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Abstract

In this paper we study the relationship between wealth, income distribution

and growth in a game-theoretic context in which property rights are not

completely enforcable. We consider equilibrium paths of accumulation which yield

players utilities that are at least as high as those that they could obtain by

appropriating higher consumption at the present and suffering retaliation later

on. We focus on those subgame perfect equilibria which are constrained Pareto-

efficient (second best). In this set of equilibria we study how the level of

wealth affects growth. In particular we consider cases which produce classical

traps (with standard concave technologies): growth may not be possible from low

levels of wealth because of incentive constraints while policies (sometimes even

first-best policies) that lead to growth are sustainable as equilibria from high

levels of wealth. We also study cases which we classify as the "Mancur Olson"

type: first best policies are used at low levels of wealth along these

constrained Pareto efficient equilibria, but first best policies are not

sustainable at higher levels of wealth where growth slows down.

We also consider the unequal weighting of players to trace the subgame

perfect equiliria on the constrained Pareto frontier. We explore the relation

between sustainable growth rates and the level of inequality in the distribution

of income.



"It is consequent also to the same condition, that there be no property,
no dominion, no mine and thine distinct; but only that to be every man's,
that he can get; and for so long as he can keep it."

Hobbes, Leviathan.

1. Introduction.

In this paper we explore the relation between wealth, growth and income

distribution when property rights are not fully defined or are not completely

enforcable. We have in mind a situation where organized groups have the power

to assure for themselves a share of the income by direct appropriation, by

manipulating the political system or by rent-seeking behavior to effectuate

favorable transfers and regulations. Depending on the context these groups may

represent, among others, organized labor, industrial groups and occupational

associations, the military, the bureaucracy and ethnic or racial groups. The

redistributive power of such groups necessarily imparts an element of joint

ownership to the resources of society and may reduce the incentives to accumulate

wealth.' We propose to study these issues in the context of a game-theoretic

model.

We study a dynamic game in which each player independently chooses a

consumption level and the residual output, if any, becomes the capital or the

productive resource in the following period. Stationary equilibria in such games

have been studied by Lancaster [1973], Levhari and Mirman [1980], Majumdar and

Sundaram [1991], and many others. (See also Tornell and Velasco [1990].) We

consider equilibrium paths of accumulation in which players receive utilities

that are at least as high as those that they could obtain by appropriating higher

1 The role of the enforcement of property rights by the state to internalize
social gains and promote growth has been discussed by D. North [1981), [1991] in
a historical context. The effects of rent-seeking behavior by organized groups
on the economic efficiency of mature economies has been studied by M. Olson
[1982]. See also G. Becker [1983] and W. Brock and S. Magee [1978).
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immediate consumption levels and suffering some retaliation later on. (For a

related framework of analysis, see Marcet and Marimon [1990]; see also Chari and

Kehoe [1990].) We focus, however, on those subgame-perfect equilibria which are

second-best, that is on those particular equilibria among all that are subgame-

perfect which lie on the constrained Pareto frontier. Within this set we analyze

the effects of wealth (or the stock of capital) on growth and on steady state

income levels. In particular we also consider examples which produce classical

"growth traps" with standard concave production technologies. 2 Even though

first-best policies lead to growth, along second-best equilibria growth may not

be possible from low levels of wealth because of incentive constraints: the

accumulation of wealth by one player can lead to appropriation and to high

consumption levels by other players, and therefore may not be sustainable as an

equilibrium strategy. This possibility of negative or low growth outcomes from

low levels of wealth may be applicable to some of the- stagnant or contracting

economies in Latin America and in Africa that have been plagued by political

instability and that have often experienced capital flight (see Tornell and

Velasco [1990]). Baumol, Blackman, and Wolff ([1989], see chapter 5) provide

some empirical support for the wealth dependence of growth rates; it is the more

affluent of countries that are able to join what they call a "convergence club",

with the poorer LDC's being left behind. The sample of all countries shows no

convergence in growth rates.

Another possibility is for incentive constraints to bind at high wealth

levels and not at low ones. Capital may be too precious at low levels and

players may follow first-best policies of accumulation. Inefficiency may set in

2 For a modern version of a standard classical trap based on non-concave,
"threshold" technologies, see Azariadis and Drazen [1990].
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at higher levels of wealth and first-best policies may have to be abandoned as

the incentives for appropriation grow and redistributive pressures increase. The

possibility that inefficiencies are associated with stable and wealthy economies

in which organized groups have had the time to mature and to exert redistributive

pressures has been suggested by Mancur Olson [1982j.	 We illustrate this

possibility in section 5 below.

Our brief discussion so far has made little mention of income distribution.

Indeed the possibilities mentioned above can occur and social conflict can arise,

even under complete equality. The desire to secure a higher share of output is

not restrained by an equal distribution of income. As our examples and analysis

demonstrate, redistributive pressures and incentive constraints can result in

less than efficient accumulation policies, even when incomes are equally

distributed.	 However, unequal allocations may further increase the

inefficiencies because those who are worse-off have a higher incentive to

appropriate output and to exert redistributive pressures. Maintaining an unequal

distribution of income may then further slow down growth by further reducing the

incentives for accumulation.	 Some empirical documentation of the negative

influence of income inequality on growth has recently been given by Persson and

Tabellini [1991j. (See also Alesina and Rodrik [1991].) In section 6 we study

this question and provide a parametric example that illustrates the effect of

inequality on growth. Figure 4 illustrates the range of possibilities.

In much of our analysis the "second-best" problem is formulated as a

dynamic programming problem. The nature of the incentive constraints that depend

on the optimal value, however, causes some non-trivial difficulties. Value

functions are no longer necessarily concave or even continuous, and the usual

contraction mapping theorem does not go through. From an economic point of view,
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if growth is possible only from stocks above a critical level because of

incentive constraints, then it is optimal to decumulate the stocks to a lower

steady state (maybe to zero) when the initial stocks are below that critical

level. This "growth trap" can create a discontinuity in the value function. We

work out an example of a value function with a discontinuity in section 4.2.

The paper is organized as follows. The next section sets up the problem

and provides existence results in a general framework. Section 3 works out a

simple and illustrative second best problem where incentive constraints retard

growth but accumulation rates do not depend on wealth. Numerical examples

illustrate how growth is influenced by the incentive constraints along the

symmetric (egalitarian) equilibrium. 	 Section 4.1 provides some general

conditions under which a political "growth trap" occurs without having to

explicitly compute the "second best". Again a numerical example is provided.

Section 4.2 computes an explicit example of a growth trap with a discontinuous

value function. Section 5 illustrates the "Mancur Olson" case, that is the case

where first best policies are optimal at low stock levels but cannot be sustained

at high stock levels. Section 6 illustrates, with a parametric example, the

effect on growth of introducing an unequal distribution of income in the presence

of incentive constraints. Section 7 discusses renegotiation proof equilibria for

the cases studied in section 6. Section 8 contains final remarks. We should

note that in sections 3 and 4.1 we study cases where incentive constraints result

in permanently lower growth rates. In the subsequent sections we analyze cases

where incentive constraints produce asymptotically lower levels of income, rather

than permanently lower growth rates.

Our further and continuing research explores the effects of introducing

sanctions against "defecting" from second-best policies, and of asymmetric



appropriation and defection abilities across players. We also note that our

analysis applies to the case of a firm where workers set the wage to capture a

share of the output and capitalists decide the level of investment, as in

Lancaster [1973]. (See also Benhabib and Ferri [1987].)

2. The Second Best Problem.

We consider two players characterized by two concave and strictly

increasing utility functions U t , i 1, 2 and a common discount factor p E (0,1).

k t represents the capital stock at time t. The production function f(kt) is

concave, increasing and f(0)	 0.	 The feasible paths of the consumption

sequences must satisfy f(kt) - c - c 2 
� kt..1 and ct , c	 0 t	 0, 1, ...t	 t

In our game, histories at time	 t	 are sequences of consumption pairs

ht 	(c i1 ,c i
2
 , ..,ct1 ,	 and strategies are maps from histories to consumptions.

For a given initial stock k, the second best value is defined by

vsb(k) -= sup E wo /3 t [ a	 (ct ) + a2U2 (ct2
 
)]
	 (2.1)

t

1	 2where the supremum is taken over the sequences (c t ,ct ) t , 0 of subgame perfect

equilibrium outcomes and a l , a2 > 0.

The purpose of this section is to prove that the second best is achieved

over a smaller set of SPE. We start with a few definitions.

To avoid ambiguities, we describe in detail how the allocation of

consumption is regulated. In the following it will be useful to distinguish
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between attempted consumption and consumption (the first is the consumption a

player is trying to get, the second is what the allocation rule gives him). For

a given capital stock k and two attempted consumptions c l and c2 , the allocated

consumption is

c 1 if el + c2 � f(k)	 or c 1 � f(k)/2

A1 (c 1 ,	 c2 ,	 k)	 . f(k)-c2

f(k)/2

if

if

cl+c2	 f(k)	 and

c1,	 c2	?..-	 f(k)/2	 .

c l >_ f(k)/2 c2

and similarly for a2 . Note that if c 2 � f(k)/2, then

a l (c i , c2 , k) - min	 c 1 , f(k)-c 2 ).

