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Abstract

The objectiveof this paperis to investigatewhether,in a Sidrauskitypemodel with

uncertainty,welfaremaximizationcallsfor following thefamous “Chicago Rule’. This

questionwill be answeredin theaffirmative in this paper,i.e. socialwelfareoptimization

callsfor a zeronominalinterestrateon one-periodbonds.Thezeronominal interestrate,

however,doesnot imply in an uncertainworld that there is no systematicdifference

betweenthe expectedrateof deflation and the rateof lime preferencein an economy

without growth.Themagnitudeof thisdifferenceturnsout to be small, however.

Numericalwelfarecomparisonsaremadebetweenthe optimalpolicy andpoliciesin

which the growthrateof moneyis fixed. The optimal policy requiresthat themonetary

authoritiesreacteveryperiodto theavailableinformationandtheychoosea growthlevelof

themoneystock that will setthe interestrateequalto zero,If wecomparethetimepathsof

the real variables under the optimal policy with the time paths if the money supply

decreasesata rateequalto therateoftimepreference,thenweseehardlyany differences.

Thepricedynamicscanbevery different,however.

Thepaperalsoinvestigatestheissueofsuperneutralityandfinds thatthequantitative

deviationsfrom superneutralityaresubstantialif amodelwith ashoppingtime technology

is used.

The neo-classicalmodelsin this paperaresolvednumericallyusing a technique

developedin Marcet(1988),
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1. Introduction

Theobjectiveof this paperis to investigatewhether,in a Sidrauski-typemodel with

uncertainty,welfaremaximization calls for following the famous “Chicago Rule”. In

McCallum(1987)it is shownthat in a perfect-foresightversionof Sidrauski(1967),social

optimality requiresfollowing the“ChicagoRule”. In aperfect~foresightmodel this means

to deflateat a ratethat is equalto the realrateof returnon a one-periodbond. A zero

nominalinterestrate is thereforea necessarycondition for a Pareto-efficientcompetitive

equilibrium.Thedeflationratealsoequalstherealreturnon capital. In astationarystatethis

meansthat theoptimal rateof deflation is equalto therateof timepreference1.

The literaturesuggeststhat therearereasonsfor asystematicdifferencebetweenthe

optimalinflation ratein theperfect-foresightandin theuncertaintycase.Thebasicreasonis

that the introductionof uncertaintyaddsan importantcharacteristicto money.That is:

Holdings of real money balancescould increaseor decreasethe variability of the

consumptionsteam.Consequentlytherateof returnon real moneybalances - i.e. the

deflationrate- at which peoplewill holdthesatiationlevelofrealmoneybalanceswill be

different from theperfect-foresightcase2.

Neverthelessthe questionof whetherthe “Chicago Rule” remainsoptimal in a

Sidrauski-typemodel when thereis no perfect-foresightin themodel has not yet been

answeredby the literature3.This questionwill be answeredin theaffirmative in this paper,

i.e.social welfareoptimizationcallsfor a zeronominalinterestrateon one-periodbonds.

The zeronominal interestrate,however,doesnot imply in anuncertainworld that the

expecteddeflationis equalto theexpectedreal returnon capitalinvestments.Nordoesit

It shouldbenotedthat thispaperonly dealswith the“shoe-leather”costof inflation. This costoecurs
sinceinflation causespeople to economizeon aservice-yieldingassetthatis costlessto produce.See
Fischer(1984)for adiscussionon the “non-shoe-leather” costof inflation.
2 Seeffahn(1971).

3 Lucas& Stokey (1983) andIcrugman,PerssonandSvensson(1985) find theexpressionfor theinflation
ratethat will induceagentsto hold the optimal amountofrealmoneybalancesin an interteinporalmodel
with acash-in.advanceconsiraint
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meanthat thereis no systematicdifferencebetweentheexpectedrateof deflationandthe

rateof time preferencein aneconomywithoutgrowth. Although thereare somefactorsthat

couldcreateasystematicdifferencebetweentheperfect-foresightandthe uncertaintycase,

the magnitudeof this difference,however,turnsout to be very small.This conclusionis

reachedby numericallysolving the model using techniquesdevelopedin Marcet (1988).

Welfaremaximizationthereforecallsfor a deflationratethat is on avengecloseto the rate

of time preferencein theuncertaintycaseaswell asin theperfect-foresightcase.

Numericalwelfarecomparisonsaremadebetweenbetweenthefollowing two regimes:

- Themonetaryauthoritiesreacteveryperiod to the availableinformation andthey

choosea growth level of themoneystockthatwill set theinterestrateequalto zero. With

thenumericalprocedureit is possibleto solvefor theoptimalpolicy rule.

- The money stock changeseveryperiod with a fixed percentage.Of particular

interestis of coursea reductionof the moneysupply at a rateequalto the rateof time

preference.Thewelfaredifferencebetweenthis policy nile andtheoptimalmonetarypolicy

turnsout to be negligible. The sameis truefor thetime pathsof therealvariables,but the

pricedynamicscanbe very different.

By comparingtheregimeswith different growth ratesof themoneysupplyprocess,

wecancheckwhetherthemodel satisfiesthesuperneutralityproperty.For thenumerical

partof thepaperautility functionof consumption,realmoneybalancesandlaborsupply is

used,that is equivalentto using a shoppingtime technology.In McCallum (1987) it is

shownfor theperfect-foresightcasethat thesuperneutralitypropertyholds for awide class

of utility functions.Theutility function derivedfrom theshoppingtime technologydoes

not, however,belongto thisclass.Thequantitativedeviationsfrom superneutralityturn out

to be substantial.

This paperis organizedasfollows: Section2 containsa descriptionof themodel, the

necessaryandsufficient conditionsfor maximizingbehaviorof arepresentativeagentand

the definition of a rationalexpectationsequilibrium. In Section 3 the optimai rateof
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inflation is calculatedandthedifferenceswith aperfect-foresightmodelarediscussed.The

numericalprocedureandtheresultsaredescribedin section4.

2. The Model

Theeconomyof this paperconsistsof a largenumberof similar householdsthat live

forever. At thebeginningofeveryperiodt theydecidehowmuch to consumethatperiod,

c~,how much labor to supplyh~,and how muchto save.Theycansaveby accumulating

nominalmoneybalancesM~+x,by investingin realcapitalk~+iandby buying bondsB~÷i.

All threevariablesdenotequantitiesheldatthebeginningofperiodt÷1.

