which can provide solutions in terms of

decision rules, and it’s getting well beyond the stage where explicit

solutions based on simplifying assumptions are not much more than a

check on algebra.

37



APPENDIX

Proposition A.1. A nonzero fixed point of A exists.

Proof. Since A is monotone, a sufficient condition for the existence

of a nonzero fixed point is the existence of a 2 � Cf(K). not

identically zero, such that

u’[c(x)] ~ Pu’Ic[f(x) — c(x)]}f’[f(x) — c(x)] for x � K. (A.l)

Define ; such that f’[f(x)] = 1. Let a = f(x). Define

O�x�x,

c(x) = ~a(x—x)
L~f(;) - x] fN) � x x.

Note that, for x � x,

j3f[f(x) — c(x)] � 3f’[f(x)] = 1,

and

c[f(x) - c(x)] = a[f(;) -

A sufficient condition for (A.1) is thus c(x) � c[f(x) — c(x)], which

is clearly true, - I
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ENI)NOTES

1. See Tobin [25].

2. Other studies include, for example, Tobin [25] and Fischer [9]

who approach money from a portfolio perspective, and Sidrauski [22] who

approaches money from a consumption good perspective. Stockman [24]

develops a cash—in—advance model of money and capital, but focuses

i~inly on properties of stationary states,

3. For models without capital. Crandmount and Younes [11. 12],

Lucas [17]. and Lucas and Stokey [19] prove the existence of an

equilibrium where money serves as a medium of exchange. Townsend [26]

has a general proof of existence for cash—in—advance models with

capital. but his proof is somewhat non—constructive.

4. A compact subset of a metric space is any set for which the

Bolzano—Weierstrauss theorem holds: every bounded sequence contains a

convergent subsequence. This statement is valid for any

finite—dimensional normed spaced but is generally invalid for an

infinite—dimensional metric space. See Heuser [13. Section 2.10]. -

5. See Rudin [20. Definition 7.22]. . .,.

6. The Arzela—Ascoli theorem states that a subset of continuous

39
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functions defined on a compact set is relatively compact if it is

bounded and equicontinuous. See Rudin [20. Theorem 7.25].

7, See Rudin [20. Exercise 7.16].

8. See Heuser [13. Theorem 106.3].

9. Beals and Koopmans [1]. via a central planner, established

uniqueness by relying on the strict quasi—concavity of the nnxin~nd.

10. Convergence can also be proven by exploiting A’s concavity.

This result is basically spelled out in Krasnosel’skiI and Zabrelko

[15]. but you need to employ the same type of extension used in Theorem

2.7. This extension is rather lengthy. My use of monotonicity in

Theorem 2.8 is taken from Lucas and Stokey’s [19] Theorem 3.

11. Since c0 = f, this is the optinal consumption function

sequence for the finite time horizon Planned Growth problem where the

time horizon goes to infinity (for zero investment in the final state).

12. To motivate the restriction embedded in II, I’ll have to get a

bit ahead of the story. In the deterministic MG economy, the

stationary state is determined by I = 13f(xM). and inflation,

since consumption is constant, is h — 1. The nominal interest rate is

thus h/fi — 1, which, if money is not to strictly dominate capital, must

not become negative. Essentially, then, the restriction in H ensures

that a stationary state exists.

13. Other solutions exist. For example, a consumer could choose

to continually roll over debt and thereby obtain an arbitrarily large

expected utility. I could have explicity ruled this out by a variety of

methods, one of which is bounding the amount of debt.

14. This is likely how a fixed point theorem will be proven. The

problem I had is retaining the property that N/c1 be a decreasing

function (in x).
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15. Actually, any monetary policy with this as the constant

conditional expectation (precisely stated, when E(1/h) = 1/fl) will do.

See the discussion in section 4.

16. Define real interest rates as the return on a consumption

bond. This rate is then equal to -

X(x,s)p(x.s) — 1

flIN[g(x.s).s’Jp[g(x,s).s’]ir(s’ fs)

and expected inflation is

Th(s’)p[g(x.s),s’]ir(s’~s) — 1.

p(x,s)

Note that the nominal interest rate differs from the real rate by an

expected money growth term and an expected inflation term relative to

monetary growth.

17. In fact, the deterministic stationary state is independent of

money’s growth rate, This is not true if money and investment are both

subject to a cash—in—advance constraint, as in Stockman [25], for which

the stationary state is determined by h/f3 = j3f’(xM).
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