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EARLY DEVELOPMENT

Abstract

We explain how a long period of slow pm-industrial development triggers an

Industrial Revolution that leads to modern balanced growth. Development in the pre-

industrial period is driven by increasing returns to specialization made possible by a

growing population. Increasing access to specialized intermediate goods eventually makes

fundamental technological innovation possible. Innovation initiates the Industrial

Revolution, after which productivity grows endogenously regardless of population growth.

Industrialization reconciles the crucial role of population early on with its weak relation to

per capita product in developed economies. Faster population growth speeds early

development, though if it results from a highly productive primitive technology, the

consequences for development are ambiguous.



Introduction

Economic growth since the Industrial Revolution has been truly remarkable.

Maddison (1982) estimated, for a sample of sixteen industrialized countries, that total

product increased sixty-fold and per capita product rose thirteen-fold since 1820. 1 This

extraordinary performance is even better appreciated by contrasting it with prior historical

experience. The table below, also from Maddison, presents population and per capita

product growth rates since 500 AD. Although the numbers are highly aggregated both

across countries and over time, they tell a dramatic story.

Performance Characteristics of Four Eras 

Average Annual Compound Growth Rates
Population	 Per Capita GDP 

	

500-1500	 0.1	 6.0
	1500-1700	 0.2	 0.1

	

1700-1820	 0.4	 0.2

	

1820-1980	 0.9	 1.6 
Source: Maddison (1982), Table 1.2, p.6. The sample includes
sixteen countries, twelve from Europe, plus Australia, Canada,
Japan, and the U.S.A.

For the thousand years following the fall of Rome, there was little net progress in

population and none in per capita product. From 1500 to 1700, progress was also very

poor, although population growth doubled and per capita product began to grow slightly.2

The period from 1700 to 1820 was marked by a doubling of both population and per capita

product growth compared to the preceding two hundred years, although per capita growth

I Maddison (1982), p. 4.

2 Maddison notes that his estimates are below those of Kuznets and Landes, but above those of Le Roy

Ladurie and Abel (Maddison, 1982, p. 7).
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was still very poor by today's standards?

Improvement in transportation during the latter period helped break down the

isolation of self-sufficient villages and greatly increased the scope for economies of scale

and specialization. Such progress prompted Adam Smith (1776) to observe that

productivity gains were made possible by the division of labor, which in turn was limited

by the extent of the market. In his day, markets grew not only because of rising population,

but also because improved transportation greatly enlarged regional markets for many goods

and services.

From 1820 to 1980 population growth again more than doubled compared to the

previous hundred and twenty years. This time, however, growth in per capita product

increased eight-fold, reflecting the startling jump in technological improvement and

productivity growth associated with industrialization.

The rise of urban population in Europe indicates the extent to which specialization

associated with the division of labor accompanied economic development. For towns of

five thousand or more, Bairoch (1988) estimates urban population in 1000 A.D. at about

10% of the total, rising only slightly to 12% by 1700. Urbanization quickened over the

next hundred and fifty years with urban population rising to 19% of the total by 1850. But

the pace exploded after that, bringing urban population to 67% of the total by 1980. 4 The

trend in city dwelling thus mirrors the growth in population and per capita product over the

same long history.

3 The flat population profile before 1700 was marked by two major declines due to epidemic dis ease. The

first occurred in the sixth and seventh centuries, the second in the fourteenth century. Such devastating

epidemics had tapered off by 1700, helping to make possible the sustained growth in population that was to

follow. See McNeill (1976).

4 Bairoch (1988), Table 13.3, p. 219.
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In the late 1700s and early 1800s there occurred the great break with the past that

we call the Industrial Revolution. The Industrial Revolution was marked by a widespread

systematic application of empirical knowledge and methods to the production of goods and

services. Attempting to understand the onset of industrialization, Landes (1969) pointed

out that many technical improvements became feasible only after advances in associated

fields. The steam engine is the classic example of this. In the 1800s, the know-how

associated with the division of labor had progressed sufficiently that the search for

technological improvements became routine and productive. Widespread innovation, in

turn, created more specialized knowledge which further raised the productivity of time

devoted to innovation. In this way, the Industrial Revolution initiated the cumulative, self-

sustaining, technical improvements that give rise to modern economic growth.

Our paper presents a model motivated by the broad picture of early development

described above. The model generates a long pre-industrial period in which growth in per

capita product is tied to population growth. It also generates an Industrial Revolution after

which productivity grows endogenously regardless of the growth of population. In the

model, per capita product grows as production shifts from primitive processes to modern

specialized techniques. The model economy is slow to specialize in the pre-industrial

period if the population grows slowly, reflecting the relatively slow pace of urbanization

prior to the Industrial Revolution. But thereafter, the pace of modernization quickens,

reflecting the rapid urbanization that accompanied industrialization.

Each household in our model is endowed with a primitive, diminishing-returns

technology allowing it to produce its own consumption goods. A purely primitive economy

is one in which all goods production is carried out by each household independently using

this technology. There is also a modern technology that exhibits increasing returns due to
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specialization along the lines of Romer (1987, 1990).5

Population drives early development in our model. Initially, population is too small

to sustain a specialized modem sector, but if population continues to grow, then the

modern sector eventually opens. Continuing population growth enables the economy to

benefit more fully from increasing returns. The growing population raises modern sector

wages, lowers the primitive sector marginal product, and thereby causes the modern sector

to expand at the expense of the primitive sector. Our model thus reproduces the stylized fact

emphasized by Locay (1990) that production shifts from households to firms as the

economy develops. It also embodies Smith's (1776) idea that the division of labor is

limited by the extent of the market. Population is the scale factor governing the size of the

market in the pre-industrial period, although we recognize that other factors, such as

transportation costs, also help determine market size.

Productivity gains during the pre-industrial period arise primarily from an ever -

finer division of labor without much improvement in fundamental productive techniques

themselves. The pre-industrial period in our model economy is one in which households

choose to remain in a "no-learning corner" in the sense that they devote no time to devising

fundamental improvements in technology. They choose not to innovate because learning

productivity depends on the economy-wide degree of specialization, and initially the

specialized modern sector is too small to make learning productive. The idea is that

innovation involves problem solving which, in turn, is facilitated by access to specialized

tools and techniques.

An Industrial Revolution occurs in our model when the growing population

expands the specialized modern sector to the point where households finally choose to

5 Notable discussions of specialization and the division of labor also appear in Becker and Murphy (1990),

Stigler (1951), and Young (1928).
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leave the no-learning corner. Thus, we associate industrialization with learning that yields

fundamental improvements in technology.6 We do not have physical capital in our model.