An importantcharacteristicof themodel is thatanincreasein the amountof realmoney

balances m1 (= Mt/Pt) decreasesthe time spentin conductingtransactions.Pt is the

moneyprice of the consumptiongood. If an agent possessesan amount of real money

balancesequalto nit andwantsto buy c1, the shoppingtime v1 is given by thefollowing

function v : —+ [0,1]

= v(m~,c~)

Thefirst partial derivativesareassumedto satisfy vm(mt,ct)� 0 and vc(mvct) � 0. It is

assumedthatfor everylevel of c~,themexistsa level of realmoneybalancesfor which the

partialderivativewith respectto moneybalancesis equalto zero.

Capitalis outputthat is notconsumedandoutputYtis producedby combiningcapital

k~andlabor1i1.

= f(kt,ht)xt + 8k~
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The productionfunction f: R.,. x 10,1) —* Ft4 is assumedto be well-behaved, so a unique

positive value of k1~1and h~will be choseneachperiod. x1 is a stochasticvariable that

follows a Markov processwith astationarytransitiondensity.

The third investmentpossibility is a one-periodbond with a certainnominalreturn.

The bonds thatagentsbuy in periodt, B~÷1,aresoldat the nominalpriceq1 andyield one

unitof moneyin periodt+ 1. The nominalrateof interestthusequals(1-q~)fq~.The number

of bondsB~divided by thepriceof thecommodityin that periodis denotedby b~.

Eachhouseholdgetsin period t a pecuniarylump-sumtransfer(net of taxes)of the

amount PA from thegovernment.

At everyperiod t thehouseholdsfacethefollowing budgetconstraints:

(2.1) c~+~+ + (l+7t~+~)m~÷;+j+(l+A~+3)q1+1b1÷~+i=

+ 8k~÷~+ m~+~+ b1+j + forallje {0,l,2,...}

where = (PttJ+i - P~+~)IPt+~is theinflation ratebetweent+j and t+j+l.

The representativehouseholdmaximizesthe expecteddiscountedsum of a von

Neumann-Morgensternutility functionW:R.4x [0,l]x R.4.—* It

J3 ~

Et is theexpectationsoperatorconditionedon theinformation availableto theagentsat

periodI = I h~v1is theamountof leisurein period t and&A is a stochasticpreference

shock thatfollows a Markov processwith astationarynnsitiondensity.If thedefinitions

of )~andvt aresubstitutedinto this utility functionwe geta utility functionof consumption,

real moneybalances,laborsupplyandthepreferenceshock.
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~ = W( ct, lhrv(ct,mt)

Forthetheoreticaldiscussionaboutoptimal inflation it doesnot matterwhetherwe work

with UC) or WC). For the issue of superneutralitywe have to be morecareful. In

MeCallum(1987)it is pointed out that if theratioUh(.)/Uc(.)doesnot dependon rut the

stationarystatevaluesof real variablesarenot affectedby the thegrowthrateof themoney

supply process4.if U(.) would havea CES structurefor instancethen this assumption

would be satisfied.If, however, U(.) hasthestructureof W(.), thanit is very unlikely that

theratio lJh(.)/TJc(.)doesnot dependon m1.

The law of motion for themoneysupply processisgiven by:

(2.2) M.~+i= (1÷~tt)fr1~

~ is assumedto bea fixed function of thestatevariablesin theeconomy,including flt’

andis thus alsostationary5.; is an independentwhite noiseaffectingthemoneysupply

process.Oneof theexperimentswill be to increasethevarianceof;.

Theexpecteddiscountedswnof theutility function is maximizedateveryperiodtwith

respectto M~+~+i.B1+~+1.k1+~÷1.h~÷~and~ j e (0,1,2,...] subject to the budget

constraints(2.1).The functionU(.) is takento be well-behaved,so an interiorsolutionwill

be obtained.In orderto solvethis problemtheagentsneedpredictionsfor thepriceof the

commodity,thepriceof the one-periodbondandthetransferfrom thegovernment.It is

assumedthathouseholdsthink that thesevariablesaregovernedby

Pt =

= q(~,a~)

4 Exceptforreal moneybalancesofcourse.
5 To becorrectwe haveto assumethat all functionsweusearemeasurable.
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= t(~,a~)

where~ standsfor [h41M~&j.A bardenotesthepercapita value of the variablein the

economy.The numberof householdsin the economyis assumedto be so large, that an

individual household can not influence the averagelevels in theeconomy,a~stands for

[x1,~1,~j.Note that Xt, Tr~and ; arenot underlinedbecausetheseshocksare assumedto

be the samefor every household.It is assumedthat ~ and a~are elementsof the

informationset at periodt.

Theconsumption,time allocationand investmentdecisionat period t areinfluencedby

the initial real wealth, i.e. by rn~,b~andk~.Recall the assumptionthat the stochastic

processesx~,~ and; are Markov processesand that t~and the prices p1 and q~are

functionsof ~ anda~.Becauseof thesetwo assumptionswe cansay that all relevant

informationon the currentand future stateof the household’sworld is capturedby the

vector[s~,a~,a1].Everyperiodour representativehouseholdsolvesan optimizationproblem

of the sameform but everyperiod the vector (s1,~,aJhasa different value. The actual

choiceof therepresentativehouseholdcanthus be describedby fixeddecisionnts:

= c(s1,i4,a~)

M1~1 = M(s1,a~,aO

st+l = B(s~a,a~)

= k(s1a,a1)

= h(s1,~,e1)

Necessaryand sufficient conditionsfor a maximum are that the functions c(s~a~,a~).

h(s~,~,a1),~ B(s~,~,a~)and k(s~j.1,a~)besidesthe budgetconstraint(2.1)

satisfy6:

6A prooffor asimplified venionof this model is givenin LevhartandSrininsan(1969).
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(2.3) ~ + f3 E~II (fk(kt+uht+l) Xt+1 + 8) Ujc~+1,m~÷i,h~+i,~1+1)]= 0

(2.4) Et [ B1÷1( ~ q~+ ~ { ~ 1 11 =

(2.4*) -U~(c~,m~,h1,~)q~÷f3 E1 II (Pt/Pt+i)~ I

(2.5) -U~(c~m~,h1,~)+ 3 E~[ (p~Ip1~~)(UC(cL+l,m~+l,hE+1,~~+1) +

Um(ct+t,mt+i,ht÷i,~t+i))] = 0

(2.6) U~(c1,m1,h~~1)fh(kt,ht) + ~ = o

i~1
(2.3’) urn E~J3 ~ ~ = 0

I—

(2.4) urn E1 j31.1 q1÷1b~÷.~4U~(c~+1,m~÷1,h~+1A+1)(l+iç1) = 0

(2.5’) urn E1 f3’’ mt+i÷iU~(c1+1,m~÷1,h~+1,~+1)(l÷~c+~) = 0
1-4.0

Equation(2.4*) hasto hold with equalityif B1 is positive.Theequations(2.1), (2.3),

(2.4) & (2.4*), (2.5)and (2.6) solve for the functions C(St,~,Ot).h(sta,a1),~

B(sta,at)and k(s~,~,a1).With the following two definitions we canalso calculate

m(s~,j~,a~)andb(s1,~,aà.

rnt=—
Pt

= —1
p1
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Note that for bonds we havethe two-part first-order conditions, because in this model

agentsare not allowed to sell bonds. If they would be allowed to have debts,it would be

optimal and possibleto finance consumptiontoday by borrowing and to finance the

redemptionof thedebtnextperiod by borrowing again,etc.7. Thatis, agentscan consume

without sacrificing anything.Note that thetransversalitycondition (2.4’) doesnot prevent

this behavior.It only prevents(theabsolutevalueof) B~from growing too fast.

