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Empirical studies have begun to detect substantial conditional

heterogeneity in the laws of motion of some economic time series. For

example, heterogeneity in exchange rate dynamics has been documented by

Baillie and Bollerslev (1988) and Hsieh (1988) using ARCHand CAROl models and

by Gallant, Hsieh, and Tauchen (1988) using Gallant and Tauchen’s (1988)

seminonparametric (SN?) technique. Hussey (1988) applies the SN? technique to

an aggregate employment series and finds important heterogeneity in the

conditional density of that data also. Structural economic models for these

time series, to be successful, need to explain the sort of conditional

heterogeneity in the data that statistical models such as ARCH and SN? have

identified. In the case of exchange rates, Gallant, Hsieh, and Tauchen show

how a conditional mixture model with uneven flow of information to the market

is consistentwith the form of conditional heterogeneitythey detect in the

data. The objective of this paper is to evaluate whether a structural factor

demand model with costly adjustment, which has been used to model employment

dynamics (Sargent, 1978), can be specified in a way that will generate forms

of conditional heterogeneity similar to that found in the employment data.

The factor demand model with costly adjustment is usually specified as a

linear-quadratic model because that specification admits an explicit solution,

However, that solution is a linear law of motion for the control variable,

which implies that there is heterogeneity only in the mean of the variable’s

conditional distribution. Thus an L-Q model could not explain the conditional

heterogeneity in employment detected by Hussey (l988).t Yet it is possible

that heterogeneity in higher order moments could be explained by a model that

maintains the costly adjustment structure but relaxes the quadratic

restriction on the specification.



0 fl

2

In the next section of this paper I describe a numerical method for

obtaining approximate solutions to general specifications of factor demand

models with costly adjustment. The method combines the work of Tauchen (1987)

on obtaining discrete approximations to continuous forcing functions and of

Coleman (1987) on solving rational expectations models with endogenousstate

variables, given a discrete approximation to the forcing functions. The third

section of the paper presents the optimal decision rules that this method

finds for both a linear-quadratic specification and an alternative

specification of the factor demand model.

Of particular interest are specifications of the factor demand model in

which the adjustment costs are non-quadratic, or not symmetric about a zero

adjustment. Asymmetric adjustment costs have been suggested as an

explanation for some features of employment dynamics such as in Weiss (1986).

Also, Neftci’s (1984) work on asymmetry in unemployment rates makes asymmetric

adjustment costs for labor an appealing concept. Neftci finds that

unemploymentrates are more persistent during decreasingphasesthan during

increasing. Gradual, persistent declines in the unemployment rate could be

associated with significant costs to rapidly increasing employment during

business cycle upturns, while sharper, less persist increases in the

unemploymentrate might be the result of relatively smaller costs to

decreasing employment during declining phasesof the business cycle.

The last sections of the paper are devoted to the question of whether the

law of motion for the control variable implied by the asymmetric adjustment

cost model is similar to the that of actual employment data. To make this

comparison, Gallant and Tauchen’s SFTP technique is used to characterize the

conditional distributions of the two variables. This technique, which is

described in section four, is basically a flexible form model for time series;
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it can accommodate both non-Gaussian distributions and conditional

heterogeneity in the mean, variance, and higher order moments of

distributions. For the asymmetric adjustment cost model, the decision rule

obtained from solving the model is used to simulate a long realization of the

control variable. SN? models are then fitted to the simulated data and to

actual employment data, and the estimated conditional distributions are

compared in section five.

II. Numerical Method for Solving Factor DemandModels With Costly Adjustment

The factor demand model with costly adjustment can be described as

follows. A firm selects the level of its single factor of production nt to

maximize its expected discounted cash flow

~ fl3[f(n~+1~c~÷~) - w~÷~n~÷~- c(n~÷~- nt+jin] (2.1)

subject to ntl given, where n~ is the level of the factor at time t, w,~is

the real rental rate for the factor, f(n~~c~)is the production function,

is a random shock to technology, and c(.’) is the adjustmentcost function.

The adjustment cost function is usually specified such that c(O) 0 and

c(x) ~ 0 for x • 0. The Euler equation for the firm’s optimization problem is

f1(n~~c~)- w~ - c’(n~ - n~1) + $E~[c’(n~÷1- nt)] 0. (2.2)

For the exogenousvariables z~ (c~w~)’ the firm faces a given law of

motion, which in this paper is specified as a linear Gaussian autoregression
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— A0 ÷A1z~1 + A2z~2 + ... + ~ + ~ u~— N(0,Z)

(2.3)

E~1[u~] — 0.

More complex laws of motion for the exogenous variables can be accommodated by

the solution method of this paper, but the point of interest is the type of

conditional heterogeneity that an asymmetric adjustment cost structure will

imply given relatively simple forcing functions.

With y~ (z~, z~1, . . . the solution to the firm’s

optimization problem is the decision rule

that satisfies the Euler equation. This rule relates the current value of the

factor to current and lagged values of the exogenous variables and to the

value of the factor in the previous period.