Instead we index the state of technological know-how by the stock of human capital. The

Industrial Revolution is marked by the initiation of human capital accumulation by

households. The accumulation of human capital enables endogenous per capita productivity

growth to take place independently of the population growth rate, and greatly speeds the

transition from primitive to modem production techniques.

When the transition is complete, and all goods are produced in the modem sector,

the economy attains a balanced growth path along which time allocations are constant and

per capita product grows at a constant rate. This is more familiar territory, given the work

of Uzawa (1965), Romer (1986), and Lucas (1988) among others, though the engine of

endogenous balanced growth in our model more closely resembles that in Romer (1987).

Conditions for industrialization have recently been studied in three important

papers. Murphy, Shleifer, and Vishny (1989) show how a backward economy could raise

per capita product by coordinating investment in a big push. Becker, Murphy, and Tamura

(1990) produce a model with two kinds of equilibria: a "Malthusian" one with large

families, little human capital, and zero growth; and a "Development" equilibrium with small

families and rising living standards. A development trap is also present in the paper by

6 Solcoloffs (1988) analysis of patent records in early industrial America (1790 - 1846) provides evidence

that early industrialization was characterized by a surge in the commitment of resources to the search for

fundamental advances in technology.

Of course, technological progress did not begin with industrialization. Countless advances in the

pre-industrial era compare favorably with any the industrial world has produced. See, for example, Cipolla

(1980). Past progress was, however, sporadic and slow, whereas modem invention and innovation is routine

and widespread.
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Azariadis and Drazen (1990). All three papers are primarily concerned with the possibility

of multiple equilibria and how it might account for observed differences across countries.

Our paper, however, focuses on explaining how a long period of slow pre-industrial

development eventually triggers an Industrial Revolution that leads to modern balanced

growth.

We recognize that a population-driven model of development such as ours must

confront a puzzle. How can a model that relies on increasing returns to labor be consistent

with the lack of evidence that per capita product rises with population in modem

economies? And how can such a model explain why some of the world's most populous

countries have such low per capita income?

Two features of our model allow us to address this population puzzle. First, the

occurrence of an Industrial Revolution enables us to reconcile the importance of population

growth for early development with its minimal influence on modern economies. Second,

our dual-technology model allows per capita product to differ enormously among countries

depending on the relative sizes of the primitive and modern sectors. Moreover, the

transition to a modern economy can be quite slow without industrialization. Since the

timing of the Industrial Revolution does not depend entirely on population, but also

involves the three technologies -- primitive, modern, and learning -- more heavily

populated countries need not pass through the transition most quickly.

The plan of the paper is as follows. The modern reduced-form production function

is derived in Section 1. The technology for accumulating human capital is motivated and

described in Section 2, and Section 3 presents the primitive technology. The household's

optimization problem is stated and characterized in Section 4. Modern balanced growth is

analyzed in Section 5. We then study early development, first without human capital

accumulation in Section 6, and then with learning in Section 7. In the latter we consider the

timing of the Industrial Revolution in some detail. The population puzzle is dealt with in

6



Section 8, and a brief summary concludes the paper.

I. Production With Specialized Inputs

Modem final good production uses labor and intermediate goods in the following

way:

There are N workers in the economy each of whom possesses human capital h and devotes

a fraction of time e to the production of final goods. Total effective work effort engaged
Y

in final goods production is thus e., h N. The x(i) are the quantities of distinct intermediate

inputs indexed by i and arranged on a continuum of measure M. Thus, M denotes the range

of intermediate inputs. Our final-good technology is a straightforward extension of that in

Ether (1982) and Romer (1987) to incorporate human capital.

We model the production of intermediate goods as in Romer (1987), except that

effective labor is the primary factor instead of capita1. 7 The cost of producing the quantity x

of any intermediate good, in units of effective labor, is given by:

(1.2)	 g(x, h) s b(x) / h, with b'(x) > 0 and b"(x) � 0,

where b(x) is the cost in terms of workers with the minimum (h = 1) human capital.

Although inaction at zero cost is feasible [so b(0) = 0], b(x) includes a fixed cost, b, for

positive production levels.

The modem sector must satisfy two labor-market clearing conditions. First, total

work effort involved in producing intermediate goods must equal its supply:

(1.3)	 M g(x, h) = ei N .

Here e1 is the fraction of time an individual devotes to intermediate-good production.

7 Our concept of effective labor is the same as in Lucas (1988), pp. 17 - 18.

M

i
o

Y = (ey h N) 1 - a	 [x(i)la di , with 0 < cc < 1.
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Second, individual effort utilized by both final and intermediate-good firms must equal total

work effort, em, supplied to the modern sector :

(1.4)	 ey+ei=em

At this stage, we take em as given, and let firm demands allocate the total between

intermediate and final-good firms.

Each final-good firm chooses labor hours and intermediate inputs to maximize

profit, taking the final-good wage, w, and the final-good prices of the intermediate inputs,

pi, as given. Setting marginal products equal to relative prices and exploiting the symmetry

from (1.2) yields:

(1.5)	 w = (1 - ct) (ey h N)-a h M xa

p = (ey h N)
1- a axa-1(1.6)

The wage, w, is the competitively determined compensation per hour in units of the final

good paid to a worker with human capital of h. Symmetry implies that the price of each

intermediate good will be the same in equilibrium.

Each intermediate-good firm behaves like a monopolist, since it is aware that the

demand for its product is given implicitly from (1.6). Taking the wage, w, as given, each

firm maximizes profit,

(1.7)	 =px-wg(x,h) ,

by choosing x, substituting from (1.6) for p before undertaking the maximization.

Although each intermediate firm is a monopolist, each must earn zero profit in

equilibrium. If intermediate-firm profits were positive, new firms would arise to produce

additional specialized inputs: M would increase, eliminating the original profit. Setting

(1.7) to zero, and using conditions (1.3) - (1.6), results in:

(1.8)	 ey = (1 – ct) em

(1.9)	 e = cc em •

Profit maximization, together with (1.3), (1.8) and (1.9), yields the following:
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(1.10)	 x gx(x, h) / g(x, h) = x b'(x) / b(x) = a .

This implicitly defines the constant equilibrium output level, ice, for each intermediate firm.

Condition (1.3), combined with (1.2) and (1.9), yields the following expression

for the degree of specialization:

	

(1.11)	 M=ae hN/b(;) .