Competitive Equilibrium

There are three equilibrium conditions in the model that can beusedto calculatethe

price of the commodityandthepriceofthebond.Thefirst conditionis that thedemandof

therepresentativehouseholdis equalto theavengemoneysupply,i.e.,

(2.8) M(s~,a~,a~)= N4.,.1 = (l+~s,)M4

In thenotationof theequilibriumconditionstheassumptionis used,thatall thehouseholds

aresimilar.

The supplyof bonds is given by thebudgetconstraintof the government(2.9).

(2.9)

Thusthesecondequilibriumconditionis given by

+ PA +14-N141
(2.10) B(s1,~,q1) = = _________________

Anothertowerboundthan0couldalso have been chosen.
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Insteadof (2.8) or (2.10) we can also take the overall constraint(equilibrium on the

commoditymarket)asan equilibriumcondition

(2.11) f&.h’’: + = +

Note that becauseeveryhouseholdis thesame we have s~= a1. Let z~= ~ We can

nowdefinea rationalexpectations equilibrium.

Definition: A rationalexpectationsequilibrium is apricefunction p(s1,a1),a bondprice

function q(s1,a1),a transferfunction t(s1,cr1),a demandfunction for nextperiod’smoney

balances M(SL,St,Ot), a demandfunction for bonds B(st,s1,cYt),an investmentfunction

alaborsupplyfunction h(s~,s~,a1)anda consumptionfunctionc(s~ such

that:

(2.12) -Lab1 + I~E1 [ (‘çg fkoc(;).h(zl+I)) + 8)Lab1~1] = 0

p(zt)(2.13) E1[B(ç) ( -Lab1q(z1) + 13E1 [ , ~Lab141] I] = 0

(2.13*) -Lab1q(;) + ~E1[ Lab1.,.1]
p(z141)

(2.14) -Lab1 ÷ ~E1 [ (Lab141 + Um(c(;+i),m(Zt+t),h(Zt+i),~t+i)] = 0

p z1÷1

(2.15) U~~c(z~),m(zO,h(z1),~fh(k(z~,h(zO)+ Uh~c(ztJ,m(za,h(zO,~ = 0

(2.16) M(z1~1= (1+j.Q Mt



10

S +p(z)t(z1) +M - M(z)
(2.17) 5(z1) = q(z1)

(2.18) f(k(z1),h(z1)) x1 + 8k1.1 = k(z1) + c(z,)

Where

Lab1 = U(c(zj,m(z,,),h(z1)4~)

Unfortunately, there is no general theorythat maybeapplied to show the existence and

uniquenessof a rationalexpectationsequilibrium.So I will assumethat a uniquerational

expectationsequilibrium exists8.

It is clearthat if thepricefunction is homogeneousofdegreeone in the nominalsupply

of money that the policy functions of the real variables art homogeneous of degree zero in

money.On theotherhandif the policy functionsof the real variables are not affected by the

level of thenominalmoneystock,theequilibriumpricefunction is indeedhomogeneousof

degreeone in money.I restrict myself to equilibria for which this consistencyproperty

holds9. This will be a veryconvenientin the numericalpartof thepaper.

I will exclude thepossibility that nominal interest rates can be negative.A sufficient

condition would be thatgovernmentsupplyof bondsis positive and vm(c,m)� 0 for all

values of c andru.

8 Danthineand Donaldson(1986)show theexistenceanduniquenessin a simplified versionof thismodel
if Ucm(.) = 0. It must be notedthat if 1J(.) has the suuctureof W(.), this assumptionis not likely to be
true.

Also seeDanthineandDonaldson(1986).
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3.1 The Optimal Inflation Path

The similarity of theagentsmakesit easierto calculatethe socialoptimum. Let us

assumethat the socialplanner is not able to influence the stochasticproperties of x~or

Without doing any calculationsit is clearthat thereis a continuumof optimal pathsfor

governmentsbondsif the householdsare taxed in a lump-sum fashion. The reasonis that

given the optimaltime path for M1, a change in the time path of B1 changesthe time pathof

t~in sucha way that thebudgetsetof the householdsstaysexactlythe same,that is, the

modelsatisfiestheRicardianequivalenceproperty. The time path of Bt is thereforetaken

as given.

The problemof the socialplanneris then to maximize the agent’s utility function

subjectto theoverall resourceconstraint(2.11)with respectto c1÷j.h1÷~~ic+j+i and

jE {O,1,2,...}.

Thereareno Paretoimpmvementspossible,if thesolutionof therationalexpectations

equilibriumsatisfiestheconditionsfor maximizingthesocialplanner’sproblem.

The necessaryandsufficientconditionsfor thesocialplanner’sproblemare:

(2.3) -U~(ct,m~,h1,~)+ J3 E~[ (fi(kt+i,ht+i) xt+j+o) U~(c1+1,m1+1,h~+1,~1+i)J= 0

(3.1) Um(ct,mt,ht,~) = 0

(2.6) U~(c1,rn1,h&)fs(k~,h~)+ Uh(c1,mL,h1,~) = 0

(2.3’) Jim E~1311 U~~ k1÷1÷j = a

Note thatUm(.) = - W1(.) Vm(.), where W1(.) is thepartialderivativeof theoriginal utility

functionwith respectto leisure,Thus (3.1) is satisfiedif (3.2) holds
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(3.2) vm(.) = 0

Equation(3.2) implies that he socialplanner choosesthat level ofreal moneybalances

at which consumersareexactly satiatedwith moneyfor facilitating transactions.Note that

since the law of motion for prices is given by p(kCt) the law of motion for real money

balances in a competitive equilibrium can be representedas m(j4a1). At the beginningof

the period~, x1, m and~ areknown. In a competitive economy the monetaryauthorities

would want to chooseL~t(by choosingM1.,.1) in such a way that v2(ct,mt) is equal to 0.

The question is whether the finiction m(~o~)is such that k can indeedbe chosento make

the amount of real money balancesheld by economicagentsequal to the satiation level.

Sincethe functionalforms are unknown it is impossibleto find the restrictions on m(ka1).