Coleman’s (1987) algorithm for solving rational expectations models with

endogenousstate variables can be applied to this problem. The algorithm

solves the problem by iterating over possible forms for the decision rule to

find one that satisfies the Euler equation. Given some postulated form of the

decision rule W0(y~,n~p, the left side of the Euler equation can be written

as

- w~- c’(n~ - n~1) + ØE~[c’(W0(y~÷1~n~)-

The algorithm determines an updated “guess” for the decision rule,

~ by substituting this new rule into the Euler equation for nt and
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finding the form of 1It1(y~~n~1) that satisfies

- - c’(t1(y~~n~1)- n~1)

(2.4)

÷~ W1(y~~n~1fl}— 0.

After each iteration, ‘I’1(y~~n~1)is renamed to be the old guess at the

decision rule, W0(y~.n~1).and a new W1(y~~n~1)is determined with the next

iteration. This process continues until the decision rule updates converge.

To implement the algorithm, a discrete state-space of the exogenous and

endogenousvariables is constructed. If one uses N discrete values for z,

there are I — N1~’ discrete values for y, the vector of L concatenated z’s.

With I discrete values for the exogenous variables,

y~, is 1,2 ,..,,I,

and J discrete values for the endogenous variable,

j — 1,2

there are I.J states in the system. State “ij” is defined as the variables

taking on the values (y1,n.). At each iteration, solving for an updated form

of the decision rule amounts to solving for an updated value of the decision

rule for each state. Thus for the discrete system, the decision rule t(.,.)

can be thought of as an I x 3 matrix of values of the continuous decision rule

evaluated at the I•J discrete values of (y.,n.).

For any set of discrete state values for the exogenous variables,

equation (2.3) implies a matrix of transition probabilities between those

states. (How the discrete values are selected and the transition

probabilities computed is discussed later in this section.) The probability

of going from state 1. of the exogenous variables in one period to state k in
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the following period can be expressed as ~(Y~)Y~). These transition

probabilities can be used to evaluate the expectations operator in a discrete

version of the Euler equation.

Equation (2.4) for the discrete system is

- w1 - c’(W1(y.,n.) - n.)

(2.5)

+ k—l Oklij - ~ —0,

i — 1,2,..., I and j — 1,2 ,...,J,

for which W(y1,n~) must be determined for each state ij. (In the above

equation, c~is the first element and w~is the secondelement of the vector

y..) To reduce the complexity of equation (2.5), one can let x~. —

which is the updated value of the decision rule in state ij, so the equation

becomes

f1(x..,c.) - w~ - c’(x~. - n.)

(2.6)

+ $Z[c’(WO(yklx..) - x..)•g(y~~y.)] — 0,

i — 1,2 I and j 1,2 ,...,J.

Each iteration consists of finding the value of x5~ that satisfies

equation (2.6) for each state ij. These x~ then become the estimated values

of the decision rule that are used as t0(~.~n~) for the next iteration.2 The

algorithm is considered to have convergedwhen



max 1~’1(y1,n.) - ~0~y1,j’•~ s
(Y.~nj)

where ~ is some small number.

In order to get reasonable solutions with this technique, one would like

to have a rigorous way of selecting the discrete values of the exogenous

variables and specifying the transition probabilities between those values.

This goal can be accomplished by using Tauchen’s (1987) quadrature-based

method, which provides a discrete state-space model that approximates a given

continuous law of motion. The translation from a continuous law of motion to

a discrete one is particularly useful since economists are usually better able

to determine continuous characterizations for the laws of motion of forcing

variables. For example, in the problems considered in the next section, it

would be difficult to know how to chose directly discrete values and

transition probabilities for the exogenous variables. However, it is possible

to get a reasonable estimate of those variables’ continuous law of motion,

which Tauchen’s method can then use to construct a discrete model.

Tauchen’s method relies on quadrature rules, which are sets of values and

weights that form discrete probability distributions. For N discrete values

of z~, N points and weights are selected to form a discrete probability

distribution whose first 2N-1 moments are the same as those of the continuous

distribution of z~characterized by equation (2.3). The values and weights of

this distribution are in turn used to construct a discrete probability

distribution for and using equation (2.3), transition probabilities

between the exogenous states (yr.) can be calculated. Tauchen shows that when

the discrete state values and the probability transition matrix are determined
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from a quadrature rule, the properties of the continuous law of motion can be

closely approximated with a very coarse state-space.

Using Tauchen’s method in conjunction with Coleman’s thus has several

advantages. First, it provides a rigorous way to specify the discrete values

and the transition probabilities between the discrete states of the exogenous

variables. And second, it limits the computational effort needed to solve the

costly adjustment problem by allowing one to work with a coarse state-space

for the exogenousvariables.

III. Optimal Decision Rules

The solution method for factor demand models with costly adjustment was

implemented for two specifications of the model, one linear-quadratic and the

other with asymmetric adjustment costs. The algorithm performed well,

converging smoothly in a reasonable amount of time and producing both sensible

and interesting decision rules.