Aggregate effective labor (em h N) is the primary determinant of M. As the modern sector

grows, in terms of the fraction of time worked (e m), the labor force (N), or human capital

per person (h), it becomes more and more specialized.

Our reduced-form production function, obtained by substituting (1.11) and (1.8)

into (1.1), is:

	

(1.12)	 Y = A (em h N)2 ",

where the productivity coefficient A a a (1- a)1 x / b(5). The function exhibits

increasing returns to em, h, and N separately.8

Substituting (1.8) and (1.11) into (1.5) yields a reduced-form expression for the

wage:9

	

(1.13)
	

w = A h2- (em N) 1 - .

Notice that there is one factor of production, labor, augmented with human capital. All

output is exhausted in compensating that one factor, since w e m = YIN. The fact that w

rises with the population plays an important role in our model.

The wage that an individual commands in the labor market can be written as the

8 The source of increasing returns to effective labor is easily seen by rewriting (1.1) as Y = [ (1— a) eivi h

N] i—a m — a.x By (1.11), em h N has a unit elastic effect on Y through M. Holding M constant, the

elasticity of Y with respect to em h N is 1 — a; so the total elasticity is 2 — a.

9 The reduced-form wage cannot be found by differentiating (1.12). The wage is determined by firms who do

not see the external effect of labor in increasing the degree of specialization.
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marginal product of effective labor in final-goods production given M, DY / a(e, h N),

times the units of effective labor that each hour of his time is worth, h. This is another way

of arriving at (1.5). An individual with only the minimum human capital (h = 1) just earns

ay d(ey h N), which we refer to as the "base wage", wb. Therefore, dividing (1.13) by h

yields the base wage:

wb = A (eM h N)
1 - a

(1.14)

Since wb depends on aggregate effective labor, the individual must take it as given in

making his decisions. The base wage plays an important role when we discuss the

household's problem in Section 4.

2. Human Capital Accumulation

Individuals can accumulate human capital by allocating current time to learning. As

discussed below in Section 4, time allocations are chosen by households. Family

production of human capital depends, in part, on effective learning time, e Lhn, where eL is

time spent learning, h is human capital per person, and n is the number of family members.

The productivity of learning time is enhanced by the economy-wide degree of

specialization, M. Learning time does not use up intermediate inputs, but it is made more

productive by access to knowledge associated with the production and use of specialized

inputs. 10 For this reason, we assume that the quantity of each intermediate input does not

matter, but the range of such inputs does.

Household acquisition of human capital is governed by the following:

(2.1)	 fl=eLH1-7M7 ,

where H E lin is the household's stock of human capital and 0 < y < 1. The technology

10 Our intermediate goods, to use Romer's (1990) terminology, are both excludable and rivalrous in final

good production, but they are neither in the learning technology.
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exhibits diminishing returns to the family's stock of human capital and the range of

intermediate inputs separately." Note that the family's stock of human capital is constant

unless time is devoted to learning; that is, unless e L > 0.

Equation (2.1) captures the idea that holding the economy-wide degree of

specialization, M, constant a household's learning time is more productive the greater its

human capital. Conversely, holding household human capital constant, learning time is

more productive the greater the economy-wide degree of specialization. We assume

decreasing returns to the household's stock of human capital, H, because we recognize that

limited human capabilities make it increasingly difficult for a household to increase its

knowledge. Development, however, raises the degree of specialization and offsets the

decreasing returns to accumulation, making balanced growth with human capital

accumulation feasible.

Using (1.11) to eliminate M, we can write (2.1) as:

(2.2)	 1:1= e (h n)1 - (h cc n f boor eM 7a	 a

where f is the constant number of households in the economy, and h 8 and eit are,

respectively, economy-wide per capita averages of human capital and hours worked in the

modem sector. An individual household takes h and e as given when choosing its own
a	 Ma

time allocations.

New family members are born with the average stock of household human capital,

without a family's having to incur any (time) costs of education. 12 This allows us to write a

per capita accumulation equation of the following form:

(2.3)	 eL hi-T hal

11 We follow Uzawa (1965), Lucas (1988) and Becker, Murphy and Tamura (1990) in assuming constant

returns to eL because it simplifies the solution for time allocations in balanced growth.

12 This assumption corresponds m adding the term nh to (2.1).
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where

(2.4) 	 8 E [a f / b6EAT em:

Our accumulation technology is similar to Lucas's (1988, eq. 13), but differs from

his in two important respects. Ours recognizes an external effect of the economy-wide

average per capita human capital, ha, on the productivity of an individual's learning time.

And our 8 depends on the economy-wide average time devoted to modern production, ema.

Both externalities enter through the degree of specialization, M.

Industrial development in our model relies on the notion that per capita human

capital can grow without bound. Thus, our human capital represents scientific knowledge

that exists outside of any individual. In effect, ours is a generalized sort of human capital

that indexes the economy-wide state of technological know-how.

3. Primitive Production

Each household has a primitive technology that allows it independently to produce a

final good. We assume that this output is a perfect substitute for the good produced with

specialized inputs in the modern sector. A household's primitive production function is:

(3.1)
	

Y = f3 In (1 + ep n) ,

where Yp is total household primitive production of final goods, e p is the fraction of time

that each household member works in the primitive sector, and n is a household's size.

Thus, ep n is the total household time allocated to primitive production. p is the productivity

coefficient. We choose this technology because it exhibits diminishing returns to the labor

input, and because the marginal product reaches an upper bound at e p = 0. The latter

property is not necessary for what follows, but is convenient since it means that the

primitive sector will be abandoned in finite time.

We conceive of primitive production as applying to virtually all household activities

since, at least until recently, such production utilized relatively simple and traditional
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techniques. For those goods produced both at home and in the market, such as agricultural

products, we regard as primitive only that portion produced at home for domestic use with

traditional techniques.

Three characteristics distinguish the primitive technology from the modem

production process. First, each household operates its own primitive process

independently, whereas modem processes employ workers from all households. Second,

individual households are too small to use specialized inputs economically with the

primitive technology. Third, human capital does not enhance labor productivity in the

primitive production of goods. Only innate human capital (it =1) is relevant in the primitive

sector.

The above three points notwithstanding, our primitive technology has much in

common with pre-industrial et = 1) modern production processes. As production moves

from the household to the market in the pre-industrial period, productivity gains arise

primarily from an ever-finer division of labor applied to the familiar primitive technology,

without much improvement in fundamental productive methods themselves.