It is not hard, however, to find conditions for the time path of inflation which art necessary

for a Pareto-efficientcompetitiveequilibrium.

By comparisonwith the conditionsfor the competitiveequilibrium it canbe seenthat if

v~(c~,m~)and thus 15m(~)is to be set equalto zero every period, the following hasto be

true.

(3.3) -U~ + = o
Pt+i

Wecanseedirectlyfrom equation (2.4) that this can only be true if q1 �1. But since we

assunrdthat nominalinterestratescannot be negative (i.e. q~� I), we conclude that for

thismodeltherulefortheoptUnwnqua,uiryofmoneyisrhwirwillbeanainedbyarareof
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pricedeflationthatmakesthe nominalrate ofinterestequalto zero 10,11 In this sensewe

find thatwelfaremaximizationcalls for following the“ChicagoRule”.

By rewriting (3.3)we canderive theimplicationsfor theexpectedinflation. But let us

first recall the optimal inflation in a perfect-foresightversion of the Sidrauski model.

McCallum(1987) finds thefollowing for theoptimalchangein prices (Pt/pt+I)pf:

p U
(3.4) (__E_)p1 =

P~+i 13

In astationarystate (PIPI+1)pf reducesto 13.1. If U~(c1,m1)> Uc(ct÷j,mtti)we havethat

(Pt/Pt+1)pf>13.1 1f (PIPt’i-l)pf is biggerthan 1 thentheoptimal rateof jj~flationis negative.

Because(3 c I we havethat in a stationarystateandin a growingeconomytheoptimal

inflation is negative.

By rewriting (3.3)wegetfor theoptimalexpectedchangein pricesfor theuncertainty

case

!.~COV(-!L, C4+1)

135\ E fPt%~~— p P~+i ~
• / t ‘j — EU

c,t+l

U
C,’

By rewriting (2.3) and substituting for the expected change in the marginalutility of

consumptionin (3.5),we get

10 This sentenceis copiedfrom Friedman(1969).

~ Without theassumptionthatq~~ 1, wewould conclude that non-positivenominalinterestratesarca

necessaryconditionfor a Pareto-efficientcompetitiveequilibrium.
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Lcov(L, U~+t)
Pt ~3 P,41 U,

(3.6) E~(—)~ = E, I ~ x~÷1+ 6]
Pt4! I - COV,( “k,t+l x,,~ )

This expressiontells us that the expectedchange in prices is only equal to theexpected

grossrate of return on capital if the two covariance terms in (3.6) areequalto eachother

which is unlikely to be true. Note that equal covarianceterms correspondswith equal risk

premiaon one-periodbondsandcapital investments.

To get somemore grip on theoptimal rate of inflation, it is useful to note that the

optimal expectedinflation can only be positive if theexpectedrealinterestrateon one-

periodbondsis negative. To seewhy this is true, rewriteequation(2.4’) in the sameway

asequation(3.3)isrewritten. Theresult is that in acompetitiveequilibrium it mustalways

be tnzethat thegrossreal returnon one-periodbondsE~(p,/p~+~q,)is smaller than the right-

hand sideof equation(3.5). If the optimal expectedinflation is positive we havethat

E,(py’p,~j)c1 and thusE1(p/p,~1q1)<l,which correspondswith a negativeexpected real

interestrate.

3.2 Comparingthe Perfect-Foresightwith the UncertaintyCase

Therearetworeasons why theoptimal rateof inflation in aperfect-foresighteconomy

might bedifferent from theoptimalrateof inflation in aworld with uncertainty.

1St The first reason is that investing in real money balanceschangesthe varianceof•

consumptionand leisureover time. This effect is indicatedby thecovarianceterm

betweentheunexpectedpricechangeandtheunexpectedchangein themarginalutility

of consumption.A negativecovariancemeansthatpeoplehavean unexpectedlylow

returnon theirmoneyholdingsif they“need” themoneybecausetheir marginalutility
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of consumptionis higherthanexpectedand that they have an unexpectedlyhigh return

on theirmoneyholdingsif they do not “need” themoneybecausethe marginalutility

of consumption is unexpectedly low. Investing in real money balances is lessattractive

when thecovarianceis negativethanwhenit is zero(like it is in theperfect-foresight

economy).A negativecovariancethuscorrespondswith ahigherrate ofdeflationat

which people will hold the level of real balancesfor which the marginalutility of

moneyis equalto zero.A priori, thereis no reasonto expecta negativeor positive

covariance.The optimal inflation in the model with uncertainty might thus be higher

or lowerthanin theperfect-foresightmodel.

2nd Tn a world without perfect-foresight them is uncertainty about next period’s

consumptionandnextperiod’s real value of money balances. This raises the expected

margnalutility of next period’s consumptionif ~ is a convex

function12. Using equation (3.5) we know that this decreasesthe optimal

deflation.Thisuncertaintymakesrisk-averseagentsmorewilling to substitute funds

from this periodto thenextperiod.If agents are motewilling to substitutefundsfrom

one periodto theotherperiod, thentheywill holdthesatiationlevelof moneybalances

at alowerrateof deflation.

4.1 Solution Method

Tn this sectionI give anintuitive descriptionof thenumericalprocedureto solve the

model. A more formal analysiscanbe found in Marcet (1988). The procedure will be

describedfor themodelof section 2 without bondsandwithout stochasticmoneysupply.

For this versionof the model we have 5 equations, (2.2), (2.3), (2.5), (2.6) and(2.11) to

solve for Ct, h~,k~+i,M~+jand Pt given k1, xt, ~ andM~.Firstmultiply both sidesof

12 If the utility functionhasthe structureof the “shopping time technologyutility function”, then it is
not clear that this function is convex.
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equation(2.5)with M~+i.This is legitimate sinceM~.,.1is an elementof the information set

at periodt13.

(2.5*) ~ = m1 (l+JS)= j3 E1 [ (M1+iIp~+i)(Uct+t + Umt#t) / U~j =

The conditional expectations in equations(2.3) and (2.5*) are functions of the state

variables. If we would know the functional form of the conditionalexpectations, we

would have5 equations in 5 unknowns. Let us supposethat theconditional expectations

area powerfunctionof thestatevariables. A reasonfor doing this is that theconditional

expectationin the sImplegrowthmodel in Brock & Mirman (1972) has this form. We then

get

(4.1) Uc(ct,mt,ht,~) = ~3alkexta3xta

(4.2) m1(l+j.i) = ~ blktb2xtl~3x~b4

(4.3) Uh(cL,mC,h~,~) = Uc(ct,mt,ht,~) fh(kt,h,) Xt

(4.4) f(k1,h~)x1+ 6k1 = k1~1+

(4.5) M~+i = (l4-u)M1

Note that money doesnot enterasa statevariable in the specificationof the

conditionalexpectations.The reasonis that accordingto thediscussion at the end of section

2, real variablesdo not dependon Mt. Since the lefthand side of equation (4.1) and (4.2)

13 In this case I also could have multiplied the equation with Mt. For the optimal policy I have to
multiply with Mt+1 and to make the comparisonsbetween the different policies as easyas possible.I
chose to multiply with Mt+i in this case as well.
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only containsrealvariablesit would thereforebeinconsistenttoinclude nominalbalances

on the righthand side. Sincereal moneybalancesin this caseareonly a function of the

variablesk~,; and~, we alsodo not have to include m~on therighthandside.This would

alsobe true if ~ would be a stochasticvariable, since ~ is assumednot to dependon the

levelof thenominalmoneystock.