The solution method could be viewed as attempting to find a “fixed point”

for W(.,.). Neither the existence nor the uniqueness of a fixed point for

these problems has been proven theoretically, but several aspects of the

behavior of the algorithm indicate that the resulting solutions are unique.

First, though it is necessary to postulate an initial form for the decision

rule W0(Y~~n~)to start the algorithm, the solution does not seem to be

sensitive to the initial guess. Also, the distance measure between decision

rule updates, max I$1(y~.n.) - ‘I’0(y~,n~)j, decreases ruonotonically with

successive iterations, indicating that adjustments are being made smoothly

toward the correct rule with no arbitrary choices between alternative updates.
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At each iteration, the method requires finding roots for I.J equations,

that is finding the Xij that satisfy equation (2.6) for each state. The

Van Wijngaarden-Dekker-Brent method described in Press, Flannery, Teukoisky,

and Vetterling (1986) is used to find the roots. This method combines

bisection and inverse quadratic interpolation to converge on a root within a

bracketed interval. The more common Newton-Raphson method for finding roots

is inappropriate for this problembecause it requires that the first

derivative be specified, and the function in this problem is piecewise linear

and thus not differentiable.

The time required for the algorithm to converge depends primarily on the

number of endogenous and exogenous states and the tightness of the convergence

criterion. As an example, an asymmetric adjustment cost problem with 15

exogenous state values and 71 endogenous state values took 40 iterations and

hours to converge to six significant digits when run on a Compaq 386/16.

1. The Linear-Quadratic Snecificattoti

The linear-quadratic problem is solved primarily to test the algorithm’s

ability to convergeto the correct decision rule since an explicit solution to

the linear-quadratic problem is available for comparison. The specification

of the functions of the problem are as follows:

12
a (a + c)n - ~bn~ + c

1 2
c~(n~ - n~1) ~d(n - n~i)
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p 0 ~t-1 ~t 20

0 3. w1 0 0 0

where a, b, c, d, p, and a2 are constants.3 As a simplification, the

autoregressivespecification of the forcing functions implies that the real

rental rate of the endogenousfactor is constant, w~ w. In the notation of

the previous section, this specification implies y~ — (~~,w)’, so using I

discrete values for ai~ounts to using I discrete values for c~.

The explicit solution to this specification of the optimization problem

is a decision rule for in which n~ is a Linear function of n~1 and e.

Since follows an AR(1) process, the reduced form law of motion for n~ can

be estimated as a Gaussian VARwith two lags,

nt — a0 + ain~i + cx2fl~2 + ~ et N(0,a2), (3.1)

where the cx’s and are functions of the structural parametersa, b, d, p,

2
C, w, and ~.

The above equation was estimated for quarterly production worker

employment in the manufacturing durables sector from 19471 through 1986W.

The data were first exponentially detrended by regressing their natural log on

a trend and seasonal dummies and keeping the residuals, Since the factor

demandmodel is formulated in terms of levels of the data, the detrended data

were rescaled to the original units by taking their exponential and then

multiplying by the mean of the raw data. Some summary statistics on the raw

data and the detrended data are reported in Table 1. The resulting estimated

VAR is
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n — 648.11 + 1.4928 ntl - .5772 n~2 ÷ e~, 5e 167.6. (3.2)
~ (169.76) (.066) (.066)

Values of the underlying structural parameters are estimated from the

reduced form VAR coefficients so they can be usedto calibrate the linear-

quadratic problem for the numerical algorithm. Of the seven structural

parameters only four are identified, so assumptions are made about the values

of three of them and the values of the others are determined relative to these

assumptions. The data are quarterly, so fi is assumed to equal .99. a and w

merely scale the problem and are set equal to 1.2 and 3. respectively. The

solution obtained by the numerical algorithm will be insensitive to the values

chosen for fi, a, and w as long as the other parameter values are scaled

relative to the values of fi, a, and w. However, a mapping from the linear-

quadratic to the asymmetric adjustment cost problem is specified below, and

the relative values of a and w do affect the implied decision rule for the

asymmetric adjustment cost problem because a and w do not enter that objective

function of that problem symmetrically as they do in the linear-quadratic

problem. Experimentation with different values for a revealed that a value

of 1.2 put the decision rule for the asymmetric adjustment cost problem in

approximately the same range as the linear-quadratic problem.

An additional problem arises in determining the values of the structural

parameters because there is no real value of p that satisfies the implied

relationship between the reduced form VAR coefficients in equation (3.2) and

the structural parameters of the linear-quadratic specification. However, the

imaginary part of the implied value of p is small so it is ignored. The

values of the other structural parameters are determined then relative to ~9,
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a, ~‘z, and the modified estimate of p such that the unconditional mean of the

VAR is kept equal to the mean of the data.