This allocation rule seems natural, although our subsequent analysis can

be carried out under alternative rules that may be appealing as well.

Remark.	 Note that the utility function of both players is strictly increasing

in consumption. This in particular implies that the following pair of strategies

is an equilibrium, independently of the capital stock k:

c 1 = c2 = f(k)

Note in fact that the allocation rule gives A 1 (c 1 , k, c2 )	 A2 (c 2 , k, c 1 ) = f(k)/2

to both players. If c 2	f(k), for any choice of c l the capital stock in the

next period is zero. So by reducing c 1 the first player can only reduce his

payoff.

The fast consumption strategy is the stationary strategy defined by:

c(k) e f(k) .

As noted above, it is clear that the pair (c 1 , c2) is a SPE, since the
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utility functions of the players are strictly increasing.

The value of this equilibrium to player i is given by:

vi (k) =I:	 (ji(kt)), i=1,2
t

where kp k, kt	f(kt _ i ) - Z1 (kt .. 1 ) - Z2 (kt_ 1), t 1. Of course if f(0) = 0, the

above summation reduces to Ui(f(k)/2).

A trigger strategy pair is described by an agreed consumption path

(c
1
 ct t • t>0 and the threat of a shift to a fast consumption equilibrium after the

first defection is detected.

The individual rationality constraint on an outcome path is the condition:

Efi t U(cti ) vi(k)

Clearly, in a SPE, the equilibrium outcome of the equilibrium of any subgame

satisfies this inequality.

Consider now a trigger strategy equilibrium. For any capital stock k and

equilibrium consumption c of the other player the value of defection is the

value for a player of deviating optimally, that is:

I vsn (k, c) e Max	 sup {Us (As (k, c, c i )) + E fit Ui (c ' (kt ) )), vs(k)
c i >0	 t=1

where
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kl = f (k) - c o -	 (k, c, ci ) , kt..1	 f(kt.)	 c i (kt ) - E2 (kt ) ,

Note that this optimization problem can be expressed without the maximization

operator in defining vt by simply adding the constraint vi (k,c) .e-vi (k). We

denote by c tD (k, c) the optimal deviation. In the games we consider such optimal

consumption exists and is unique, so no ambiguity is possible there.

The following lemma is clear. We state and prove it for completeness.

Lemma 2.1. Let (ct
1
 ,ct

2
) t , o be the outcome of a SPE, e say. Then the trigger  

strategy pair with this agreed consumption path is an SPE, e' say.

Proof.	 For any history ht , we denote vt (ht ) the value to the ith player of

the equilibrium in e starting with ht . We only need to consider equilibrium

1	 1
histories h	 = (c c	 c

1
 c

2 
)	 Let kt be the capital stock. We claimt-2.	 1, 2''",

that c t2 is an optimal choice for player 2 next period, in ei.	 The best

alternative choice is c 2 (kt ,cti, ) s c p . In the equilibrium E such a choice would

give him a payoff of U 2 (c D ) plus the equilibrium value of the subgame starting

at (ht,ctl,,e). In the equilibrium of this subgame, the individual rationality

constraint is satisfied, so

2	 1	 2	 D	 1	 D	 1U2 (Ct +fiV2 (ht ,	 , Dt	 U2 (C D ) +PV2(ht 1 ,
	 U2(C D ) +fiV2 ( f Oct ) -ct -c ) = vz(kt,ct)
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and our claim follows.	 ■

It follows that the supremum in the definition of second best is the same

as the supremum over trigger strategy equilibria.

This reduction allows us also to prove that the second best value is in

fact achieved. We turn to this now. Let a l , ay 0 be weights attached to the

players. From what we have seen, the second best is the solution of the problem

v ( )	 sup
sb' k - e	 1 	 2	

1
)Efi t [a llycb 2U2 (c) 1

((ct, ct )	 t
(2.2)

subject to f(kt) - ct - ct _

Ea'oPt+jui(c
	

13 (k
;

,	 i = 1,2, ...	 j =1,2.

In the following we shall refer to this as the second best problem.

We assume now that the production function f and the discount factor

satisfy:

k
lim f i (k)fi < 1.
-• +co

Then we have

Lemma 2.2 

1. A solution to the second best , problem exists.

2. The function vsb is uppersemicontinuous.

(AO)
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Proof.	 For every capital stock k the set of admissible paths is the set

of sequences {(kt ,ct1 ,ct2 ) t , o } such that (1) and (2) above are satisfied. 	 In a

properly chosen weighted space this set is compact (because it is a closed subset

of an order interval). Now existence follows immediately from the continuity of

1	 2
the function {(ct , ct ) t ,, }	 Eflt[cryi(cti) + otzlia (ct2 ) ] .

For the second statement, note that the correspondence defining the set of

admissible paths has a closed graph, and since the image space is compact, it is

also uppersemicontinuous. Now apply the Maximum Theorem. 	 ■

3. A Simple Example of Second Best Equilibrium with no Wealth Dependence.

We will start by exploring a simple case of a second best equilibrium in

detail to illustrate how growth rates may differ between first and second best

equilibria. This first example is simple because growth rates on equilibrium

paths will turn out to be independent of the levels of wealth, that is of the

capital stock. More interesting and complex cases will be studied later.

Each of the two identical players in this example have utility functions

given by

Ui =p t 	(cti)l-e
	

(3.1)

- E

where 0 < fi < 1 and 0 < e < 1. 3 Production is linear, and is given by •

3 With th some caution it is possible to extend the analysis to the cases where
e is less than or equal to zero.
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y ak + b/	 (3.2)

where ka0 is the capital stock, and a, b and / are non-negative constants.

We will consider in this example symmetric equilibria (setting a l a2 - 1

for the problem given by (2.2) above), where both players get equal consumption

levels. In section 6 we discuss the implications of the unequal weighting of the

players, and therefore of unequal consumption allocations, on the growth rates

along second-best equilibria.

In the symmetric case, the total utility of each player along the first-

best equilibrium can be described by a dynamic program:

v(k) = Max
0<c<

2

1  Ic i - e + /3 -Cr(y - 2c)
1-e	 (3.3)

where y ak + b/. The solution to the program is given by the consumption

function:

c = Min(Ay +	 y/2)
	

(3.4)

where4

A sufficient interiority condition for E= Ay + n � y/2 for all k 0 is
easily computed to be Pa a 1. This condition will be satisfied in all our
examples below.
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1 (1-0
1=	 - fl e a E )	 0
2

(3.5)

� 0
	

(3.6)
a-1

and where we have imposed the restrictions a > 1, fl 1Ra cl-Euf < 1 to avoid

negative consumption levels and to assure a well-defined value function. For any A _>: 0

such that c = Ay + n :5 y/2 along the equilibrium path, with t 	 (Ab/)/(a-1), the

value function is given by5

v(k) (3.7)

where

(1/(1-0)Al-c
s(A) = 	

1 -p(a(1-2A))1-'
(3.8)

We note for further use that s is derived here for arbitrary A 0, not only

for the first-best A. We will use this fact in deriving the second-best value

function later on.

5 We can also express v(k) as

v(k) = ((1-6)(1-/3(a(1-2A))1'))-1(Ay + Abi2/(a-1) )1-e
� ((1 -6) (1-P(a(1-2A)1') )-1(y/2)1'

since v(k) above is defined for c	 Ay + Ab2/(a-1)	 y/2 and c	 0.

12



When a player defects against first-best play by his opponent, he must

choose his consumption in the current period taking into account that trigger

strategies will be enacted subsequently. Optimal defection value is therefore

given by

vu(k,C(k))

Max_	 1
0�c0 � (1-A)y-n 1-6

[ 1 ][1 [a((l-i)y-n-c.)) +1)/11-C
2

(3.9)

[tfi i[ 1 ][12.b11E

where C(k) = Ay	 � y/2.
This value reflects the trigger strategy equilibrium for which following a

defection, all output is consumed in equal shares by the two players. In the

period after defection takes place, all capital is exhausted and subsequently the

only output produced each period is W.

In general, the optimal defection policy for consumption is given by

cD (k,Ayi-n) .MiniM [(1-A)y + a-1 -A	 b/ 	 (1 A)y n	 (3.10)
a	 a-1

Ab/
whenever the other player's consumption policy is Ay + n y/2, for 77 =	 and

a-1
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any A and where M = (KIR
	

<1. (Of course when the other player

chooses A	 he is following the

interior, that	 is	
if	 m 

(1 
A)y +	 a-1 _ A 	bk	 < (1 A)y	 Abp

a	 a-1	 a-1
,	 the value	 of

optimal defection becomes

[	

[  ((a-1)/a) -A I
(b2/(a-1))vp (k, (1-A)y + n ) = sp y +

1-A

4 [/32 	 1	 1 I bf r
1-fi [ 1-6 {{-2-

(3.11)

where sip = (1-A) I-e (1-0 -1 [M1-E + 0((l-M)a/2) 1-e l = (1-A) 1-f (1-0 -114 -E .	 We note

that vp (k; c) is the value of optimal defection against a player with consumption

policy c = Ay + p � y/2, for an arbitrary A, which can of course be the first-best

policy if c(k) = Ay +	 y/2.