In principle we could now solve the model becausewe have 5 equationsin 5

unknowns.The remainingproblem is of courseCo find the parametersof the power

functions.To find theseparametersthefollowing iteration schemeis used.Eachiteration

consistsof two steps.

Step1. In thefirst stepwe solvethemodelwith theparametersfrom thepreceeding

iteration andcreatetime seriesfor the 5 endogeneousvariables.Besidesparameter

values,we needacapital stockanda moneystockfor the first periodandwe needto

generatetherandomshocksXt and~. Therandomshocksaregeneratedonly onceand

arekeptthesamein everyiteration.

Sten2. In this stepwe estimatetheparametersofthepowerfunctionswith thedata

generatedin step 1. For estimatingthe powerfunctionof (4.1), for instance, this

would involve estimatingthefollowing equationwith non-linearleastsquares

(4.6) ~ = alica2xta3xtM +

where gt = (fk(kt+1,hL+l) x141 + 8)~

andç is anerror term.

We concludethat theiterationschemeis convergedif theparametersthat areusedfor

thesimulationof theseriesare“close” to theestimatedparametersin thesecondstepof the
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iteration’4. See Marcet (1988) for a method for finding good initial values of the

parameters. If we interpret every iteration as a mapping fmm the space of power functions

to itself, then wecansay that thesolutionof themodel is a fixed pointof thismapping.

The question now is whether the resulting seriesare close to the seriesof a true

rational expectations equilibrium. In (4.1) and (4.2) the conditional expectations are

replaced by projections on the spaceof first-order power functions. The equilibrium (the

fixed point) found in this way is an approximate rational expectationsequilibrium in the

following sense. If agentsuseasa forecastrule thepower functionwith theparametersof

the fixed point, then for the times seriesgenerated with this forecastrule, this rule was

indeed the best forecast rule in the spaceof first-orderpowerfunctions.The conditional

expectations in a rationalexpectations equilibrium can notin generalbe restrictedto be of

this form. We cancheck, however,whetherthe simulated serieschange if we takea

second-orderpowerfunction instead of a first order. It turnsoutthat thechangesare very

small.

Note that the five equations(4.1) ... (4.5) are still a complicatedsystemof the

unknowns.Equation(4.1), however,can be transformed to an equation with only

consumptionon the Iefthand side. This would not change the righthand side of equation

(4.2). It wouldchange thetermg~in equation(4.6)of course.Thenonly equation(4.3) is

anon-linearequationthat needsto be solvednumericallyfor thelaborsupply.

Oprithal Progrwn

In simulating the model under the optima! policy, equation(4.5) is replaced by

equation (4.7).

14 j~j~ convergence cntcrium I usedwasthatthemaximumchangein ~ $flflUl~ seriesfrom aic
iterationto thenextshouldbesmallerthan0.05%.
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(4.7) vm(ct,mt)=

Again we havea systemof five equationsandfive unknowns.Givenparametervaluesfor

thepowerfunctions,a transformationof equation(4.1) solvesfor c~.Equation(4.7) can

then be usedto solvefor mt andsinceM~is knownwe cansolvefor the price level. M141

is calculated from the new versionof equation (4.2) and h1 andk~+jfrom equation(4.3)

and(4.4) respectively.

4.2 Results

In this section I give the results of the simulation procedures.It mustbe stressedthatI

do not try to mimic “stilizedfacts”oftherealworld.Thesimulationsartdoneto getsome

more insight in thepropertiesof themodel. (WhenI talk aboutsimulatingamodelI mean

thewholeprocedureuntil convergence.)

The modelwas simulatedunder two typesof monetarypolicy. The first typeis the

optimalmonetarypolicy in whichthe monetaryauthorities- given the valuesfor thecapital

stock andthe realisations of the stochastic shocks- choosethatgrowthlevel of the nominal

moneystock for which the nominalinterestrateequalszero.The secondtype consistsof

fixed growth rates of the moneysupply.

Functionalfonnsandparametervalues

The following constantrelativerisk aversionutility functionwasused

,i 1-7 t
(clx ) -1

= ~t
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Thetechnologyis representedby

a l.a
= x~k1 h~

Park (1985) works with the following shoppingtime technology

.v2
M1 I-v2v = v

“1

withvj>O, 0cv2c1

This correspondwith a Cobb-Douglas technology in which shopping time and real

moneybalancesare combined to produce servicesneededto buy consumption. That is

v2-1 I-v2 v2
C1 v1 v~ t~

If v2 = I this technologycorrespondswith aCash-In-Advanceeconomyandwhen v2 = 0

moneydoesnot provide anyliquidity services.Notethat for this technologyvm(ct,mt) is

never equal to zero.Thefollowing functionis thereforechoseninstead

= v1cj—.—.--.) + v3—
p1c1 p1
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The authtionaltermcan be interpretedas storagecosts (v3 > 0). I needthis termto

make themodel well definedif the inflation is closeto -2 %. I have run the model for

higherratesof inflation with v3 =0and obtainedsimilar results.

Parameters

The basicparametersetconsistsof thefollowingt5

t= -0.50 a= 0.33 = 0.98 VI = 1.00

y = 0.28 & = 0.70 v2 = 0.45, 0.65, 0.85

= 0.01

The natural logarithms of the stochasticprocessesx1 and ~ follow a first-order

autoregressiveprocess

log(x1) = Px 1og(x~..j)+ Px = 0.9

log(~) = p~log(~1)÷ttt = OS

ç,~and tt,t arenormally distributedprocesseswith zeromeanand with the following

standarddeviations

= at = 0.025

~ The valuefory is from Park (1985). In this papera model with a shopping time technologyis
esthnated.His estimatefor v2 is closeto 0.65. The representativeagentin my modelspends- depending
on thegrowthrateof the moneysupply - around1% percentof his total time endowmentlesson shoping
thanthe representativeagentin Park’smodel. The valuefor ais alsousedin KydlandandPreston(1982).
Thevaluefor 8 that is usedis lower than in KydlandandPrescott(1982),since it takesmuchmoreeffort
to runthe simulationprocedurefor high values.It mustbe noted,however,that “capital” is the only non-
labor input in the productionprocessand there is no reasonto think that “capital” only standsfor
machineryandbuildings.If we considerthis, then thereis no reasonto call8 unrealisticly low.
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It mustbe notedthat thestandarddeviationsareratherhigh, but in a paperthat wants

tocompareastochasticmodelwith a perfect-foresightmodel this choiceis natural.Besides

the parametervaluesreportedI simulated themodel for differentvaluesoft. v1, a~and

a. Theresultswerevery similar to the resultspresentedandtheyarenot reported.