The implied values of the structural parameters are as follows:

.99

w —1

a ~l.2 1 2

~ fTfl(n~~c~)— (1.2 ÷ c )n~ - .OOOOl3n~+ c
b — .000026) t

d — .00030 ) c~(n~ - n~1) — .0001S(n - n~p2

p — .75 1

2 ~ — .75c~1 + ~ v~ — N(O,.00088)
a — .00088 J
V

The numerical algorithm was used to solve the linear-quadratic problem

with the above specification of the production, cost, and forcing functions.

Figure 1 is a graphic representation of the resulting decision rule

nt — W(y~~n~1)~which for the above specification of the forcing functions

could be written n~— \If(�~~n~i). nt-i appears on the horizontal axis and

each line on the graph is for a different discrete value of c~. Thus given

values for ntl and e~,the figure indicates how much one should increase or

decreasen from its value in the previous period. The problem was solved with

29 discrete values of the endogenousvariable nt equally spacedover the

interval. 5000 to 12000 and seven discrete values of the exogenous variable c~.

The values of and their stationary distribution, t~hichare derived from a

seven-point quadrature rule, along with the probability transition matrix

implied by the autoregression for are reported in Table 2.

The algorithm converged easily to a very close approximation of the

correct decision rule. The decision rule for the linear-quadratic problem
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should be of the form

— + fl~n~1 + ~2~t

where the fl’s are explicit functions of the underlying structural parameters.

Thus the numerical algorithm correctly found that (n~ - n~1) should be a

linear function of ~-1 and To gain some indication of the accuracy of

the approximation, the values of the approximated decision rule were compared

to the values of the correct decision rule for the seven values of at the

boundaries 5000 and 12000 where the differences would be the most extreme.

The maximum difference is about 25, which can easily be accepted given the

coarsenessof the state-space and the fact that the parametervalues were only

specified to two significant digits.

2. The Asymmetric Adjustment Cost Specification

Since the numerical algorithm performed well in solving the linear-

quadratic problem, it was then used to solve an asymmetric adjustment cost

specification of the factor demand model, for which no explicit solution

exists. Because an explicit solution is no longer attainable, the quadratic

restriction can be relaxed on the specification of the production function as

well as the adjustment cost function. However, a linear specification for the

forcing function is maintained since the interest is in the type of

conditional heterogeneity that an asymmetric adjustment cost structure will

imply given a relatively simple forcing function. The production function,

forcing function, and adjustment cost function are specified as
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f~5(n~)g~)— n~’1g~ g~ — exp(u~)~

(u~ - ~ — v(u~i - ~ + ‘it ‘i~ — N(0,c
2

)

Mu — E[u~J

cAS(x~)— s[ ~‘{exp(rx~) - 11 - x~] x~ — nt - n~1.

The production function is a one factor Cobb-Douglas function, and the

adjustment cost function has the properties that c(0) — 0, c(x) > 0 for x s 0,

and c(x) > c(-x) for x > 0. Thus adjustment costs rise more rapidly for

increases in the control variable than for decreases.

To determine reasonable values for the parameters of the above functions,

a mapping between the estimated parameters of the linear-quadratic

specification, (a, b, p, a2, d}, and the parameters of the nonlinear

specification, ½, t’,
1u’ ,2, ~, r), is defined around the mean of the

employment series. The same values of w and fi are used for both

specifications. The parameters y, v, js, and are determined by satisfying

the following criteria:

1) Ofu~(n~c) 3fAS~’&

on On

2) ~ 3
2

f(n,g)

On2 On2
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F 8fw~~~ct)1 F Of~$(tI~g~)
~Var[ On j—Var[ On

F 8
fw(1I~Et) 8f~(nte~i) 1 F Of~8(n~g~) ~

4)Covi —Covi
On On On On

where it — E[n~]~ ~ — E[c~, and g — E[g~3. The parameters of the adjustment

cost function, & and r, are determined by satisfying

5) cj~~(O) — ck~(O)

6) cj~(2cr) —

where a is the standard deviation of (n~ - n~i) in the detrended data.

With the above mapping and the estimated values of the L-Q parameters,

the implied values of the structural parameters are

— .99

w -l

1 a .80 ) f~5(n~~g~)— n~8.exp(u~)

I’ — .75

— 2.02 u~— .51 + .75ut1 + ‘is, — N(0, .00088)

— .00088
‘1

~:::} cAS(x~)a .063.{ ~ - 1] - x~ 3.
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Graphs of the asymmetric and quadratic adjustment cost functions appear

in Figure 2, and graphs of their derivatives appear in Figure 3. Both

functions have the value zero and the same slope at x~ — 0. The asymmetric

function shows more rapidly rising costs than the quadratic function for

increases in the control variable and less rapidly rising costs for decreases.

The factor demand model with the above nonlinear production function and

asymmetric adjustment costs was solved using 71 discrete values for the

endogenous variable equally spaced over the interval 5000 to 12000 and 15

discrete values of the exogenous variable. The discrete values of the

exogenous variable and their stationary probability distribution are report in

Table 3. The estimated decision rule is graphed in Figure 4, with the eight

lines corresponding to every other of the 15 discrete values of u~.