For first best policies that constitute an equilibrium, the values that

they generate for each player must dominate the values of defection at each point

on the equilibrium path, that is v(k) v p (k,C(k)) for all k on the equilibrium

path. As we illustrate in later examples however v(k) and v p (k) can intersect,

so that first-best outcomes can be enforced from some k's, but not others. This

"state" or "wealth" dependence of equilibria was explored in Benhabib and Radner

first-best in isstrategy.) If, addition, cp
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[1987].

In this first example of second best equilibria we eliminate the state

dependence by simplifying the production function. 	 Setting b

n — 0, yields

0, which implies

vD (k,c) = 11 -e (1-a) 1-e (ak) 1 '	 sp (A) (ak) (3.12)

v(k) = s(ak)1-€ (3.13)

c (k)	 (1-fi1ita(1-`)/E)y 5 y/2 (3.14)

c D = M(1-A.)y	 A ry	 (1-A.)y (3.15)

Both v(k) and vD (k, a(k)) start at the origin but do not intersect if s # sp.

Clearly if s(A) sp (A), the second best equilibrium is also the first-best at

every k.

A symmetric second-best equilibrium (the non-symmetric case will be

discussed later in section 6) with incentive compatibility constraints will be

given by the solution to the following problem:

Vsb (k)	 Max	 - EY 1C 1-6 + V sb (ak - 2c)
0<c<Y

2

subject to v sh (k) .�1v D (k,c) . Alternatively, if a is a Lagrange multiplier, the

problem can be defined as
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Vsb (k)	 Max	 (1-€)-1c
0<c<

2

+ fivsb (ak -2c) + c(vsb (k) - v°(k, c) )
(3.16)

We now characterize the solution to (3.16):

Proposition 3.1. Let U(c)	 (1-0-1c1'	 and y	 ak where 0 < e < 1,

A = (1-P lica (1-6)/e ) > 0. Then the symmetric second-best consumption
2

policy is given by

(a) csb	 ay	 if	 s(i)	 s° (a)	 (3.17a)

(b) C sb	 AsY
	 if	 s(i) < s°(A)
	

(3.17b)

	

where As = Min eklA e [i,z1, s(A)	 sp (A)} � 0, z = M < 1 and
1+M	 2

- 1
1/tHi [2 <2	 ;

Proof: See Appendix A.1.

6 We note that when As is determined from s(As )	 sp(a s), we also obtain As
< 1/2 which is required to hold in the analysis above. Furthermore we have
As 5 z	 M(1+M) -1 which implies A s 5 M(1-As ) = AD.

6
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Figure 1 below illustrates the second-best solution. The solution is to

find As which equates the value for each player of following the consumption

policy csb A sy with the value of defecting from it. This requires equating ss

s(As ) a sp(A s ).	 In other words, consumption rates must be increased and

accumulation slowed down up to the point where defection is no longer attractive.

lip in Figure 1 is the value of defecting against a player following first best

strategies.

V V V
sb   

kl - £

Figure 1

The following numerical values illustrate the effects of incentive

compatibility constraints on economic growth along the symmetric equilibrium for

the proposition above. We set a – 3.3, b 	 0, /3 – 0.325' (implausibly high

7 Note that Da > 1 so that c	 Ay + q< y/2 for all k	 0, as pointed out
in the previous footnote.
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discounting of course) and c - .5. For these values vp (k, C(k)) > V(k) for all

k > 0, where V(k) corresponds to the first-best values with policies c Ay. We

compute A - 0.326, As = 0.349. These magnitudes imply that if the first best

could be sustained, the capital stock would perpetually grow (since we have an

(a-k) technology) at 15%. On the second-best path however the economy grows at

-0.0015%, that is it contracts. Of course parameters were chosen to make this

stark point. Other parameter values would allow positive growth along the second

best equilibrium, but at a slower rate then the first best. Of course in some

cases the first-best may be enforcable as an equilibrium from all stocks so that

incentive constraints will not bind. Finally, we note that for the parameters

above, it is easy to check that a - 0.6032, and that y - 2c sb (k)	 0 and y -

C(k) - cp(k) � 0 for all k �0, as assumed in the computations.

In the above example the second-best equilibrium is sustained by a grim

trigger strategy, that is a trigger strategy where players exhaust the stock if

a defection occurs. We can also compute the best symmetric equilibrium that is

sustained by a weaker trigger strategy, that is a strategy where players revert

to an interior stationary Markov equilibrium if a defection occurs. Such an

equilibrium solves for player 1 the problem given by

v1 (k ) = Max (l-c)c
c1

P.4(ak - c l - cy(k))

where in the symmetric case the solution satisfies c 1 (k) = c 2 (k), and c y (k) is

also a best response for the second player. This problem is easily solved, with

c i (k)	 AMak, where AM � 0 solves (1 - 2Am) ( 6 pal-`(1 - AM) for i	 1, 2. It is

easy to show that AM > A.

Now we can compute the best sustainable symmetric equilibrium with trigger

strategies where players revert to the above stationary Markov equilibrium after

18



a defection. On such an equilibrium, using the parameters above, each player

consumes A 5H(ak) with A SH – 0.435. This yields a contraction rate of about 43%,

much higher than the contraction rate for the second-best equilibrium under grim

triggers. This is not surprising since the "grimmer" the trigger strategy, the

closer the best enforceable equilibrium will be to the first-best. The point is

that even along symmetric second-best equilibria sustained by grim strategies,

growth may not be possible. Of course it is easy to construct examples where

positive growth occurs, at different rates, for first-best and second-best

equilibria, as well as for equilibria obtained by trigger strategies that are

weaker than grim strategies. In section 7 we will also consider strategies

associated with renegotiation proof equilibria.

4. Wealth Dependent Growth

4.1 General Conditions for a Growth Trap 

When b > 0 in equation (3.2) of the previous section, it is in general not

possible to find a constant A s to equate v(k) and vp (k, c). In particular for

A, v(k) and vp (k, C) may intersect at some k. If v(k)	 vp (k, C.) for A = A

and k k, first-best policies will be sustainable as equilibria for k a k. From

initial conditions below k where v(k) < v°(k, C(k)), it may be possible to

construct "switching" equilibria (which are not necessarily second-best), along

which growth occurs at a rate slower than first-best rates until k is reached,

and first best policies are followed once k is attained. This was demonstrated

in Benhabib and Radner [1987]. In this section we will derive conditions under

which the second-best growth rates will be wealth dependent: in particular we

will find conditions under which first-best growth rates are sustainable from

high stocks while growth is not at all possible from low stocks because of
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incentive compatibility constraints. The intuition for the result is simple:

relative to first best levels, consumption rates must be increased and

accumulation slowed down to prevent defection. When stocks are low, consumption

must be .increased so much to prevent defection that growth is no longer possible.

Examples will follow.

The general proposition below will allow us to show how growth rates are

affected by wealth levels.

Proposition 4.1.1.	 Let c be the least c such that U(E) + PTT(f(k) - 25) =

v°(k, 5). Assume that

(i) for some k, 1^7(k) < v°(k, C(k))

(ii) f(k) -	 5 k.

Then f(k) - 2c sb (k) s k.

Proof.	 Assume that f(k) - 2c sb (k) > k. Then clearly c sb (k) < S. But then

vD (k,c sb (k)) 5 v sb (k)	 (4.1.1)

5 U(c s .b (k)) + ACT(f(k) - 2c sb (k))	 (4.1.2)

< vp((k),csb(k))	 (4.1.3)

•

(4.1.1) holds by the definition of the second-best. (4.1.2) holds since ir e vsb.

(4.1.3) holds by the fact that U(c') + fili(f(k) - 2c') < v°(k, c') for every c E

( a ( k ) , 5); this interval is non-empty because of assumptions (i) and (ii).
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Therefore we have a contradiction, which concludes the proof. We note that if

a a as defined at the beginning of the proposition does not exist, condition (ii)

can be taken to be trivially satisfied.	 ■

We can now construct an example to apply the proposition above. We assign

new parameter values to the example in the previous section as follows: a

1.875, b = 0.2, fl	 .55,8 e	 .45. With these values, for k � 1 we have V(k)

> vp (k, C(k)), while for k	 .9, V(k) < v'(k, e(k)). It is easily shown that

for k > 0.001, the first-best strategies lead to growth at the rate of about 7%.

Thus for k 1 the 7% growth rate can be sustained as a first-best equilibrium.