4. The Household's Problem

In our model economy there are f families, each of which has n members. A

representative family grows at the exogenous rate It as does the total population, N = n f,

since the number of families stays fixed. Each household head maximizes the present value

of the utility of his infinitely-lived family dynasty, where instantaneous utility of each

member depends only on his own consumption, c(t). This means the household head

maximizes:

WO = .1
... 

n(t) u[c(t)] e l dt .
o

In addition to choosing per capita consumption, the family head decides how much of each
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member's time to allocate to primitive production, e p(t), production in the modern sector,

eM(t), and learning, eis(t). We have the following time constraint:

1= e + e + e
P M L •

Them is also a budget constraint,

(4.2)	 c = yp + wb h em .

Output from a household's primitive production process (3.1) is split equally among family

members, so per capita primitive sector output is y p = Yp / n. Modem sector earnings of

each member are wb h em. Each household takes as given the path of the modem-sector

base wage, wb, which should now be written as wb = A (em. h. N) 1 -a, in light of our

distinction between individual values and economy-wide averages. But the wage that its

members earn in the modern sector, w = w b h, depends on its own human capital.

Firms in the modem sector are owned by households. There is no physical capital

so, as we noted above, all factor income in the modern sector is paid as wages. This is

consistent with the zero-profit conditions for both intermediate firms (because of free entry)

and final-good firms (because of competition and constant returns to scale).

A household saves by allocating time to learning in order to accumulate human

capital. We ignore the credit market because in this representative-agent model there can be

no borrowing or lending in equilibrium. Human capital accumulation is governed by the

learning technology (2.3). The productivity of learning time depends on the economy-wide

averages ha and ema. An individual household takes the paths of ha and ema as given when

making its own decisions.

We solve for a perfect foresight equilibriwn where the paths {wb(t), 11.(t), ema(t) I

are forecast correctly for t 2 0. To see what this means, consider arbitrary paths for wb,

h., and ems. These lead each household to choose paths for consumption, work effort, and

learning. These choices, in turn, imply paths for w b, h., and ema. The economy-wide

equilibrium paths for wb, h., and ema are those that reproduce themselves given optimal

(4.1)
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decisions by households and firms.

The maximization problem is stated formally in Appendix A. There we show that

optimal household choice of ep requires:

(4.3)	 X2 = ne (aypfdep) + fit ,

where X2 has the interpretation of the marginal utility of time. This condition says that

hours per person allocated to the primitive production process must equate the utility-value

of the marginal per capita product of ep to the marginal utility of time, unless the non-

negativity constraint on ep is binding, in which case the multiplier Q 1 > 0.

Analogously, the choice of em requires:

(4.4)	 X2 = uc wb h + 2 •

Work effort in the modem sector earns a market wage of wbh. Such effort, if positive, will

also have to confer a marginal utility benefit equal to that of time, X2, unless the constraint

on em is binding, in which case 0 2 > 0.

The choice of e ia requires:

y
X2 =gat* h

y
a + C23 '

where q is the marginal utility value of h. This condition says that learning must also yield a

marginal benefit equal to that of time although, again, et may be constrained, in which case

(13 > 0.

The utility price of human capital, q, must be a continuous function of time and

satisfy the pricing equation:

(4.6)	 p-t1-4/q = (1–y)8eLh7hal+(ucwb/q)em

Over time, the utility value attached to h must change so that the net percentage capital loss

on h just equals the percentage marginal productive value of h. This value has two sources:

the marginal product of h in human capital production, and its marginal value in enhancing

wages. In other, words, q must change so that there is zero net marginal benefit to h along

an optimal path.

(4.5)
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There is also a transversality condition, which takes the usual form

(4.7)	 lira ePt q(t) h(t) n(t) = 0 .
t-4.

This says that the utility value of the family's stock of human capital must become valueless

as time goes to infinity but not before. Finally, there are two initial conditions: n(0) = no

and h(0) = 1.

Aggregate Consistency

In moving from the household optimum to the economy equilibrium, we must

impose the two aggregate consistency conditions:

(4.8)	 h = ha

(4.9)	 em. = eM.

Imposing these onto equations (2.3) and (2.4), and conditions (4.4) - (4.6), and using the

definition w a wb h, yields:

(4.10)	 = ue w + f22

(4.11)	 2.2=q 8 h+Cl3

(4.12)	 fi/h= SeL

(4.13)	 4/q=p-ti -(1-y) 8 eL-[ticw/qh]em

(4.14)	 8 = [a f / bap?' eM

To study development, we use (4.10) - (4.14), together with (4.1) - (4.3), the

primitive technology (3.1), the modern sector wage (1.13), and the transversality condition

(4.7). For convenience, we work with logarithmic utility, letting u[c(t)] =1n c(t).

5. Modern Balanced Growth

In this section, we analyze an economy that has developed to the point where it is

no longer efficient for households to operate the primitive technology. An economy that is

fully modem, in the sense that ep = 0, need not, however, accumulate human capital. Time
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will be allocated to learning only if it is efficient to do so. It is efficient to learn, in our fully

moderneconomy, if and only if:

(5.1)	 8(1) > p - n ,

where 8(1) refers to the value of 8 in (4.14) when em = 1.

This critical condition is derived as follows. Learning is desirable if, at a position of

zero learning (i. e., eid = 0 and em = 1), the rate at which a household can transform per

capita consumption intertemporally by accumulating human capital exceeds p - n, its utility

rate of time discount. 13 A household can transform one unit of per capita consumption over

time by cutting current work effort and increasing learning time. At the margin, reducing

per capita income and consumption by one unit allows a household to raise per capita

learning time by l/wbh hours. Each additional hour of learning, in turn, raises human

capital by 8(1) h units. And the added human capital raises future per capita consumption

by wbem. Multiplying these terms together, and noting that em =1 when eL and ep are zero,

yields the instantaneous marginal rate of transformation, 8(1). This rate must exceed the

family discount rate, p – n, for households to find accumulation of human capital

worthwhile."

Balanced Growth With Human Capital Accumulation

Consider, first, the case where condition (5.1) is satisfied so that human capital

accumulation is. efficient . When time is devoted to learning, the multipliers £1 2 and £13 are

zero, so (4.10), (4.11), and (4.14) imply:

(5.2)	 u w	 e y qhM

13 Existence of an optimal plan, with or without growth, requires that p — > 0: this is equivalent to

assuming positive discounting in models without population growth.