Optimal,nonetatypolicy versusa reductionofthemoneysupplyata rateequalto therate

oftimepreference.

For both regimesthe model was simulated 5 times for 1200observations.For every

simulationsome first andsecondmomentswerecalculated16’! The avengesof these

momentsand thecorrespondingstandarderrorsaxe given in table 1. The first important

observationfrom thetabel is that- evenwith theenormousstandarddeviationofthemodel

- the averagedeflation rate is indeedclose to the rateof time prefence. The same

conclusioncanbe drawnfor differentvaluesof t and for different combinationsof supply

anddemandshocks,that is fordifferent valuesofa1 and a~.

In table 1 wealso seethat the avengesfor thereal variablesarealmostexactly the

same.Muchmoreis wue.For theseparatesimulationsthemomentsandeventhe time paths

of therealvariables(realmoneybalancesexcluded)arevery similar. An exampleis given

in figure 1 in which weseethatthechangein consumptionfollows an almostidenticalpath

underboth policy variants. Theprice dynamicsarevery different,however,althoughin

bothcasesthereis an avengedeflationof 2%.This differencebecomesmostclearwhen

thedemandshocksaremoreimportantthanthesupplyshocks.Forthis reasonI simulated

the economyalso when = 0.025 anda1 = 0.001. Theresultsaregiven in figure 1.

16 also uied to runthe model 20 times for 300 obervations.Forsomeparametervaluesthis createsa
difficulty in estimatingthe parameters,sincethe statevariablesare correlated.The obvioussolution to
improve the efficiency in the estimationpan of the simulation is of courseto increasethe numberof
observations.Whensimulatingwith a small samplewaspossibletheresultswerevery similar.
17 Thesecondmomentsarecalculatedusinga slowmoving trendasin KydlandandPrescott(1982).To
calculatethesecondmomentsin this way,!hadto limit the numberof observations,sinceI hadto inverta
matrix. Thesecondmomentsare thereforecalculatedusinga subsample(116observations)ofeachof the
simulatedseries.
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Supposethat thereis a positive preference shock. In an economywith a fixed growthrate

of moneythis meansthat thereis an unexpectedincreasein consumptionandprices.If

consumptiongoesup, however, the optimal amountof real balancesalso goesup and

undertheoptimalmonetarypolicy priceswould haveto go down.The differencein price

dynamicsis clearlyvisible in figure 1. Pricesmoveprocyclical underthefixed growthrate

andacyclical under the optimal monetary policy. Note that prices already move acyclical

whenthereareonly supplyshocks.

Although the sumof thediscountedutility levelsfor the optimalmonetarypolicy is

higherin everysimulationfor the optimal programthedifferenceswith the fixed growth

rule are neglible. The increase in expected utility correspondswith apermanentincreaseof

consumptionand leisureof 0.006%.Comparedwith a zero growth rate of the money

supplythe welfaregain of the optimal program is equivalent with apermanentincreasein

consumptionandleisureof 1.30%. It is not surprisingthatthedifferencein the standard

deviationof prices(pricesaremuchmorestableundertheoptimalmonetarypolicy) does

not createa welfare loss, since under both regimesthe economyoperatescloseto the

satiation level of real money balances,i.e. vm(c,m) — 0. (See,however,alsothe section

“More variablemoney supply”).Unexpectedchangesin pricesandrealmoneybalances

thereforehavea small effecton shoppingtimeandconsequentlyonotherrealvariables.

D~ffèrenzgrowthrazesofmoney

Of courseit is of interestto investigatethechangesthatoccurin movingto growthratesof

themoneysupply thatarenotequalto -2%.I thereforesimulatedtheeconomyfor money

growth ratesbetween-2% and 10% and investigatedwhetherthe model satisfiesthe

propertyof superneutrality.

Danthine,Donaldson& Smith (1988) discussthe issue of superneutralityin a

Sidrauski-type model with a fixed labor supply. In the perfect-foresight version of their

model thestationaryvaluesof realvariablearenot affectedby thegrowth rateof money.



24

Danthine,Donaldson& S.ith find that the deviationsof thesuperneutralitypropertyare

quantitativelyunimportantwhenthe model is enrichedwith uncertainty.It is pointedout in

McCallum (1987) that after relaxing the “fixed labor supply” assumptionthe perfect-

foresight model still possessesthe supemeutrality property for a largeclassof utility

functions. In section2 it was pointedout that theutility function, thatis equivalentto using

the shoppingtime technologyof this paperdoesnotbelongto this classof functions.

In figure 2 we seethat thequantitative deviations from superneutraliryare substantial.

Economic agents clearly reduce their consumption and increasetheiramountof leisure.It

is worthwhile to focus thereadersattentionon thesharpdeclineof thecapitalstock. It is

often mentionedin the literature that an increasein inflation would inducepeopleto

substitutereal moneybalancesfor capital.This is thewell-known Tobin effect 18 In this

model an increasein inflation makesconsumptionmoreexpensivein termsof shopping

time, leisurebecomesrelatively cheaperand the amountof hours workedreduces.The

latterreducesthemarginalproductivityof capital.Capitalthereforehasto decreasein order

to attainan equilibriumreturn on capitalinvestments’9.

The substitution effects are bigger for lower values of v2. This is intuitive since in a

Cash-In-Advanceeconomy(v2 = 1.0) therearelesspossibilitiesto substitute. The welfare

lossesaregiven in table 2.

More variable money supply

An interestingexperimentis investigatingan increasein monetaryuncertainty.Let the

moneysupplyprocess be given by

=

IS SeeTobin (1965).
19 In theappendixI show that in comparingstealystalestea]moneybalances,conswnption,capitalajid
laborhourshaveto belowefor highezinflation rates.Theeffecton leisureis ambiguow.
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The logarithmof t~ is normally distributedwith meanzeroand a standarddeviation of

0.05. For this experiment~t = 0.025. Theresultsaregiven in table3. The differencesare

surprisinglysmall. I think that the main reasonfor the similarity is that an unexpected

changein themoneysupplyneverhasawealtheffect, If we look at theoverall constraint

(2.11)we seethat the consumption andinvestmentopportunitiesonly changeif the amount

of laborsuppliedchanges.An unexpectedincreaseiii themoneysupplyis always offsetby

a reduction in the supplyof governmentbondsor by a reductionin the lump-sumtax,

leaving the wealth of the agent unaffected.