However, for k in [0.1, 0.4] conditions of the above proposition apply. For k

= 0.4 (= 0.1) E defined in the proposition is given by 0.19111 (0.10112) and y -

2E - k < O. Therefore the second-best equilibrium cannot generate growth for

k E [0.1, 0.4]. Of course as in the previous example, we can check that for k

0.1 we have y - 2C(k) > 0 and y - C(k) -co(k) > O.

The above example and proposition allow us to starkly establish how growth

rates can depend on wealth because incentive constraints can be strongly binding

at some wealth levels and weakly binding at others. In fact, for our example,

incentive constraints are not binding at all for k 	 1 but binding strongly

enough to deter positive growth for k E [0.1, 0.4].	 The proposition above

allowed us to construct the example without explicitly calculating the second-

best equilibrium, which in general is quite difficult to compute. Nevertheless,

in the next sub-section we provide a fully characterized example of a a second-

best equilibrium for which growth is possible from high levels of wealth but not

8 Once again fia > 1 so that c Ay + n < y/2 for all k 0, as pointed out
in footnote 4.
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from low levels of wealth and for which the value function is discontinuous.

4.2 A Numerical Example of a Growth Trap Equilibrium with a Discontinuous Value 
Function.

This example derives explicitly a second-best policy for which growth

towards a high steady state occurs from large stocks but not from low stocks.

First best policies which are not incentive compatible always lead to the high

steady state. The value function for this example is discontinuous although

technology and preferences are convex and continuous. In fact the first best

policies lead to a unique positive steady state. As in the previous section, the

players have identical preferences and are equally weighted.

We consider

Ak

{	

k � 1
B _,
2	 if(k) = A + B(k-1)	 k� 1, (4.2.1)

with A – 5/2 and p - 1/2;

if c � 1
U(c) = lc

1 + b(c -1)	 if c>_ 1 .

Since A$ > 1 >	 k 1 is a steady state capital stock for the optimal

growth problem with c – 3/4 as the steady state state consumption.

We assume b is small:

AP
Bp < b <	 < 1.

2

The first-best policies, the associated value function and the value of

optimal defection are derived in appendix A2.1.
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In the following proposition we compute the second best value and to policy

function for values of k 1. The second best value will be piecewise linear.

To lighten the notation, we let

.14 k . 68 k3 - 1018 k	 4 , k = 0 ;ko = 1, k
1	

,

15	 2	 75'	 1125 ' 4 . -3 	 5
5	 25	 175	 25	 5

at = -7 a, =, al = — , a2 ' —,
4	 16	 32	 "	 16 ' 4	 4 '
1	 1	 43	 1 .b 4

	

ID ° = 	 , b, = -	 b, = -	 b, = -_,	 = 0
4	 "	 24' "	 12' "	 4

Then we have

	

Proposition 4.2.1.	 The second best value function is given by

Vsb(k) = aik + bi 	for k E [ki+i , kt ) .

vsb is continuous and concave on [k3 , k0]; vsb (k3 -) vsb (ks + ) = vsb(k3) and

vsb is convex and continuous on [0, k3].

The second best policy is

csb(k) C(k)	 5/4 k - 1/2	 k E [1( 1 , k0]

2/3	 k E [1(. 2 , k1]

-25/4 k + 19/3	 k E [k3 , k2]

c0 (k, csb (k)) - 1	 k E [k4 , k3]

c0(k, c sb (k))	 (Ak)/2	 k e [0, k4]

The path of capital stock for the second best equilibrium outcome is:

if k E [k11 ,ki ], i 5 2 then the capital stock converges to the steady

state in i+1 periods,

if k E (k4 , k3 )	 (k E [0, k4 ] respectively), then the capital stock
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converges to zero in two (respectively one) period.

Proof: See Appendix A2.2.

Figure 2a shows the value function and figure 2b shows the consumption function

described in the above proposition. The figures are not drawn to scale.

Remark.	 The second best consumption policy is the same as the first-best

policy for k	 kl . Then for k E [k3 , kl ] it is the minimum consumption which

makes second best value equal to the value of defection. 	 Consumption is

decreasing over the range where the incentive compatibility constraint is

binding, and then increasing when the second best solution is the first best.

Overall, the second best consumption is non-monotonic, even in the region where

we have steady growth. Note that over [k3 , kl) the first-best consumption is

lower than the second-best. As k increases the incentive constraint becomes less

binding and second-best consumption decreases with k along the equilibrium. The

intermediate phase ([k2 , kl ]) has the lowest consumption above k y .	 Finally

observe that the consumption policy is continuous except at k3.

Remark:	 The reason for the discontinuity of the consumption policy and the

value function may be understood as follows. As k decreases, higher levels of

consumption are needed in order to make the value of second best and the value

of defecting from it equal to each other.	 To higher levels of consumption

corresponds a reduction in the continuation value and a reduction in the post-

defection value. The rate at which these two second-period values change is the

critical factor. The rate for the defection value is constant at 5/8; the rate
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for the second-best continuation value is changing with k, because the second

best value is concave. The difference between these two rates is 1 - a(Ak-2c)

+ 5/8. When Ak-2c is less than ky this difference changes sign (and becomes

negative), so no increase in consumption can equate the second best and the value,

of defection, and at the same time allow the capital stock not to decline.

5. The "Mancur Olson" Case.

In the previous sections we showed how incentive constraints could result

in equilibria for which growth occurs from high stocks but not from low stocks.

In the following example the opposite is true. When stocks are low and their

marginal product is high, defection is not attractive. Players follow first best

policies to accumulate precious stocks. As stocks get larger defection becomes

more attractive and accumulation has to slow down. First best policies are

abandoned and the economy stays short of the first best steady state. In the

spirit of the work of Mancur Olson [1982] (stretching it a bit) inefficiency

emerges at high rather than low levels of wealth.

Let the production function be

f(k) =	 , a E (0,1) ;
	 (5.1)

and utility function

U(c) = c	 (5.2)

The optimal solution has a steady state given by
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1
(afi)1-'

(5.3)

and the optimal policy is, as usual, i.e.,

1
0	 if k k "

6(k) = 1 (5.4)

if k k "
2

and

1

:& (k . ) 	 (ao 
1 -fl

Consider now a given level of capital stock k and consumption c o of one

of the players. Then the value of defection for the other player is

vi) (k,c) a max c 1 + !(k"-c-c/)"
c / >0	 2 (5.5)

The optimal defection consumption is clearly in the interval [0, k a -co ). In

particular

0	 if (k."-c) a- > 2
co (k,c) .{	 afi

k" - c - ry	 otherwise

(5.6)

up
with 1	 and

2
(5.7)
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1 (k'-c)"	 if (e-cr -l > 2
v D (k,c) .	 2	 7-2-41-

- c + C	 otherwise

(5.8)

where

C -y
a
 - > 0
2

(5.8')

Note that if the net stock left by the other player, ka - c, is too low

then the optimal defection is to consume nothing.

Before we proceed we define the set of incentive compatible steady states;

formally, these are the values of k such that

f(k) -kv°[lc f(k) -k

2(1 - s) 	 2
(5.9)

holds. These are therefore the values of k such that the value for each player

of keeping k as a steady state dominates the value of defecting from this pair

of k and consumption. This set will be useful in determining the second best

value and policy.

For any value of a, /3 the set of values of k which satisfy the above

inequality is the interval

k	 k	 (5.10)

which may be empty. This follows from the fact that the inequality is equivalent

to Pka - ( 2 -p)k - 2C(1-0)	 0 whose left hand side is concave.
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Proposition 5.1. Let f, U, k* , C, k, k be defined as in (5.1), (5.2), (5.3),

(5.8'), (5.10); then on the interval [max ( k,	 ), k] we have:

(a) if k* < k,	 then vsb (k)	 csb(k)	 a(k)

(b) if k	 k* ,	 then vsb (k) – (ka + k)/2 + C, c sb (k) – (k' - k)/2.

If k <	 vsb(01") > vp (klia , c sb (k li")). Then for an interval [k1 , Oda]

vsb(k ) = p 	 2 
	

+PC
	

csb(k) = 0

Proof: See Appendix A3.

In the next table we report values of k* , k, OM , for different values of

a and p. The value k is not shown because in each case k < k l/ ". Both cases

where k <-	 k* and k* < k- appear. In the first, we know that the second best

policy over [k11", k] is to consume as much as needed to go to k in one step.

However, on [k 1 , kl/ '] the second best consumption is the same as the first best

consumption, which is zero. The second best accumulation path then stops at k,

while the first best grows to k* . For higher k, second-best consumption is

higher than the first best. Therefore on [k1 , k l/a ], when stocks are low, players

follow first-best strategies but stop doing so above k id '.	 Note that d

vsb( klia ) - vp ( klia , e sb( kli”) • Therefore d > 0 implies k <

k* < k k* > k a p k* k kik' d

3 .975 .97 .1074 .0906 .0852 .00013499

3 .9142 .92 .1329 .1542 .1294 .00211

3 .80 .65 .0380 .0251 .0099 .0026

3 .70 .65 .0724 .0820 .0280 .0132
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Figure 3 below illustrates the case where k < Oa , where v and vp are,

respectively, the values of the left and right hand sides of equation (5.9).