14 Our continuous•time learning condition (5.1) may be derived formally by letting the period length

become arbitrarily short in a discrete•time version of the model.
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where v g 8(1) E [a f / b Mr. This expression, together with (4.2) and log utility, allows

us to express em and eL as functions of q and h:

(5.3)	 em = (v q h)
-1 /(1+

(5.4)	 e = 1- (v q h) 1/(1+

Substituting these into (4.12) and (4.13), yields the following dynamic system:

(5.5)	 it/h=v(vqh)II(I+T)-(qh)1 ;

(5.6)	 4/q=p-t1-(1-y)v(vqh)1l(1+S-y(qh)1

The modem economy inherits a per capita stock of human capital, called h m, from

the early phase of development. The household must choose an initial shadow price for

human capital, called qm, to satisfy the transversality condition (4.7) given that the

economy evolves according to (5.5) and (5.6). Once q m is chosen, the two differential

equations govern the future paths of q and h, and by extension, the allocations, e L, em, and

c over time. Here we consider hm to be given and qm to be the object of choice, but in

Section 7 this pair will constitute the endpoint of the early development path.

The phase diagram in Figure 1 indicates the motion of q and h implied by the

household's first-order conditions when the economy is fully modern. The locus labelled h

= 0, is the boundary between the regions where e L > 0 and el, = 0. It is a rectangular

hyperbola given from (5.5) as:

(5.7)	 h=0 boundary	 q h = 1 / v

From (5.5) we see that above this boundary el, > 0 and human capital is rising. On or

below it, eL = 0 and h is constant.

The shadow price of human capital, q, is constant along the q = 0 locus, which is

found by setting equation (5.6) to zero:

(5.8)	 4 = 0 locus	 q h = y [p -11- (1 - v (v q	 (1 7)i - 1.

This locus is also a rectangular hyperbola, although one cannot explicitly find the value of

qh that defines it. From (5.6), q is rising above the 4 = 0 locus and falling below it . As
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drawn, h = 0 lies below 4= 0. This is the case if and only if (5.1) is satisfied.

The dynamic system can be expressed compactly in terms of the variable 4 E qh.

From (5.5) and (5.6), we get:

- (1 + y) + [p	 + y v (v 4)
-1/0 +y)

(5.9)	 •

This has a unique stationary value,	 The optimal plan is to choose the initial shadow

price, gm, so that 4(0 = 4*, since doing so satisfies transversality (4.7) as well as the

necessary motion equations, (5.5) and (5.6). No other choice of 	 does so.

The optimal puts the economy on the rectangular hyperbola labelled BG in

Figure 1 along which q h = 4*. If (5.1) is satisfied, BG lies above the h= 0 boundary and

below the 4 = 0 locus. Hence, the equilibrium path proceeds down the BG locus over time.

The fact that qh is constant at 4* gives us constant time allocations, em* and eL*, and

balanced growth in the modem economy as a direct implication of (5.3) and (5.4). 15	 .

Since yp = 0 in balanced growth, consumption of each individual equals w em by

(4.2). Moreover, since em is constant, consumption and the wage grow at the same rate.

By (1.13) the wage rises continually by force of both population growth and human capital

accumulation. Since eL is constant, human capital grows at the constant rate 8 (em*) eL*

along the balanced path. Recall that population grows at 11. Taking logs and differentiating

(1.13) with respect to time yields the growth in wages and, by (4.2), the growth rate of per

capita consumption along the balanced path:
•

(5.10)	 (O / c) = (2 — cc) 8 (em) eL + (1— a)rt

Balanced Growth Without Human Capital Accumulation

If condition (5.1) fails to hold, there will be no learning and slower growth along

15 Since qh is constant along the balanced growth path, the transversality condition is satisfied without any

restrictions in addition to (5.1). This also means that utility is necessarily bounded.
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the balanced growth path. If 8(1) 5 p — en, then the 4 =o locus would lie on or below the h

=0 boundary. The only value of satisfying transversality would lie on the 4 = 0 locus

above It: q would be constant for all time, and et would be zero. Since qh would be

constant, the transversality condition would be satisfied. The modern economy would be

fully viable, but households would not find it worthwhile to accumulate human capital.

In this case, the intertemporal rate of transformation is too low to make learning

worthwhile. Therefore, per capita consumption growth is given by (5.10) with k set to

zero. This is plainly below the growth rate with learning. Accumulation is absent, but

wages and per capita consumption rise continually due to increasing returns from

population growth. Growth in living standards may be quite slow, however, if the

parameter a is near unity, so that increasing returns to labor are small.

6. Early Development

In this section we analyze how an economy using the purely primitive technology

of Section 3 transforms itself into a modern economy using specialized intermediate inputs

as described in Section 1. Exogenous population growth drives the development process.

Initially, population is too small for the efficient use of specialized intermediate inputs.

Eventually, however, rising population pushes the scale of operation past the critical point

at which the modem sector becomes viable, and modem specialiazed processes come into

use alongside the primitive sector. I6 If population continues to grow, eventually it becomes

16 One should think of the opening of the modem sector in our model as the birth of urbanization.

Roughly speaking, urbanization followed the Neolithic or Agricultural Revolution (cerca 8,500 B.C.) when

society progressed from an economy based on hunting, gathering, and fishing to one based on farming and

livestock.

The first region to the see the emergence of genuine cities with craft activities and inter-city trade
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efficient to shut down the primitive sector altogether, completing the transition to modem

balanced growth.

To best illustrate the role of population growth in early development, we assume for

now that conditions are such that there is no human capital accumulation (e L = 0). We

analyze early development with accumulation in Section 7.

Once the modem sector begins to operate (eM > 0), household choices for c, ep,

and eM are determined by the time constraint (4.1), the period budget constraint (4.2), the

two first-order conditions (4.3) and (4.10), the wage equation (1.13), and the primitive

technology (3.1).

The bottom curve in Figure 2 shows how, according to (1.13), the modem sector

wage depends on per capita hours worked there, eM. The wage rises with e m because the

modem sector is characterized by increasing returns to effective labor input. Differentiating

(1.13) shows the modem wage curve to be concave to the horizontal axis. As population,

in specialized goods was the area between the Tigris and Euphrates rivers in Iraq. That region, known as

Sumer, had about 10 to 15 cities around 2800 B.C. The Sumerian city of Ur, for example, had perhaps

24,000 inhabitants. The urban population of Sumer is thought to have been as high as 5% of the total. By

about 1700 B.C. Babylon had become the first city with a population in excess of 300,000.