Figure 4 shows that the decision rule for this specification reflects

significant departures from the linear decision rule associated with the

linear-quadratic specification. The curved shape of each line in the figure

indicates that for any given value of the exogenous variable, the optimal

value for ~ depends nonlinearly on n~1. Also, the increasing spacing of the

lines indicates that for any given value of n~1~the optimal value for nt

depends nonlinearly on u~. One would thus expect the law of motion for n~ to

display complex forms of conditional heterogeneity. For example, the wider

spacing of the lines at higher values of ntl is probably indicative of

conditional dependence of the variance of n~on the past.

By examining Figure 4, one can see that a time series generated by this

decision rule would display many small increases and some small and large

decreases from one period to the next. This result is sensible for a problem

in which costs of adjusting the variable upward increase more rapidly than

costs of adjusting downward. It is also consistent with the story told in the
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introduction about Neftci’s finding of asymmetry in unemployment rates.

Unemployment rate time series are essentially mirror images of employment time

series, so gradual, persistent decreases in the unemployment rate reflect

gradual, persistent increases in employment. Likewise, more rapid, less

persistent increases in the unemployment rate reflect more rapid, less

persistent decreases in employment. From the decision rule, one would expect

to see just such gradual, persistent increases and more rapid, less persistent

decreases in n~.

IV. Seminonparametric Models

The decision rule for the asymmetric adjustment cost problem implies a

law of motion for nt. This section presents Gallant-Tauchen seminonparametric

(SN?) method, which will be used to characterize this law of motion. tSee

Gallant and Tauchen (1988) and Gallant, Bsieh, and Tauchen (1988).] The SN?

technique allows one to estimate the conditional distribution of a variable

without iniposing strong restrictions on the form of the distribution; it can

accommodate conditional heterogeneity in the mean, in the variance, and in

higher order moments of the distribution. This flexibility is important for

modeling the behavior of n~ since the decision rule derived in the last

section suggests that the conditional distribution of n~may display complex

forms of heterogeneity.

The SN? technique estimates the distribution of an H-dimensional vector

conditional on its past. The only restrictions are that the data

are a realization from a stationary time series (ye) and that the

conditional distribution of “~ given the entire past depends on a finite

number L of lagged values of With
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— ~
31

t-L+l

the conditional distribution of can then be expressed as h(y~I x~p.

The SN? model approximates the conditional distribution as a truncated

Hermite expansion, which is a polynomial expansion around the Gaussian density

function. The terms of the polynomial accommodate departures from Gaussianity

in the conditional distribution of

Gallant and Tauchen find that, rather than expanding around a Gaussian

distribution for y~, their method performs better if they approximate the

conditional distribution of a parametric transformation of that preserves

Gaussianity. Thus they would model the conditional distribution of z~ given

x~1~f(z~I x1), where*

- b0 - Bx~i), RR’ 0,

and 0 is the variance-covariance matrix of (y~ -. b
0

- The conditional

distribution of is easily retrievable from f(~I~)as

h(y~I xci) — f[R~(y~ - b
0

- Rx~1)I x~i]/det(R).

The SN? approximation of the conditional distribution is, without the

time subscripts,

[ P~<(z~x) J2

f (zj x) —
K S [ ?~(u, x) ]2c(u) du

TiszisnotThe same as the z~ used for the exogenous variables in Section 2.
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where PK(z~ x) is a polynomial of degree K and p is the multivariate standard

Gaussian density function. The polynomial is squared to maintain positivity,

and the integral in the denominator insures that the distribution integrates

to one.

Gallant and Tauchen represent the polynomial as

K K
Z F x flu a?~(z, x) — a x j z

j~I—O L1p~_O Qp

where the a’s are the coefficients of the polynomial,

a — ~°1’ a2 aM)’ — ~ ~

are multi-indices (vectors with integer elements), and

M ML

Ia)— S a. flj— S ft.
i—i i—I 1

H a. ML ft.
a 1 1

tall Ct.) x — fl(x.)
i—l i—l 1

In order for f(z) x) to be estimated consistently, both K1 and K~must grow

with sample site.4

The parameters of the model are the elements of b0, B, and R and the

coefficients of the polynomial, ~ with the constant term of the polynomial

always normalized to equal one. For particular values of K and K, these

parameters can be estimated with standard maximum likelihood techniques. If
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K — K — 0, the polynomial is just a unit constant, so fK(zl x) is the

standard Gaussian density and h,~(y( x) is a Gaussian VAR. if K~> 0 and

a ~, is a polynomial in current values of z, which allows shape

departures from Gaussianity in fK(z) x). If K > 0 and K > 0, the

coefficients of the polynomial also depend on the history of the series, so

there can be nonlinear conditional dependencein the estimated density. By

making K and K~sufficiently large, the SN? model can approximate any smooth

conditional density arbitrarily accurately. On a given data set, SN? models

with different values for the tuning parameters L, K, and K are estimated,

and standard model selection criteria are used to select between the different

SNP(L,K ,K) specifications.