V V

k	 kik'
	 R	 k*

	
k

Figure 3 

6. Growth and Inequality.

So far we have studied the symmetric cases when utilities and incomes of

the players are equal in equilibrium. In this section we study unequal income

distribution or asymmetric equilibria in the presence of incentive constraints.

In particular we are interested in the effects of inequality on accumulation.

In the next few Propositions we illustrate the possibilities for a particular
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example. Figure 4 at the end of this section summarizes our results and the

range of possibilties for the production and time preference parameters.

We consider the case where

	

U1 (c) e c	 i	 1, 2

	

tak	 k 1
f(k) =

a + b(k-1)	 .

We always assume afi > 1 > bfi, where ,8 is the discount factor. As in the sections

above, we will solve the second-best problem given by (2.2) (or (2.1)). In this

case however, to characterize the set of constrained Pareto-Optima we will allow

the weights a 1 and ay to differ between the players.

We shall consider the two cases a l - ay > 0 and a l > a > 0. It is easy to

imagine that in equilibrium the player with the higher weight will have a higher

consumption: so the case al 0 ay is in fact a model of inequality in income

distribution.

Since afl > 1, the symmetric consumption policy for the first best is

2	 a	 a

Consider first the case where afl < 1. Whether a l - ay or not, the second best

equilibrium pair of consumption policies is given by

c 1 (k) = c y (k) = C(k)
2

This follows immediately from the fact that v sb 5 V, and that the pair of

consumptions is an equilibrium pair. But the interesting case is, of course,

f(k) -1	 1
E(k) -	 if 0	 fk � 1k � _,
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if f(k) - c 5 1

vp(k,c) =

if f(k) - c 1

and

___(f(k) - c),
22	

f(k) 10

f(k) - c - 1 +	
f(k)

2	 2

> 1. We begin the analysis of this case by computing the defection value.

1	
f(k)

Recall that v° - max wp (k,c), 	 , where
2

wp (k,c)	 max	 cl + Pf(f(k) - c - c')
c /	f(k) -c	 2

Denote by cw (k, c) the solution to this problem. The first order condition which

characterizes cw(k, c) is

E 1 - __f t (f (k) - c - c')
2

which gives the defection value and policy as follows.
Case 1: ap > 2:

if f(k) - c 1cw (k, c) = f°
f(k) c - 1	 if f(k) - c 1
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Case 2: afl < 2:

cw(k, c)	 f(k) - c

{

vD (k,c) . max f(k) - c, f(k)
2

It turns out that in the case of equal income distribution the efficient

solution is an equilibrium for a larger set of the parameter values.

Proposition 6.1: Let a l – a2 – 1/2 and afl > 2 - 0. Then the symmetric first

best pair of consumption policies is an equilibrium pair, that is: c ip (k) =

c h (k) = E (k ) , and vi (k)	 v2 (k)	 v(k)/2, for every k � 0.

Proof: See Appendix A4.1.

When there is inequality in income distribution, and afl > 2, the

consumption of the second player is reduced until he is indifferent between the

equilibrium and defection. In particular, for low values of the capital stock

his consumption is forced down to zero. At the same time the difference in value

is higher: the ratio v i (k)/v2 (k) tends to infinity as k tends to zero. These are

the main results of the following proposition.

Proposition 6.2. Let

1. al > a2	0,

2. of > 2.
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Then the functions below define a second best pair of equilibrium consumption and

value functions for the first and second player respectively,

v1 (k)	 = _ 
(k-l) +

2

v1(k) =	 a k +	 a/3-1

÷

2	 1-/3	 .

c1(k) = — (k-1) + 	  + of - 1
2	 2

c 1 (k) ak+	 - 1

if k	 1

if p	 k s 1
2	 1-fl

v1 (k) = snk + cn 	 for k E [pn+1 fin 1

2	 2

c1(k) 	 (a-_)k if 0 s k

-
where s n 	 n a- 1 + a,p	 2 cn =fin 

ap 1 and

1-fl

b	 a	 a (1 -/3)
v2 (k)	 = — (k -1) + —	 c2(k) = b (k-1) +

2	 2	 2	 2

v2 (k)	 = a k	 c2(k) = 1k -
2	 2	 2

v2 (k)	 = 2.1(	 c2(k) = 0
2

if k a 1

if p k 1

if 0 � k

Proof: See Appendix A4.2.

The following proposition takes care of the egalitarian case.

Proposition 6.3. Let

1. a = 02,

2. 1 < ap < 2 - p.

Then the only second best equilibrium pair of strategies is the pair

b a ap -1 b a")
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with values

ci(k) = c2 (k)

vl(k) = v2(k)

=
ak

2

ak

2

if	 k	 1 ,

if k � 1,

 bk
—
2

bk

2
+

a -b
if k>_ 1

if k � 1

2

a 	 b

2

Proof: See Appendix A4.3.

Proposition 6.4: Let

1. a l > oz � 0,

2. aP < 2.

Then the only second best equilibrium pair of consumption policies is given by

and

c i (k)	 c z (k) = c(k)

vz (k) = v2 (k) =v(k) .

ak

2

{ ak2

_	 _it	 k � 1
'

if	 k .5 1
'

bk

2

bk

2
+

a-
if k � 1

if k � 1

2

a2b

Proof: See Appendix A4.4.

We summarize the results of this section with the following figure:
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as =2a	 = 2

T
	 G

S

= 1
a

Figure 4

If (a, fi) E T, then the first best solution and the second best policies, for

both cases of a l = ay and a l ay give convergence to zero.

In S, I, G the first best solution grows to the steady state. In I, growth

to the steady state under the second best solution is possible if a l = ay, but

not otherwise. In S the second best solution, for both cases a l – ay and al

ay converges to zero. In C all solutions converge to the steady state.

If we think of the pairs (a, fi) as possible economies, characterized by

technology and a discount factor, then the set I are those economies where growth

is not an equilibrium if there is inequality in income distribution; and the set

S are those economies where growth is not an equilibrium even with equal income

distribution because of incentive constraints or the presence of "social

conflict".

Although we expect the spirit of these results to continue to hold with

non-linear utility, the regions above may not be as starkly delineated in that

case.
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7. Renegotiation Proof Equilibria.

A possible criticism of the equilibria (indeed, of the equilibrium concept)

analyzed in the previous sections points out that the continuation values after

defection are not on the Pareto frontier of the subgame perfect equilibria. In

other words, the punishment of defection is too severe to be realistic.

In this last part we examine the equilibria of the previous sections from

the point of view of this criticism. We introduce the following definition:

Definition A Renegotiation Proof Subgame Perfect Equilibrium (RPE) is a pair of

SPE strategies such that the continuation value of the equilibrium on any subgame

is on the constrained (second best) Pareto frontier, that is on the Pareto

frontier of the subgame perfect equilibria.

Our main purpose is to prove that the outcomes of the equilibria in section

6 are outcomes of RPE. We start with a preliminary discussion. The pair of

consumption functions (c 1 , c 2) defined in the statement of proposition 6.2 gives

a pair of Markov policies. On the basis of these two policies we now define a

pair of strategies:

Strategy 1: The player follows c l until, if ever, he deviates from c 1 ; after that

the player follows strategy 2. (Note that under strategy 1, the player does not

respond to deviations of the opposing player.)

Strategy 2: The player follows c 2 until, if ever, the opposite player defects

from c 1 ; after that he uses strategy 1. (Note that under strategy 2, we adopt the

convention that a player will choose c2 even if he observes a deviation by
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himself in a previous period.)

We can now prove the following:

Proposition 7.1	 Let afl > 2. The pair of strategies defined above gives a RPE.

Proof	 Let the player I follow, say, strategy 1 and player 2 follow strategy

2. After any deviation of either player the continuation pair of values is on

the constrained (second best) Pareto frontier corresponding to the value of the

stock after the deviation. This is clear from the statement of proposition 6.2.

We have to prove that the pair of strategies 1 and 2 is a SPE.

	

Consider first player 2. 	 We claim that the solution of the dynamic

programming problem that maximizes his utility with the law of motion given by

	

ktti	 f(kt)	 ci(kt)

has a stationary optimal policy given by the function c 2 , and value function v2,

which are given in proposition 6.2. This claim is easily checked.

In the case of player 1, we have to check that the inequality

max c 1 + flv2 (f(k) - c2 (k) - c )	 v (k)
c/

holds for any k 0; and this is also easily checked, by a consideration of the

various separate cases.	 ■

We have seen that the equilibria with unequal distribution of income are

RPE outcomes. We now turn to the case of equal distribution: our aim is to prove

that the outcomes of the equilibria described in proposition 6.1 are RPE

38



We first define a pair of strategies as follows: each player follows the

Markov policy C (given in proposition 6.1) until, if ever, either of the one of

the two players deviates. After, say, the deviation of player 2, player 1 and

2 will switch, respectively, to the strategies 1 and 2 described before

proposition 7.1 above.