Urbanization in Greece was even more extensive, representing about 20% of the total. At its

height in the second century A.D., the city of Rome had over 800,0(X) people. Bairoch (1988, p. 86)

estimates that the Roman Empire had at least 350 cities and towns with over 5,000 inhabitants, although

estimates of the urban population of the empire are notoriously imprecise.

As mentioned in the introduction, by 1,000 A.D. the urban population of Europe was roughly

10% of the total. Thus, if one wishes to use our model to study the development of pre-industrial Europe,

one should assume that the modern sector had been open for quite awhile, though it was still relatively

small as of 1,000 A.D.
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N, grows, this curve rotates upwards around the lefthand origin.

The top curve shows how, according to (3.1), the primitive-technology marginal

product per man-hour of labor, ayp / aep =13/ (ep n + 1), depends on per capita hours

allocated to that sector, ep (measured from the right-hand origin). The maximum marginal

product per man/hour,13, is shown as ws in Figure 2. If the modem sector wage rises to,

or above, ws it is optimal to shut down the primitive technology (set e p = 0). Differentiating

ayp / aep, it is straightforward to verify that the top curve is convex to the horizontal axis,

as drawn. The shut-down wage, Ws = p, is invariant with respect to household size, n, so

the curve is anchored at Ws. But, because of diminishing returns to labor, the curve rotates

down over time as the population grows.

The width of the box is ep + em v- e, total work effort, which is equal to unity by

(4.1) under the assumption that eL = 0.

Equilibrium in Figure 2 requires that two conditions be satisfied. First, household

necessary conditions (4.3) and (4.10) imply that the modem sector wage must equal the

primitive sector marginal product if both ep and eM are positive. Second, an (ep, eM)

allocation is an equilibrium only if an individual household has no incentive to deviate from

it when taking other households' allocations as given.

Figure 2 illustrates the case where population is small enough that the primitive-

sector marginal product curve lies everywhere above the modem sector wage curve. When

this is the case, no equilibrium exists with ep and eM both positive, since there is no way

for the modern wage to equal the primitive marginal product while ep and eM sum to unity.

This leaves either corner, point A or B, as a possible equilibrium. The second

condition, however, is not satisfied at point B, because if all households chose e m = 1 and

ep = 0, then the marginal product of work in the primitive sector would exceed the modem-

sector wage at B. Hence, an individual household, taking everyone else's allocation (and,

therefore, the modern wage) as given would be better off shifting work effort to its own
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primitive technology up to point C. If everyone did so, however, the modern-sector wage

would fall to point D. Repeating the argument, it is clear that point A is the only stable

equilibrium in Figure 2. So ep =1 is the only equilibrium and the economy remains purely

primitive for a sufficiently small population.

Now let population grow. This drives the upper curve down and the lower curve up

until, eventually, a critical size is reached at which the two touch at a point like Z in Figure

3. This tangency point satisfies both conditions mentioned above, so it represents a second

equilibrium in addition to the one at the ep = 1 corner. Importantly, the new equilibrium at

point Z can support a modern sector.

The economy is better off at an interior equilibrium like Z than at the corner, in the

sense that per capita consumption is higher in the former. To see this, note that modern-

sector product per person is w em, while primitive-sector per capita product is the area

under the upper curve, measured from the right to the equilibrium e m. Therefore, an

economy-wide move from em .-- 0 to em = els; results in a net increase in product per

person.

When the tangency appears at Z, however, the economy is at the ep =1 corner. The

equilibrium will remain there if individual households believe that everyone else will not

move. On the other hand, if each believes that everyone else will switch to e mz, then the

equilibrium will jump to Z. Which equilibrium will be selected is indeterminate. But, given

the potential gains in current and future consumption, there is reason to believe that society

would jump to Z. We shall, at any rate, assume that the jump to Z is made, so the modern

economy springs into existence as soon as possible.

The dotted lines in Figure 3 locate the primitive marginal product and the modem

wage curves for a population that has grown beyond the critical level. As one can see, the Z

allocation is no longer an equilibrium with the larger population. An individual household,

taking other households' allocations as given, now has an incentive to move to point U.
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Hence, all households do so, and U is the new equilibrium." Moreover, as population

continues to grow, the interior equilibrium follows U until it eventually reaches w 5, at

which time the primitive technology is completely abandoned. Early development -- the

transition from a primitive economy to a specialized, modem economy -- is then complete,

and the economy attains balanced growth without human capital accumulation.

7. The Industrial Revolution

In the previous section, development proceeded solely on the strength of increasing

returns to specialization made possible by a growing population. This reflects pre-industrial

growth, in which productivity gains arise from an ever-finer division of labor without

much improvement in fundamental productive techniques themselves. We associate

industrialization with learning that yields fundamental improvements in technology. The

state of technological know-how is indexed by the stock of human capital, and the

Industrial Revolution is marked by the initiation of human capital accumulation by

households. In Section 5, we saw that if condition (5.1) were satisfied, the economy

would accumulate human capital continually in modem balanced growth. Here in Section 7

and in Appendix C we see that when (5.1) is satisfied, accumulation through learning

begins before the economy becomes fully modem. Indeed, we show at the end of

Appendix C that (5.1) is both necessary and sufficient for the economy to industrialize

eventually, provided only that the population grows in the pre-industrial era .

An Industrial Revolution is not an accident of history in our model; rather, it is a

deliberate choice made by forward-looking, decentralized household decision makers.

Households in our economy choose to devote time to learning to acquire human capital

17 For a given population size, a point like V is also an equilibrium. We ignore such equilibria, however,

since they are not stable with respect to population growth.
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when it becomes efficient to do so. The timing turns on the interaction of preferences, the

primitive technology, modern production processes, and the learning technology. To the

extent that primitive technologies differ across regions, our model implies diverse

development histories, including the timing of the Industrial Revolution.

The Phase Diagram

It is most convenient to analyze the Industrial Revolution with a phase diagram. To

do so, we generalize the phase portrait introduced in Section 5 to include, besides the fully

modem region, a region that is relevant when the economy is purely primitive, and a

"transition" region that is relevant when both the primitive and modern technologies are in

use. The expanded phase diagram is shown in Figure 4.

In Section 6 we saw that rising population leads the economy to shift work effort

from the primitive to the modem sector. A larger population favors the modern sector over

the primitive because the former is more efficient at larger scales of operation. An

analogous scale effect occurs with respect to increases in per capita human capital, h, since

these raise the modem-wage curve in Figures 2 and 3. Thus, we can partition the expanded

phase plane into the three regions described above.