Zecause of the initial transformation made to y for the leading term of

the polynomial expansion, the SN? model nests the Gaussian VAR. It can also

nest the ARCH model (Engle, 1982) if 0 is made to depend on the squared

elements of x~i. Rather than parameterize this specifically, Gallant and

Tauchen instead make R depend linearly on the absolute value of x~1 to

simplify the estimation. Asymptotically this modification to the SN?

specification is not necessary for SN? to accommodate ARCH type behavior, but

with finite samples, the degrees of the polynomial expansion for which the SN?

model can be estimated will be limited. Thus it is easier to explain

conditional heterogeneity in both the mean and the variance with the leading

term of the polynomial expansion and to let the other polynomial terms

accommodate additional conditional heterogeneity beyond the first and second

moments.

The modified SN? model has the same form as the above SNP model except z

is now specified as
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z — R(y - b
0

- Bx), and

vec(upper_triangular R~)— p
0

+ ?.abs(x)

where abs(x) is a vector of the absolute values of the L elements of x. The

parameters of the SNPgX model are b0, B, p0, P, and the aft.

V. Conditional Distribution Estimates

In this section, the SN? model is used to compare the law of motion of

the detrended employment data and the law of motion implied by the asymmetric

adjustment cost model. To apply the SN? model to the asymmetric adjustment

cost problem, the decision rule for the problem is used to simulate a

realization of 1000 observations on n~ and the SN? model is estimated on this

data.5

Some summary statistics on the simulated data are reported in Table 1.

The mean, standard deviation, and standard deviation of first differences are

all somewhat larger for the simulated series than for the detrended employment

data. Such differences are not surprising since the mapping between the

linear-quadratic problem and the asymmetric cost problem is not exact. Also,

the goal of this section of the paper is to compare the conditional

distributions of the two series qualitatively, not to match moments exactly,

and these small but essentially proportional differences should not hinder

such comparison. A less magnified simulated series with very similar

conditional distribution properties could probably be generated by the

asymmetric adjustment cost model if the production function was multiplied be
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a constant less than one, which would be equivalent to using a smaller value

for the mean of ii.

Engle’s (1982) test for the absenceof ARCH was performed on both the

detrertded data and the simulated data to determine whether to estimate SN? or

SNPRX models. The test requires estimating an autoregression of the data,

squaring the residuals, then estimating another autoregression of the squared

residuals, Engle shows that a TR2 test on the second autoregression is the

Lagrange multiplier test of the null hypothesis of no ARCH in the data. The

null hypothesis is not rejected for the detrended employment data, but it is

rejected for the simulated data. However, Hsieh (1983) shows that this test

probably has low power for finite samples indicating that not rejecting the

null hypothesis is not strong evidence against ARCH. Because of the test

results, both SN? and SNPRX models are estimated on the detrended data, but

only the SNPRX model is estimated on the simulated data.

Results from estimating the SNPRX model on the detrended employment data

are reported in Table 4. Each line of the table corresponds to a different

specification of the SNPRX(L,K ,K) model, where a specification is

characterized by the values of L, K , and K . The fourth column of the tablez

indicates the number of parametersestimated for each specification and the

fifth column contains the corresponding maximized log likelihood value.

Three model selection procedures are used to compare the different

specifications: upward testing with chi square statistics, the Schwarz

criterion, and the Akaike information criterion (AIC). P-values for the

likelihood ratio chi square tests are reported in columns six through eight.

A p-value in the K column, for example, compares that line’s specification,

SN?RX(L,K,K), to its successor, SNPRX(L,K,K+l). There is one exception:
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the K~p-values for the SNPRX(L,0,0) specifications correspond to a test

between that specification and the SNPRX(L,2,0) specification.

The p-values clearly indicate that two lags are sufficient for modeling

the data. However, they also indicate that one should use specifications with

higher and higher values of K and K~. The Schwarz criterion, which is known

to be conservative, rarely selects specifications with K > 0. However, for

this data the Schwarz criterion selects an SNPRX(2,2,l) specification. Like

the p-values, the Akaike criterion calls for very large dimensional models.

In this case, it selects an SNPRX(2,4,l) specification. The Akaike criterion

might have selected even larger specifications such as an SNPRX(2,5,l) or an

SNPRX(2,4,2), but these specifications were not estimated because their

dimensionality would have been excessive for a data set of 156 observations.

Figures 5 and 6 show plots of the one step ahead density of employment,

h(yj x) or h(n~t “~-2’ ntl)~ implied by the SNPRX(2,2,l) and SNFRX(2,4,l)

estimates. Each of the three plots in the figures is conditional on different

values of n~2 and n~i. The center plot is the conditional distribution of

~ given that “~-2 and n~1 were equal to the unconditional mean of the

series. For the left plot, the distribution of nt is conditional on n~2

equal to the unconditional mean and n~1 equal to the unconditional mean minus

one standard deviation of the first differences of the series. The

conditional path for the right plot is the mirror image of that for the left:

n~2 is equal to the unconditional mean and n~t is equal to the unconditional

mean plus one standard deviation of the first differences of the series.