We can now prove the following:

Proposition 7.2 The pair of strategies just described gives a RPE, with

outcomes equal to the ones of the trigger equilibria of proposition 6.1.

Proof	 In this case it is enough to check directly that the inequality

max c / + fiv2 (f(k) - C(k) - c')
c

holds for any k. This is easily checked directly. 	 ■
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8. Final Remarks.

Our basic model can be modified in a number of ways to bring it closer to

reality. The amount that each player can consume when he chooses to defect may

be bounded, with the bounds possibly differing across players. This not only

introduces an asymmetry between the players but can reduce the value of

defection. A more complicated modification would allow players to control, at

some cost, the upper bound of the consumption of their opponent. This would

introduce a second policy variable for each player. Alternatively, players may

institute a mechanism to impose sanctions that are costly to the defectors, but

which require resources to establish and to maintain.

The disincentives for accumulation that arises from strategic behavior in

our model leads to overconsumption by players. An alternative that is in the

same spirit would permit players to divert resources to another productive

activity that is safe from appropriation, but which provides a lower return

(Switzerland).	 This modification would allow us to directly model capital

flight, as in Tornell and Velasco [1990], but would require us to keep track of

both the private assets and the capital stock whose output is subject to

appropriation.
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Appendix Al: Proof of Proposition 3.1.

The first-order condition for (3.16) is given by (assuming interiority)

csb = 2fiv:(ak-2ckb ) - ay. (k, csb)
	

(A1.1)

where v cD (k, csb ) is the derivative of vD (k, c) with respect to c. Let vkD (k, c)
denote the derivative of vD (k, c) and vk sb (k) the derivative of v sb (k) with

respect to k. We obtain

vkb (k) = apvks (ak-2c sb ) + avk (k) - avk (k, c m) ) .	 (A1.2)

Let csb	 A sy so that op	 Apy with AD = (1-A5 )M. Then using

v2(k,c) = -1Pd[ki(ak-c sb - %)]	 D(k, c)
	 (A1.3)

and (A1.1) in (A1.2), updating and substituting c sb	 Ay reduces (A1.3) to

which is independent of k. We solve for A 5 from the constraint vsb (k)	 vD(k,

c sb ) when 1^.7(k) < vD (k, C(k)) since otherwise the second-best is identical to
first best. If c m:,	 A 5y, then vsb (k)	 s(A 5 )y l-c where s(A 5 )	 ((1-0-1A51')/(1-

p(a(1-2ao) I - E ). Since vD (k, c m] ) = sp (A 5 )y 1 `, we need to consider the A s which

solves s(A 5 ) = s 0 (As) =
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ds(A)
	  >0 for A <	 Since s°(A)ds(A) < 0 for A >

dA	 dA

M-6 1[1

1 e
- -E fia 1 [ 1-M 

(1+14)2

0

Or

We note the following. By construction we are considering s(A) < s°(A)

since Y(k) < vD(k, 8(k)). It can be shown by computation that s(A) attains a

maximum at A - A with

is decreasing in A for A > A, s(A s )	 s°(A 5 ) for A 5 > A. We now show that A 5 E

M
[ A ,	 ] exists.

1+M

To show that A s E[ A, M ] it is enough to show that s[M<s[M]
1+M	 °

We consider s ° (A) - s(A):

s° ( a ) - s(A)	 - A1-€(1-P(a(1 -2.X) )1-6)-1 	 0

if

M-t(1-P(a(1-2A))1-o)(1-A)1 -e - A 1 -E 5 0

Or

ivre 	 _A)1-6	 Ire (fia l-e (1-3), 2A2)1-e) - A l-` < 0.-

If A-
1+M

 , this inequality becomes

44



((1 +11)1-C) -2[11-1 (1+M)1-c - 14-t/33.1-€ (1 -14)1-c - 	(1+M)1-€1 S 0 .

This inequality will hold if

(14401-e(1-1,) - pa'-€(1 -1,01-6

or

(1 +1, ) 1-e	 sal-e (1	 < 0

[But M – 1 + Ba a 1

implies 1 + M 2 + sai _, [1}

and (1 - M) Therefore the above inequality becomes

or

11-c

fic

11-e

1,41-e	 fial-c pa l - E

1

1

M' 0

1-e

< 21-e
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This will hold (for 0	 e S 1) since

1
.21 .11-c 116
2

_

1—c

Rat
E 

1

2 + pal-E { 1
2

1 + [(Ja i ' {± I
2

1—e

21-'

1-e

and

+ 11
	 I

2
—
s

1
1—e

1 + Pa l- `	 1
2-

{

We can now obtain a from (3.19). This yields v Sb (k)	 s(As)(ak)1-€ which

is strictly concave in k. This concludes the proof.	 • ■

.
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Appendix A2.1: Computation of the value of the first-best program and the value
of defection for section 4.2.

For technology given by (4.2.1) and utility (4.2.2), the first best optimal

policy is given by:

= { 0

f(k)-1	

if	
2

(k)

if k < —
5

C

k >

The value of the first-best optimal program has a more complicated form. We only

need an explicit solution for values

f(k)

of k

1

2/5, which is given by

if	 k:	 f(k)	 � 	 3
LT

v(k) =
f(k)	 7[

312
if k: f(k) > 3

2

-V is easily computed as:

Therefore,

uh
k)-1
2

f(k)-1

+	 U 
{fa) -11 =
u

{f(k)-11 f(k) -1
if	 < 1	 (or f(k) � 3)

for f(k)	 3.

3

7:

3

4

1-fl 2

f(k)	 1

2 +

=	
1 + b [f(k)-1

2	 43

for f(k)

31] +
4

3	 .

- b
4	 2
[7	

31

2

f(k)
+	 b

2

[f(k) -11

2 2 2

Define net output as y 	 f(k) - c.	 In the cases that we will be

considering, the value of defection from a net output y, left after the

consumption of the other player, is given by

47
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max {U(c) + flu f(Y c) I}
ca-0	 2

Differentiating with respect to c we find the derivative of this expression to

be positive, except for y - c < 4/5, when it is b - 
AB < 0.
2

Therefore, for

cD (k, c

y	 f(k)	 -	 c,

y = f(k) - c

1

= f(k) - c -
5 5

if

if

if

_
4
 S f(k) - c S. 1

5

1 s f(k) - c s 1 + _
2

A

f(k) - c	
9	

.
5

= _
9

5

The defection consumption is never larger than 1 when the net output is

smaller than 9/5. 9 In this case the precise value of b is not relevant (as long

as it is strictly positive).

Let us consider now the value of defection from the optimal program. We

only need this for values of k 2/5 and this is the only case we consider here.

iThe net output here is Ak+1

We first consider the case of k 	 1. The net output here is

Ak+1	 Ak-1	 Ak+1	
= [Ak - 	 	 Since	 >1 for k > 2/5, the consumption for an

2	 2	 2

g	 When y	 9/5, cp(k, c)	 9/5 - 4/5 - 1.

2
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optimal defection is cp(k, C(Ic)) — 1 for k E [2/5, 11, 10 and so

vD (k,C(k)) = I 1 -
1+

	 25	 11+	 Ak _k +
4	 32	 16

Now note that for large values of k the value of the optimal solution is larger

than the value of defection from the optimal policy. In fact we have:

v(k) � vD(k,C(k)) for k> 14
15'

with a strict inequallity except at k l — 14/15.11

We need briefly to check that vr/ (k, a ( k)) < v(k) for every k � 1. Here

10 Note that
Ak-1	 Ak+l	 A+1	 7 < 9y =Ak - 	  = f(k) - C(k) . 	  <	 for k -� 1.

2	 2	 2	 4-;

5 2
—• — + 1

Ak-1	 Ak+l	 2 5Ak -	 = f(k) - e(k)	 >	 1	 for 2 � k � 1.
2	 2

So when c0 = 1,

vb (k,8(k)) = U(1) +au

. [1 - AO

2

1 IA
2[[

+ AflAk

5

Ak+1

- di}2

4 4

11 We compute c0 (k,	 a(k)) for k	 1. Since

f(k) - Ic(k)	 - ,	 f(k)	 -y f(k) - I	 f(k)	 + 1
2

1

2

if

2

f(k) + 1
[l	

ScD (k,C(k)) = 4

{

fli) 3 
t!