The phase diagram is partitioned by the two kinked loci rising above the human

capital stocks labelled hT(Nt) and hM(Nt), where Nt is the population at time t. To the left

of hT the stock of human capital is below the critical level at which the modem sector is

viable, given Nc All production takes place in the primitive sector there. Points on the hT

border correspond to tangency points like Z in Figure 3. Both primitive and modern sectors

are in use in the transition region, while the modern sector alone operates at and to the right

of hM. This rightmost region, where human capital is high, is identical to that depicted in

Figure 1.

Both the hT and hM loci move to the left over time as population grows, since a

larger population requires a smaller stock of human capital to make the modem sector
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viable or exclusive. This movement is indicated by the fat arrows.

The hyperbolas to the right of hM labelled 4 = 0, BG, and h = 0 are the same as in

Figure 1. They are dashed to the left of the hM locus, since they are not immediately

relevant there. They become relevant, however, as population grows and the modem

region expands leftward.

The h = 0 boundary in the transition region is given by the curve labelled CFA. We

show in Appendix B that this boundary connects with its modern sector counterpart at point

A along the hM border. As in the completely modem region, h is rising above the h = 0

boundary in the transition region and constant below it. When population grows and hM

shifts to the left, point A slides leftward up the hyperbola, bringing the endpoint of the h =

0 boundary along with it. We assume that the boundary runs below the dashed hyperbola

in the transition region, which is true for reasonable parameterization of the model.

The hT(Nt) and hM(Nt) borders are kinked at points C and A, respectively, where

they cross the h = 0 boundary. The reason is as follows. Above the boundary learning

time, Cie, is positively related to the shadow value of human capital, q, so that work effort,

e, must fall when q rises. (See Appendix B.) From a point along the h T border (which

corresponds to a tangency like Z in Figure 3) a rise in h would move the economy towards

greater modernization. It would take an increase in q to reduce e and re-establish the

tangency in Figure 3 that defines the border. A similar argument implies that the hM border

slopes upward in the region of positive learning. The logic of Figure 3 guarantees that the

hT and hM bottler loci never intersect.

We will assume that, at the time the modem sector opens, the 4 = 0 locus starts at

point D below point Con the hT border. This is the case if em(z), modern sector effort at

the moment the modern sector opens, is small enough that em(T) 6 (em ('c)) < p – If so,

as shown in Appendix B, the q = 0 locus must be continuous at the h = 0 boundary (point

F) and must connect with the fully modem 4 = 0 locus at the h M border (point E). Thus, the
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4= 0 locus is shown as DFE in Figure 4. The locus is repellent in the transition region, as

in the Sly modern region, and rises over time with population growth.

The thin arrows indicate the motion of q and h for a given population. In the

primitive region, for example, q rises at the rate p —11, by (4.13) with e L and em set to

zero. In the transition region, on the other hand, motion depends upon where the (q,h) pair

lies relative to the q = 0 locus and the h = 0 boundary. Motion in the fully modem region is

identical to that in Figure 1.

The Timing of the Industrial Revolution

The timing of the Industrial Revolution is part of the overall development process

driven by optimizing, decentralized households. The representative household's optimal

plan is governed above all by the requirement that the (q, h) pair reach the fully modern

balanced growth path the instant that the primitive technology is shut down. As discussed

in Section 5, the fully modem economy requires such a starting point to satisfy

transversality. If (5.1) is satisfied, human capital is accumulated along the BG path.

Optimality, then, requires an Industrial Revolution: households must begin to devote time

to learning sometime before, or just when, balanced growth is attained.

As noted above, we assume that the initial population level, No, is small enough

that hT(No) > 1: initially, society uses primitive techniques exclusively. The modern sector

will open, at time t, when population has grown enough to support such a move.

Households select their optimal development plan by choosing the initial condition

for q when the modern sector first opens, 18	so that the (q, h) pair follows the motion in

the phase plane thereafter and reaches the balanced growth path at the instant the transition

18 Actually, they choose q before this, when the economy is entirely primitive, so that qt will be reached

just when the transition begins.
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phase ends. The equilibrium development history is shown in Figure 5. 19 Panel (1) shows

the situation just as the modem sector opens. Households choose % to begin development

at point P. Note that P must be above D, but cannot be too high. As drawn, P lies beneath

C so that there is no learning for a time after the opening of the modern sector.

As time passes and population continues to grow, the h T and hM borders move

leftward, and the 4. 0 locus rises in the transition region. As drawn, the optimal (q, h)

path remains above the rising q = 0 locus, eventually crossing the h = 0 boundary at point

P' in Panel (2). This marks the Industrial Revolution when households begin learning and

accumulating human capital.

It is feasible for households to begin to accumulate human capital through learning

the instant the modern sector opens, but they do not. Why? Human capital benefits

individuals by raising the present discounted value of future income earned in the modern

sector, wbh em. A marginal increase in human capital raises an individuals modern sector

earnings by the present discounted value of future increments, w b em, where the base wage

is given by (1.14). In the early transition, per capita human capital is unity, population is

small, and few hours are worked in the modem sector. Hence, the base wage is very low

and the marginal consumption benefit to human capital is also low.

An individual's consumption opportunity cost of accumulating a unit of human

capital is the time cost, 1 / h 8 (em), multiplied by the wage, wb h; e., wb / 8 (em). Thus,

both the benefit and the cost of learning depend positively on the base wage and, as a first

approximation, we can ignore the marginal effect of wb on the benefit net of cost. In the

early transition, however, we are left with a benefit that is low relative to the cost because

few hours are worked in the modern sector, and because the small size of the modern

sector restricts specialization, keeping learning productivity S (em) down.

19 Appendix C shows that such an equilibriwn path exists and that it is unique.
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A sufficiently small em in the early transition, therefore, makes it inefficient to

accumulate from the start. Accumulation becomes efficient only when em becomes large

enough that the present discounted consumption value of the increments to future earnings

exceeds the consumption opportunity cost of the learning time needed to accumulate human

capital. This is the condition reached at P in Panel (2) when the Industrial Revolution

occurs.

The rising population continues to move hT and hM leftward and to raise the

learning boundary in the transition. Most importantly, however, the 4. 0 locus continues

to rise and eventually overtakes the P path at P', shown in Panel (3), at which time q must

begin to fall. Since the P path is optimal by construction, the phase plane motion thereafter

brings the (q, h) pair to P"' in Panel (4), where the transition ends and the economy attains

fully modern balanced growth.