S Concluding Remarks

The purposeof this paperis to seewhetherin aSidnuski-typemodel with stochastic

shockstheoptimalrateofdeflationwould be equalto therateof time preferenceif thereis

an averageno growth. It wasshown that in a model with stochasticshockseven on

averagetheoptimal rateofdeflationmightbedifferent from theoptimalrateof deflationin

theperfect-foresightversionof themodel. Quantitatively,however,thedifferencesturnout

not to be substantial.Moreover,just like in the perfect-foresightcaseand in other

(stochastic)modelsit is optimal to deflateata ratewhich resultsin azeronominalinterest

rateon one-periodbonds20.

It seemsto be an important assumptionthat the monetaryauthoritieshave the

possibility to taxagentsin a lump-sumfashion.Phelps(1973)hasarguedthatin this type

of model - with realmoneybalancesasanargumentof theutility function - the “Chicago

Rule” is no longerthesocialoptimum, if a lump-summechanismis notavailable.But the

utility function is an indirect utility function: moneyhas utility becauseit facilitates

transactions.Kimbrough(1986) hasarguedthat when moneyis explicitly modelledas

20 See: Krugman,PerssonandSvensson(1985)andLucasandStokey(1983).
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being useful in facilitating transactions,the inflation tax is analogousto a tax on an

intermediate good. These taxes are not part of a socially optimal tax package21,22,23

Kimbrough accourdingly finds thatthe“ChicagoRule” is againthesocialoptimum.

I consider this paper in the first place as a theoretical exersizeto get more insights in

theproperties of an importantmodel in monetary economics. I think that beforethe model

can be usedfor policy recommendationsit is importantto add the costaspectsof raising

taxesand issuing moneyto the model. In this paperit is assumedthateverybodypaystheir

taxesandthat raising taxes andprinting moneydoesnot involve any costs. If raisingtaxes

is more expensivethanprinting money,then deviations from the “Chicago Rule’ are very

well possible. This costdifference should be compared with thewelfare lossescausedby

deviating from the “Chicago Rule”. The calculations in this paper suggestthat thesecanbe

substantial.

21 See:DiamondandMirrlecs (1971).

22 Kimbmugh’smodel doesnot havecapitalor stochasticshocks,but the sameresultholds if capitalis
added to the model. If the model is enrichedwith uncertainty,we haveto assumethat therearecomplete
markets, to get that the nominal thierest rate has to equal zaoat the social optimum. Proofsare available
from the author.
23 LucasandStockey (1983) find for thesamereasonthatmoneyshouldnot betaxedin acash-in-advance
model.
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FIGURE 2A: CHANGES IN CAPITAL
(compared with —2~money growth)
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FIGURE 28: CHANGES IN CONSLMPTIOY
(compared with —2% money growth)

-15% -J

-.~OZ-I

-25Z -~

—307.

-357.-

I I I I I I I

—0.02 —~Ot 0.00 0.01 002 0.03 004 0.05 006 0.07 OQ8 0.09 0.10

growth rate of the money supply
+ v2 — 0.65 0 v2 = 0.450 vZ = 0.85



TIGURE 2C: CHANGES IN LABOR SUPPLY
(compared with —2Z money growth)
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FIGURE 2D: CHANGES IN LEISURE
(compared w,J~ —2% money growth)
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FIGURE 2E: CHANGES IN REAL MONEY
(compared with —2~money growth)
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AppendixA: RegressionResults

In table4 I give the resultsof the regressionsof the last iteration of the simulation

procedure.I also give theresultsof theregressionfor the bondequation.Sincewe do not

needthe bondprice to solve themodel wecanestimatetheconditional expectationof the

first-ordercondition connectedwith bonds(2.4), after the simulation procedurehas

converged.

Below I rewrite equation (2.3) and I repeatequation(2.5) for theconvenienceof the

reader

(A.1) = J3 E~[c1Y~1(~k,t+1X~~j+ 8) U~.d/U~I

(A.2) Mt+i/p~ = 13 E1 [ (Mt+i/pt+i) (1J~~+i+ Umt+i) / ~

For thebondequationwe get

(A.3) q1 = t~Et [ c~Yt1(Pp’Pt+i) U~,~+i/1J~~}

The condtional expectationsin thesethree equationsare approximatedwith thefirst-order

power functions. Thus first the time seriesfor all theendogenousvariablesarecalculated,

using equations (4.1),..., (4.5)1, and some initial parameter values for the power

functions.Thenthetermsinside theconditionalexpectationsabovearecalculatedfor every

period.Regressingthesetime serieson thepowerfunctiongivesusnewparametersfor the

power function.

1 Forequation(4.1) the transformedversion, i.e. (A.1). shouldbe used.



ADDendix B: StationaryState Analysis. Effects of an Increase in Inflation

To do stationary state comparisons we need the following four equations.

(8.1) 1 = ~[ a(~)’° + 8]

(B.2) = ~[1+ v~(~)2 (1-a)(~]

(B.3) 1 11 ~1L(.~)”~ + k a
(1-a) (..)

(B.4) c=kthl.U + 6k

N
2

(B.5) L = 1-h-v1 c

with, Occz<1,O<8<1

0< y<1

v1>O, O<v2cl

0

The first four equationsare the stationarystateversionsof equations(2.3), (2.5),

(2.6) and(2.11) for the functionsspecifiedin section4. (p’Ip) indicatesthestationarystate



rise in the price level. Equation (B.5) defines the shopping time and specifies the time

constraint.

The first claim is that it is impossiblethat the labor supply h increasesif (pYp)

increases.Supposesto the contrary that h doesincrease.Then we know from equation

(B.1) that capital a’so has to increaseand from equation(B.4) that consumptionalso

increases.Moreover,the ratio (h/k) doesnot change.Therefore if (pip) increases,theratio

(rn/c) has to decreaseto satisfy equation(B.2). This with an increasein c meansthat

shoppingtimewill increase,which implies that leisurehasto decrease.Theaboveimplies

that theIefthandsideof equation(B.3) will go down, while the righthand sidewill go up.

Clearly a contradiction.

The secondclaim is that real moneybalanceshave to go down. From the first claim we

know that consumption cannot increase.Sincethe ratio(rn/c) hasto godown,realmoney

balances haveto godown.

The third claim is that shoppingtime cannot decrease.If wemultiply both sidesof

equation (8.3)with c andLand useequation (B.5) to eliminateL we get for the shopping

timev

(B.6) v=

,, 1-v2

.

where 1h standsfor the marginalproductof labor. Since h andc cannot go up v cannotgo

down.