2	 5
f(k) + 1 : 

Y -
5 10

if
2 2	 5
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f(k) - 1	 f(k) + 1 
O(k) 	

2	
so the net output if 	  At k 1, this is larger than

'	 2

one, so the following is a complete description of the optimal defection

policy:I2

f(k) +1
if 	  E [1, 1 ],

2	 5

f(k)	 3	 f(k)+1	 9
if 	  E	 +w)

2	 10	 2	 5

i.e., -2- < k < 1+17701
5

i . e . , k > 1 + 	
1

10•B

1

Note that for large k (i.e., k a 1 + 1/(10•B)), cp(k, O(k)) < a(k), so we only

need to prove vp (k, a(k)) < -V(k) for k e [ 1, 1+(1/10•B)]. We already proved

that claim on [4/5, 1]. Here cp(k, a ( k)) = 1, and so

vD (k, (k)) = I1 -
Afi] + fi f(k)	 11 + 5 f(k) ,

4	 4	 16	 16

while '(k)	
1

+ _f(k) . Since vD (1,C(1)) < :V(1), and
2

f
/
(k) > _

1
.f / (k) vD(•,C(•))/ . Thus we have proved our claim. A similar

2	 16

argument also holds for k a 1 + (10.fi)-1.

12 We can compute the value of k at which cp changes as follows:

f(k) + 1	 913	 5a f(k)	 >
2	 5	 HT

Therefore
1

A + B(k - 1)	 _
11 

a B(k - 1)	 _1 _;	 + 1.
5	 10	 B.10
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Appendix A2.2: Proof of Proposition 4.2.1. 	 The proof will consist of a

verification that the function v sb satisfies the Hellman equation, subject to the

incentive compatibility constraints, i.e., prove that

vsb (k) m max {U(c) + 6vsb (f(k) - 2c) I c: vsb (k) � vD (k,c) } for every k.

We begin anyway with a description of the derivative of vsb . We already

know that for k	 the value of the optimal solution is larger than the value

of defecting from the optimal policy. This gives the second best value and

policy for the interval [k 1 , 1(0 ]. The remaining part of the value function is

derived by a simple iteration.

Consider now any k 5 k l . We use the fact (which we shall prove later) that

the second best consumption is the lowest consumption the incentive compatibility

constraint allows.

If we let k' be the next period capital stock, and a second best policy is

adopted, we have

Ak - k i	1
vsb(k)	 +	 (aoki +hi)

1

ao =
5
„
4

b0
1

= .—
42	 2

A	 Ak+kl
vD (k,c sb (k) = 1+

4	 2

Since the incentive compatibility constraint is binding, we can determine k' by

equating vsb (k) with vp (k, c sb (k)). We obtain:

= 15 k	 8b-6

26-16a	 13-8a
- k'(k,a0,b0)

Substituting in the expression for vsb(k)
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vsb(k) _ [A	 a0-1	 15 	 ] k	
130	 ao -1 8b0-6

2	 2 26-16%	 2	 2 13 -8a0

+ b 1 .

This is the second best value for k E [k2 , k 1 ], where k2 satisfies

68114	 k2 =ki (kz , a0 , b0)

Iterating the above procedure we derive the values of a 1 ,	 lc, as in the

statement of the proposition.

A clarification of this point: a mechanical application of the iteration

scheme of the third step gives a critical lc; > k 3 .	 In fact it is an

equilibrium, starting at kg:, to consume the capital stock down to k 3 , and then

grow to the steady state, ko .	 Further iterations produce a path with a

complicated dynamic sequence, non-monotonic, of capital stocks.

This is still an equilibrium outcome: by construction, the value of

following this path is at least as large as the value of defecting from it. It

is not, however, a second best outcome.

We now turn to the case k < k3 . Here a direct computation shows that the

constrained problem

1
vsb (k) = max {1.1(c) + _v sb (Ak-2c) + p(vsb (k) - vD (k, c)) 1

2

has solution
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Vsb (k) =

5k

2
k -

16

1

4

if

if

k E [O, k4)

lc e	 [k4,i1c3]

1/4

1 

5
k	 if	 k E [0, ks]

	

c sb (k ) =	 4

1	 if	 k E [k4,'k3]

vD (k, c sb (k))	 vsb(k).

Of course, since on [0, k3 ) the vsb function defined above is not concave,

the first order condition on the Lagrangean are only necessary. But a direct

check shows that the equation

vsb (k) = max ( U(c) + _v sb (Ak - 2c) I c: vsb (k)	 v°(k, c) .
2

is indeed satisfied.

The function vsb defined in the statement of the proposition is concave on

the interval [k 3 , k0 }, because is continuous and the derivative is defined except

at k3, k2 , ki and decreasing. We can now prove our claim that the second best

consumption is the lowest consumption which is incentive compatible. In fact the

differentiation of

Ak -
	 	 Pvsb(ki)

2

with respect to k' gives - 1_ + 1—v
/
sb (k ) > 0 for every k' E [k3 , ko], since vsb'(k')

	

2	 2
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5/4 for every such k'; so, conditional on choosing a next period k' in the

interval [k3 , k0 ], the best choice is the highest incentive compatible k'.

We also note that when computing the defection policy and value the net

output left by the consumption of a player who is following the equilibrium

described in the proposition is less than 2. So the defection consumption is

never larger than 1.

We now proceed with the verification that the function v sb in the statement

of the proposition satisfies the Bellman equation, under the incentive

compatibility constraint. We consider two cases.

Case 1:	 k	 k3.

Let k' denote the next period capital stock, and

Ak-k/	[Ak-k/I
v(k, 	 ) m U 	  *fivsb(ki) • We have just seen that

2	 2

vsb (k) = max [ v(k, ilic-k1 ); k/ • v fc
2	

Ak-k/ I > v 0 c, Ak-k / I 
k

,
 > k3 .

'	 2	 2

To prove our claim it is now enough to show that no k' E [Ak - 2, k3 ] exists such

that:

vAk-k/	 vp	 Ak+k/

'	 2	 11 2

kAk+ /	5 
Since the net output 	  > k3 > 1, we have cm	

Ak2k/
k 	  - 1 and

2	 4 

( * )
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VD {k,
Ak-k/ 1 3	 25-	 +	 k + _Lk/ . Also

2	 8	 32	 16

le
if	 k/ e [k4 , k3)

v [ k,	 Ak-le	 32

_	

l

8	 4

2	 —
5
k +
1 

if	 E [0,k4]
4	 8

Now one directly checks that (*) does not hold on k' E [Ak -2, k3 ]. If k' e [k4,

k3], vk, 
Ak-k/ - vk, 

Ak-k / I
> 0 impl ies 15k - 16 > 0, or k > 1. If k' E

2	 2

(ak - 2, k4 ], the same inequality holds. Finally if k' = Ak - 2, then v(k, 1)

= 5/4 k < vsb(k).

Case 2:	 k < k3.

Again we know that the best choice of next period capital, under the condition

k' < k3 , is the one stated in the proposition. We claim that no k' � k3 exists

such that (*) above holds. 	 First, from the fact that k	 k4 we derive

	  >Ak+k/	Ak-k/
2 , so cm [k, 	  = 1 , and

2	 2

vD k, Ak-k'
	 3 + —

25
k +

5 le
2	 T	 32	 16

again. Writing vsb (k)	 a(k)k + b(k), we have

1 9± 5 k ±

55



V Ak-k/ 5	 a(k/) -1 k,	 b(k')

2 4	 2	 2

Now the difference

V
Ak-k/

k, 	
2

Ak-k/
2

15k [  8(a(k/)-1)-5 }k/ + 4b(k/)-3
= —32 ±	 16	 2

< _15 k, + [  8(a(k') -1) -5 i k, + 4b(le) -3

32 "	 16	 2	

15	 { 8(a(k2)-1)-5 ] k + 4b(k2)-3

< km/ axk3 -3-2k3 +	 16	 2 	 2

4b
k 

4b(k2) -3< _15 k, + [  8(a(k2 ) -1) -5 
2 +32 "	 16	 2

(since 8(a(k)	 1)
	

5 � (<) 0 if k � (<) k2)

= C	 3

Aka
_ VD 1(3

2	 2

Ak3 —k2I

Vsb(k3)	 VD(k3 csb k3))

=0

as claimed.	 ■

k2
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Appendix A3: Proof of Proposition 5.1.

For an initial k, consider the value of going to some steady state k', in

one step. For this policy to give an equilibrium pair two inequalities have to

be satisfied

ka —k i	 p k"-ki	 _ k°-ki +	 (A3.1)
2	 1 -fl	 2	 2

a	 a
lc -le k , -k/
	  > k' - 	  +
2(1-P)	 2

(A3.2)

The inequality (A3.2) requires k' to be in the interval [k, k]. A computation

shows that (A3.1) is equivalent to (A3.2), and independent of k. It follows

immediately that if k* < k then the first best policy is an equilibrium, and we

have proved our first statement.

We now turn to the case k < k* . If we differentiate the left hand side of

(A3.1) with respect to k' one finds that this function is increasing on [k, k]:

this suggests that the second best policy is to choose the highest incentive

compatible steady state. We now prove this.

We consider the Lagrangean associated with the second best maximization

problem, under the constraint

Vsb (k) � V D (k, csb(k))
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vsb(k) e max { c + Pvsb (f(k) - 2c + p(k)•(vsb(k) - v D (k, c))
ea-0 (A3.3)

We claim that the choice of vsb , csb as in the statement of the proposition, and

p(k) a Pak" - 1 solve the concave problem (A3.3) for k E [ max ( k, kl/a ), k].