Clearly heterogeneity in higher order moments is important in the

conditional distribution of employment. A linear Gaussian law of motion

conditional on the same paths would have generated three Gaussian densities

all with the same variance but with different means. But the plots in Figures
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5 and 6 indicate substantially different dynamic behavior. The primary

insight revealed by the plots is that the conditional variance of employment

is much smaller when the series has been increasing than when it has been

decreasing. This result is consistent with the evidence cited earlier of

greater persistence and more gradual changes in unemployment rates during

declining periods than during rising periods.

The SNP model was also estimated on the detrended employment data

because the test for absence of ARCH described above did not result in a

rejection. However, the SNP results are not reported in detail here,

primarily because the SNP model is nested in the SNPRX model for which results

are reported above. Plots of estimated conditional densities from the SNP

model, though, are similar to those from the SNPRX model. They also detect

tighter variance following an increasing history of the series than following

a decreasing history.

The SNPRX model was also estimated on data simulated from the decision

rule for the asymmetric adjustment cost model to see to if that model implies

a conditional distribution similar to that of the actual employment data. A

full table of different SNPRX specifications was not estimated for this data

becausethe criteria used for selecting between different specifications are

based on sample size, which is obviously not a consideration when working with

simulated data. There is not necessarily a finite specification of the SNPRX

model that completely characterizes the law of motion for the simulated data,

so more polynomial terms will always improve the approximation of the true

conditional density. Thus with larger and larger samples, one would expect

the selection criteria to choose higher and higher dimensional specifications

of the SNPRX approximation to the actual conditional density. Rather than

estimating extremely large specifications, the law of motion of the simulated
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data is approximated with the SNPRX(2,2,l) and SNPRX(2,4,l) specifications,

which are the specifications chosen by the Schwarz and Akaike criteria for the

true employment data. This allows one to compare the projections of the two

laws of motion onto the same dimensional SNPRX models.

Plots of the estimated densities of the simulated data conditional on

different lagged values appear in Figures 7 and 8. The paths on which the

three densities in each figure are conditioned are the same as those for

Figures 5 and 6 except they are basedon the unconditional mean and standard

deviation of first differences of the simulated series rather than the true

employment series. (The reader is cautioned about comparing density plots

between the figures because the horizontal and vertical scaling is not the

same for each figure. The relevant factor to consider is the relative shapes

of the densities in each figure.)

Figures 5 and 6 for the employment data compare very favorably with

Figures 7 and $ for data simulated from the asymmetric adjustment cost model.

Though the plots for the actual and simulated data are not precisely the same,

the asymmetric adjustment cost model clearly captures the important

conditional varianceproperties in the actual employment datadescribedabove.

All of the plots show that the conditional variance is greater when the series

has been decreasing than when it has been increasing.

VI. Conclusion

Recent empirical studies have found strong evidence of nonlinearity and

conditional heterogeneity in the dynamic behavior of employment and

unemployment time series. Existing structural economic models for employment,

such as the linear-quadratic factor demand model with costly adjustment,
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cannot explain this complex behavior. However, it is possible that a

modification of the costly adjustment model could better capture the dynamic

properties of employment data. Neftci’s work on asymmetry in unemployment

rates motivates considering a modification in which adjustment costs for labor

are asymmetric, where costs of increasing the size of the labor force rise

more rapidly than costs of decreasing.

The dynamic factor demand model with costly adjustment has been studied

with a linear-quadratic specification because that specification admits and

explicit solution. In this paper a numerical method is developed to

approximate the solution to a more general specification of the problem.

Coleman’s work on solving rational expectations models with endogenous state

variables and Tauchen’s work on obtaining discrete approximations to

continuous laws of motion are combined in this method. Applying the method to

the asymmetric adjustment cost problem reveals a complex nonlinear decision

rule for the choice variable.

Callant and Tauchen’s seminonparametric method is used to compare the

law of motion for a time series of employment in the durables manufacturing

sector and the law of motion implied by the asymmetric adjustment cost model.

This method is appropriate for characterizing these laws of motion because it

can accommodatecomplex forms of conditional heterogeneity which one would

expect to be found in these data. The employment data are found to display

important condition variance properties, with the conditional variance smaller

when the series has been increasing and larger when the series has been

decreasing. Data simulated from the solution to the asymmetric adjustment

cost model displays similar conditional variance properties indicating that

asymmetric adjustment costs may be important for explaining aggregate

employment dynamics.



Table 1

Production Worker Employment in Durables Manufacturing

and Simulated Data from the Asymmetric Adjustment Cost Model

Raw Data Detrended Data Simulated Data

Mean 7670 7695 8915

Standard Deviation 721 617 738

Standard Deviation
Of First Differences 213 205 275

Minimum 5818 6248 6884

Maximum 9219 8833 11225



Table 2

Discrete Probability Model for

Stationary Distribution

f(c.)