Now we are able to show the fourth claim that consumption, capimi, labor supply and

shoppingtime have to change. We know that the ratio (mlc) has to decrease.This implies

that shoppinglime has to increase unless a decrease in consumptionexactiy offsets this

change. But this is impossible. The reason is that consumption and labor supply move in

the samedirection and from (B.6) we know that the shopping time changes if the labor

supply and consumptionchangein thesamedirection.

But if the shopping time doessthctly increase,we are also done sinceequation (B.6)

implies that h and c cannotstay the sameif v changes.

The fifth claim is that leisure will go up as a responseto a higher inflation if

I (1-va) 1—B&-s-aB& — V2 1 < ~

I —a—135÷at3S y+v2-2yv2

If we combtheequation (B.3) and(B.5)to eliminatethe shopping time, then we get

(1-y) (hv2)
I = (v2-v2h+ ~ cJ

y+v2-2yv2 ft

From equation(8.4)we know that

c [(k)a + h

andfrom equation(8.1)we get that

~I5I-U = nil
h 1-136



If we combine the last three equations we get that

L = (1-y)V
2

(1-y) [(1v2) 113S+a138 - V2 J h
y+v2-2yv2 y+v2-2yv2 1—a--138+cxj3S

Note that I did not include storagecostsin theshoppingtime technology,i.e.v3 = 0.

All claimsremainvalid exceptthethird andthefifth. If v~>0, thenit is possible that the

shoppingtime decreasesasinflation goesup, sincethereductionofreal moneybalances

reduces storagetime”. Of coursetheconditionmentionedin thefifth claim wouldchange

if v3 > 0. Note that theconditionmentionedin thefifth claimis not valid for ourparameter

set if v2 = 0.45,0.65.Neverthelesswe find that leisuregoesup if inflation increasesin the

simulations,thusthereductionin storagetime causesleisureto go up asa responseto a

higherrateof inflation. If v3 doesnotequalzero,weget for leisure

L = (1-y)v2 [1-v3m] - (1-y) [(1..v2) 1—138+a138 - V2] h
y+v2-2’yv2 y+v2-2yv2 1—a—J33-i-aJ38
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• TABLE 1: THE OPTIMAL POLICY AND THE -2% RULE
AVERAGESOF ls~ and2~MOMENTS

(standarddeviations in parenthesis)

Optimal program -2% rule

means

Consumption 0.180457 0.180217

(0.001502) (0.001520)

Capital 0.269753 0.269409

(0.002278) (0.002298)
Leisure 0.725745 0.726088

(0.000015) (0.000102)

Shopping Time 0.017281 0.017295

(0.000144) (0.000144)
Real Money Balances 1.123235 1.106842

(0.009351) (0.011994)

Inflation -0.019879 4L020177

(0.000150) (0.000130)

SumDiscountedUtility -142.805306 -142.809333
(0.580878) (0.580771)

StandardDeviations

Output 4.131190% 4.187260%
(0.149062) (0.173604)

Consumption 3.451827 To 3.491590 %
(0.091138) (0.124803)

Leisure 0.281401% 0.325592%
(0.012541) (0.023463)

RealMoney Balances1 3.451827% 4.757446 %
(0.091138) (0.640376)

Inflation 2.030363% 2.767305 %
(0.106245) (0.137543)

Price Level 3.898927% 4.830944%
(0.287973) (0.706006)

‘Note that thestandarddcviaUonfor consumptiottequalsthestandarddeviation for realmoDeybalances.The reasonis thai
there is a fixed relation betweenconsumption andreal money balances in the optimum programand that the standard
deviations~e scaleit



TABLE 2: WELFARE LOSSESOF POSITIVE MONEY GROWTH
Pcrmancnt decreasein consumption and leisure equivaicru to welfare change

(compared with a zero&owh raic of money)

= 0.45 v2 = 065 v2 = O~5

money ~pwth r~e

0025 (= 2.5 %) L24 % 0.76 % 024 %

0050 2.22 % 1.45 % 050 %

0.075 2.95 % 1.92 % 0.57 %

0.100 3.69 % 2.52 % 0.85 %



S.

TABLE 3: INCREASING THE VARIANCE OF THE MONEYSUPPLY
AVERAGESOF 1g and 2nd MOMENTS

(standarddeviationsin parenthesis)

0.05

means

ConsumpUon 0.159067 0.159164

(0.001306) (0.001594)

Capital 0.23779 1 0.237974

(0.001953) (0.002397)

Leisure 0.748473 0.748374

(0.000038) (0.000625)

Shopping Time 0.024736 0.024932
(0.000112) (0.000346)

Real Money Balances 0.485019 0.487316

(0.005364) (0.011336)

Inflation 0.024736 0.025552

(0.000127) (0.002110)

SumDiscountedUtility -143.731035 -143.723325

(0.603096) (0.578605)

SEandard Deviations

Output 4.132109% 4.120616%
(0.205720) (0.182771)

Consumption 3.415992% 3.519375%
(0.160012) (0.131557)

Leisure 0.269880% 0.279920%
(0.023636) (0.020988)

RealMoney Balances 4.763364% 6.611483%
(0.504757) (0.304696)

Inflation 2.711944% 5.507807%
(0.078779) (0.323215)

Price Level 4.875882% 7.580988%
(0.576581) (1.033256)



TABLE 4: REGRESSION RESULTS’

OPIrMAL POLICY
(V

2
=0.65)

constant

Equation (A.1) 4.006084 -0.447427 -0.919103 -0.130855
(0.006263) (0.000226) (0.000521) (0.000252) 0.9993

Equation(A.2) 1.965936 0.427498 0.766715 0.015597
(0.001502) (0.000226) (0.000506) (0.000228) 0.9994

Equaüon(A.3) 3.949279 -0.458058 -0.918846 -0.139980
(0.005825) (0.000216) (0.000499) (0.00024!) 0.9994

?,IINUS2%RULE
(V2 = 0.65)

constant

Equation (A.I) 3.9793330 -0.452922 --0.920631 -0.078325
(0.005405) (0.000197) (0.000465) (0.000228) 0.9994

Equation (A.2) 2.083859 0.480828 0.894943 -0.682185
(0.001502) (0.000226) (0.000506) (0.000228) 1.0000

Equation(A.3) 3.976162 -0.453559 -0.916933 -0.093905
(0.000099) (0.000004) (0.000008) (0.000004) 1.0000

Note that in the regression results,we also seethe difference in theprice dynamics.A
positive preferenceshock lowcrs the price level in the opzimai program (a negativeeffect
on (M~~jfl.~))and a positive effect on the priceIcvet in the -2% nile.

I Standard errors are given in parentheses.

I

-I .4
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