1 - P2vsb (f(k) -2c) - pven (k, c) = 0
	

(A3.4)

and

vsb(k) = pv b (f(k)-2c)f / (k) + p(vsb (k) - vii,D (k,c)) = 0
	

(A3.5)

Substituting (A3.4) into (A3.5), and using the fact that v2 (k, c)	 f'(k),

vsp (k, c)	 -1, we obtain

vsb(k) - f'(k)
2

(A3.6)

Notice that the mulitplier p does not enter into (A3.6). Therefore vsb (k) =

(f(k)/2) + D where D is a constant.

From the boundary condition

vsb(1c)	 f(k) -k

2(1 -P)
(A3.7)

we obtain D = fif(k) k
2(1-p)

(A3.8)
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The value of csb (k) is found by equating

vsb (k) = v°(k, c sb (k) )	 (A3.9)

i.e., f(k)/2 + D	 f(k) - csb(k) + ( which gives csb(k) 	 f(k)/2 - D + (. Since

p (f(k)-k)	 c, from (A3.8) we derive D 	 k/2 + c, and so
1-s	 2

f(k)-k	 f(k)
csb(k)	 , vsb (k) =	 +	 + ( vD (k, csb(k))

2	 2	 2
(A3.10)

Finally from (A3.4) we derive 1 + p - 2flv
/sb (k) – 0, and since k* > k, we

also have

A afle - - 1 > 0
	 (A3,11)

It is clear that the values of v sb , csb , vD , p defined in (A3.10), (A3.11),

satisfy the equations (A3.3), (A3.4), (A3.5), (A3.7).

Notice finally that the inequalities (A3.1) and (A3.2) hold in the case ko

E (k, k
*
), k	 k. So the second best policy is csb:

csb(k)	
f(k)

2
for k � max

The last statement of the proposition follows from the fact that inequality
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ka -k	 (kna-Tc
>	 - max {  

k-k
max{ 	 ,o}	 p 	 	 ', o}

2	 2	 2(1-0)	 2

holds by assumption as a strict inequality for k k"", and therefore holds for

an interval below	 It is easy to show that this equilibrium policy is

second best.	 ■
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Appendix A4.1: Proof of Proposition 6.1.

Consider first the case where ap < 2. If k > 1/a, then C(k) = 	
- 1f(k)

S O

vD (k, &(k)) = max “ic)2	 + 1{	
f(k)	 _ f(k) + 1

2	 2
and so

2-l)p+a(
V(k) - vD (k,8(k)) = 

	

	  > 0, because afl > 2 - fi. If k < 1/a, then c(k)
2(1-p)

– 0, so vD (k, C. (k))	 ak; but V is concave (in fact, V(k)	 (a(i)l ak +fil  
ap-1

2	 2(1-fl)

for k e [a-1-1 a-1 ]) and non-negative, Since V(k) 	 ak at k 1/a and at k 0,

V(k)	 ak for k e [0, 1/a]. So our claim is proved if ap < 2.

We now consider the case where 0	 2,	 If k	 1/a, then

f(k)	 -,
vD (k,C(k)) =	

ap 1
and V(k) - vp (k, C. (k))	 (afl - 1)((1 -	 - 1) > 0,

2	 2

as claimed. If k	 1/a, then vD (k, a(k))	
a2p

k, and now an argument similar
2

to the previous case satisifies i7(k) 	 vp (k, C(k)).	 ■

2
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Appendix A4.2: Proof of Proposition 6.2.

The proof consists of verifying that the consumption stated in the

proposition satisfy the constrained maximization problem

vsb(k)	 max	 a1c1 + a2c 2 + p sis (f (k) -	 - c2)
(c c2 )

subject to	 vl(k)	 c l + flv1 (f(k) -	 c2)	 vD 1 (k, c2)

v2 (k)	 c2 + 8v2 (f(k) - c 1 - c2 )	 vp2 (k, c1)

vsb(k)	 a lvi(k) + a2v2(k).

In turn this is proved by verifying that these consumption rates satisfy the

first order conditions in

vsb (k) = max	 a 1c 1 	 a 2c2	 Pv5b( f ( k)	 c1- c2)

+ o f (	 +	 f (k)• - c 1 - c 2 ) - TAT/3 (k, c 2 ) )

+ a
	

[ e l + Pvi ( f (k) - c 1 - c2) - f (k)

2
+ 02 ( c 2 + fiv2 (f(k)	 c - 0 2) - WD (k, c i ) )1

+ a 2' I c 2 + f3v 2 ( f (k ) - c1 - c2) - f (k)2 

with a i 	0, 
a1'
	 0, and v1 (k)	 c 1 + v i (f(k) - c l - c 2), i	 1, 2.

In particular, we have for every value of k, a 1 –0 1 '0; a; > 0, a 2 > 0.

It is important to note that the two values v1 and v2 , and therefore vsb are
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a1 - 1 vs;	 a2( - fiv2 j 	wD c)	 aZ' (Thv21
	

0

a2 - Pvsl:	 az(-fivz
	 1) + 0-2 1 (-PV2 . + 1)	 0

concave functions but not differentiable. The supergradients of v i and vsb are

denoted by vs , vsb . Let wD,c, denote the derivative of WI) with respect to c1.

The first order conditions, if a 1 Q a1 0, are given by

Notice that they immediately imply al - c2 .wos 	 a2 + a2 + ay'.

We prove in the following that for k E [0, 1], the functions v s and c i in

the proposition satisfy the conditions above.	 With the value

a	 afl
c 1 (k) = k +	 - 1 and 0 � k	 1, we have wo (k,c) = ak - c

1
 - 1 + afl , also

2	 2	 2

f(k)	 ak.

The first order conditions now give

- al - a2 >

f (k)
so that the equality v2 (k) = 	  must hold for every k E	 11. At the

2

(claimed) equilibrium values c 1 (k) and c 2 (k) we have f(k) -c 1 (k) - c 2 (k) - 1, for

k E [fi, 1], so that vi '(f(k) - c 1 (k) - c 2 (k))	 vi E [13	 a I

—2" —2- 
I.

We now claim that the two first order conditions (A4.1) and (A4.2) are

satisfied. Setting (72 ' - a1 -a2 in (A4.1), we have that (A4.1) is equivalent to

a1 (1 - $20) + a 2 (1 - $8) - 0, 0 E v 1 ', a2	 0, which holds for every pair
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f(k) - c(k) > f(k) We first claim f(k) - 2c(k) < 1; otherwise c(k) < c(k), so
2

Appendix A4.3: Proof of Proposition 6.3.

	

1	

f(k) }In particular afl < 2, so vD (k,c) =max f(k) - c, 	 We consider
2

first the case k 1. Differentiation of the Lagrangean with respect to k gives

v'(k) af'(k), and by symmetry we derive v I l (k) v2 1 (k) - a/2. The first order

conditions in this case give a + al ' = a + as ', or of - a2 1 . If a l ' > 0, we are

done, because v i (k)	 f(k)/2. Note that at least one of the constraints must be

binding, since the efficient solution is not an equilibrium and we may assume al

a2 > 0. From the equality v i (k)	 f(k) - c2 (k)	 f(k) - c i (k) we conclude

c i . (k) - c 2 1 (k) - 7, a constant, so c,.(k)	 c(k)	 yk + w, i	 1, 2; also v(k) -

vi (k) - (a/2)k + q. Now the condition c(k) + Ov(f(k) - 2c(k)) 	 v(k) gives y

-- a/2, q	 2-w 	 	 Also v(k)	 f(k) - c(k) implies q � -w. Note from the
p

f (k)fact that f(k) - c(k) > 	  , it follows that w < 0.
2

1pa-We now have -w 	  > -w, or, if w 0 0, ap	 2 - /3, a contradiction with

the hypothesis of the proposition.

We now turn to the case where k � 1; again we may assume

1,9

vD(k, c(k)) > vD(k, c(k))	 ii(k)	 vsb (k), a contradiction. But if f(k) - 2c(k)
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< 1, then using the previous part we have v(k) 	 c(k) + fiv(f(k) - 2c(k))	 c(k)

+ fl(a/2)f(k) - flac(k). Also vD (k, c(k))	 f(k) - c(k), and therefore v(k) -

v°(k, c(k))	 (afi - 2)(f(k) - 2c(k)) < 0, unless f(k) - 2c(k) – 0. 	 ■
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Appendix A4.4: Proof of Proposition 6.4.

{

Since ap< 2, v°(k, c) = max f(k) - c, f(k)	 The first order conditions
2

applied to the Lagrangean are al al	 a2 a2 and therefore 02 1 > a l > 0.

This immediately implies v2 (k)
	

f(k)/2; since v2 (k)	 f(k) - cl(k),

c / (k) � f(k)/2,	 which implies the result. 	 ■
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