1 - .11126 .018735
2 - .070209 .098513
3 - .034245 .23138
4 .0 .30275
5 .034245 .23138
6 .070209 .098513
7 .11126 .018735

Probability Transition Matrix

.40616 .46488 .11990 .00887619 .00018130 7.6718E-07 2.7903E-10

.088318 .42493 .38566 .094598 .00640222 9.5331E-05 t.4575E-07

.00969246 .16410 .44847 .31425 .060755 .00272417 l.4655E-05

.00054827 .030757 .24012 .45714 .240t2 .030757 .00054827

l.4655E-05 .00272417 .060755 .31425 .44847 .16410 .00969246

l.4575E-07 9.5331E-05 .00640222 .094598 .38566 .42493 .088318

2.7903E-lO 7.6718E-07 .00018130 .00887619 .11990 .46488 .40616
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Table 3

Discrete Probability t4odel for

Stationary Distribution

1 1.85121 .000050483
2 1.88604 .00077481
3 1.91552 .00529675
4 1.94243 .021766
5 1.96734 .060702
6 1.99234 .12225
7 2.01629 .18395
8 2.04000 .21041
9 2.06371 .18395

10 2.08766 .12225
11 2.11216 .060702
12 2,13757 .021766
13 2.16448 .00529675
14 2.19396 .00077481
15 2.22879 .000050483



Table 4

SNPRX(L,K,K) for Production Workers in Durables Manufacturing

Log p-values
L K K p Likelihood L K K Schwarz AIC

z x 8 z x

1 0 0 4 -0.30678 0.0001 0.0026 -0.3715 -0.3324
1 2 0 6 -0.26854 0.0001 0.0007 0.2121 -0.3657 -0.3070
1 3 0 7 -0.23099 0.0001 0.9230 0.1096 -0.3443 -0.2759
1 4 0 8 -0.23096 0.0001 0.0715 -0.3604 -0.2822
I 2 1 9 -0.25411 0.0001 0.0007 0.0631 -0.3998 -0.3118
1 3 1 11 -0.20679 0.0001 0.2731 -0.3848 -0.2773
1 4 1 13 .0.19847 0.0001 -0.4089 -0.2818
1 2 2 12 -0.23073 0.0001 -0.4250 -0.3077

2 0 0 6 -0.09628 0.7964 0.0420 -0.1934 -0.1347
2 2 0 8 -0.07595 0.7743 0.0122 0.0001 -0.2054 -0.1272
2 3 0 9 -0.05578 0.0595 0.0142 0.0001 -0.2014 -0.1135
2 4 0 10 -0.03649 0.0872 0.0001 -0.1983 -0.1006
2 2 1 14 0.04315 0.9031 0.0026 0.0111 *-0.1834 -0.0466
2 3 1 17 0.08880 0.4040 0.0162 -0.1864 -0.0202
2 4 1 20 0.12184 -0.2019 .0.0064*
2 2 2 23 0.11172 -0.2605 -0.0357

3 0 0 8 -0.09482 0.2283 0.0408 -0.2243 -0.1461
3 2 0 10 -0.07431 0.8882 0.0008 0.0001 -0.2362 -0.1384
3 3 0 11 -0.03769 0.7332 0.0219 0.0001 -0.2157 -0.1082
3 4 0 12 -0.02085 -0.2151 -0.0978
3 2 1 19 0.04823 0.0009 -0.2593 -0.0736
3 3 1 23 0.10859 -0.2637 -0.0388

4 0 0 10 -0.08535 0.1587 -0.2472 -0.1495
4 2 0 12 -0.07355 0.0006 -0.2678 01505
4 3 0 13 -0.03570 -0.2461 -0.1190

p8 number of estimated parameters

* maximum selection criterion value
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SNPRX(2,4,i):

N(t—1) = (MEAN

DURABLES EMPLOYMENT
N(t-2) = MEAN
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FIGURE 7
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NOTES

1. Nonlinearity in aggregateemployment datahas also been found by Brock

and Sayers (1986). In unemployment rate series, which are essentially

mirror images of employment series, nonlinearity has been well documented

as in Neftci (1984), Stock (1987), and Brock and Sayers (1986).

2. Solving the Euler equation for x1~ requires evaluating W0 at various

values for Xjj~ but the value of is only known at discrete points. To

overcome this limitation, the value of between discrete points is

estimated by interpolating linearly between the values at the two points.

3. The value of c is essentially irrelevant to the law of motion for nt

because it does not appear in the Euler equation, but a positive value of

c is implied by the mapping defined in the next subsection between the

quadratic and the nonlinear problem.

4. For a precise statement of the regularity conditions required for

consistency, see Gallant and Nychka (1987).

5. Starting the simulation requires seedvalues for and n~1. For c~,a

random draw is taken from its discrete stationary distribution. The

distribution for n~is unknown, so the seedvalue for n~i is chosen as

the center of the grid over which the decision rule is determined, 8500.

To overcome the arbitrary selection of n~i~ the simulated observations

are not collected until 500 realizations have been generated.
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