Several factors govern the timing of the Industrial Revolution and the speed with

which a society makes the transition from a primitive to a modem economy. Using Figure

3 to analyze the pre-industrial period, we see that faster population growth causes the

modern sector to open sooner and speeds development thereafter. It is also apparent that the

modern sector opens later, the more productive the primitive technology (the higher is (3)

and the less productive the modern sector (the lower is A). Likewise, development

proceeds more slowly when the primitive technology exhibits smaller diminishing returns

and the modern sector is characterized by smaller increasing returns. The slower

development of the modern sector, in turn, limits learning productivity 8 ( e st ) and delays

the Industrial Revolution.

Nor are these factors necessarily independent. For example, rapid population

growth early on may be the result of a highly productive primitive technology, a high (3. If

population growth depends on the technology in this manner, there is little reason to expect

a heavily populated region to have developed rapidly, since its highly productive primitive
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technology would have discouraged development of a modem sector.

Our model suggests that different development experiences may be due to different

geographical initial conditions. To interpret different experiences in terms of our model, we

need to understand how geographical factors account for differences in population growth,

primitive technologies, early modem techniques, and learning productivities. We believe

that the primitive technology is critical in this, since it provides the foundation for

population growth and the speciali

8. The Population Puzzle

Population growth plays a central role in our model of early development. It must

grow to a threshold level before the economy is large enough to support a modern sector.

Moreover, a rising population continues to be essential for pre-industrial development by

enabling the economy to benefit more fully from increasing returns to specialization. A

growing population raises modern sector wages, reduces the primitive sector marginal

product, and so causes the modem sector to expand at the expense of the primitive sector.

Most importantly, population must become sufficiently large before industrialization can

begin. If population were to stop growing prior to triggering an Industrial Revolution,

development would cease.

Yet empirically, the relationship between population and development appears

weak. Consider, for example,'Kuznets's (1973, pp. 41 - 48) post-War cross-country

evidence from a sample of 63 developed and less-developed countries. He finds a

statistically significant negative correlation between population growth and growth in per

capita product. But this negative correlation is due entirely to the differences between the

two groups of countries. Disaggregating, he finds that the correlation becomes insignificant

both for the developed group by itself and the less-developed countries taken by

themselves.

zed goods that arise initially .
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The negative correlation between groups arises because all high income countries

have gone through a transition from high fertility and mortality rates to low rates, due to

improved health care and the higher opportunity cost of having children. 20 Thus, the higher

income growth appears to be the result of a high level of economic development, rather

than a lower population growth rate. Controlling for the level of economic development,

Kuznets fords little correlation between growth in population and growth in per capita

product.

The problem for our model is this. Since the model relies on increasing returns to

population in the modem sector, it would seem to imply that the most populous countries

should have the highest per capita product. Yet the most heavily populated countries in the

world are far from having the highest per capita product. Our population-driven model

faces a population puzzle. How are we to reconcile the central role of population growth in

our model with the evidence that finds little correlation between population growth and per

capita output growth for either developed or less developed countries?

Developed Countries

The possibility of an Industrial Revolution provides a solution to the population

puzzle. The accumulation of human capital means that population size and growth

eventually become relatively unimportant for the level and growth of per capita product. To

see this, use (4.2) and (1.13) to express per capita product in modem balanced growth as:

(8.1)	 y = A h2 ell a N I - a .

For population growth to drive development in its early phase, we require only that

the modem sector exhibit sonic increasing returns. Technically, we need 1- a > 0, no

matter how small. In fact, a small value for 1- a may be very reasonable, since it implies a

lengthy transition, as we in fact observe. If so, then (8.1) shows that the level of per capita

20 On this point, see Barro and Becker (1988) and Becker, Murphy, and Tamura (1990).
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product in modem balanced growth is not very sensitive to the population size.

In contrast, per capita output would be approximately proportional to both em and h

if 1– a were near zero.The fraction of time spent working is constant in balanced growth

and one would not expect it to be a major source of differences among national product

levels. But the stock of human capital is unbounded, and can potentially account for large

discrepancies across countries.

Hence, our model predicts that differences in human capital per capita, not

population size, are most likely to account for diversity of per capita product across

developed nations. What might account for such differences in human capital? According to

the model, the answer lies in the fact that countries may have different transition histories,

based on different initial conditions, giving rise to varying degrees of industrialization.

Taking logs and differentiating (8.1) yields the balanced growth rate of per capita

product. If the coefficient on population growth is very small, then since em is constant,

per capita output grows approximately at the rate of growth in human capital per capita.

Thus, the model is consistent with a weak relationship between population and per capita

output growth, and suggests that diverse growth rates among developed countries are due

to factors governing learning productivity S (em) and time devoted to learning, et;

Less-Developed Countries

In terms of our model, a less-developed country is one that has not yet completed

the transition to fully modern balanced growth. This accords with reality, since a significant

portion of LDC output is produced by relatively primitive techniques without much benefit

of modem specialization.

While our model predicts a positive, though possibly very weak, effect of

population size on per capita product in the fully modern economy, even this need not be

the case for an economy in transition. As we show in Figure 6, product per person may

actually decline during the transition. The dark curves there determine an equilibrium at
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point A, so that per capita output is the area under FAC. The dashed curves depict the

situation after a relatively short period of population growth. The equilibrium has moved to

point B and per capita product is now the area under EBC. The net change in per capita

output is EDAF less DBC. As drawn, per capita product falls slightly.

The possibility that population growth reduces the standard of living arises because

per capita product is an average of output from the primitive and modem sectors. Because

of diminishing returns in the primitive sector, rising population forces down per capita

product there. Although per capita product in the modem sector rises with population, the

increase is slight if 1— a is near zero. Effort shifts to the modem sector continually in

response to the higher population. But the increasing returns to e m there may not be high

enough to offset the diminishing returns in the primitive sector.

The effect of a rising population on per capita product is more likely to be negative:

(1) earlier in the transition, when the primitive sector is relatively large; (2) the smaller the

increasing returns in the modern sector, so the modern sector wage curve is less steep and

shifts up less with population growth; (3) the larger the diminishing returns in the primitive

sector, so that the primitive marginal product curve is steeper and shifts down more with

population growth.

While population growth may reduce per capita product temporarily in our model,

the cumulative effect of population during the entire transition must be positive. A related

point is that per capita product may be considerably higher for countries at or near the end

of the transition, than for countries whose primitive sectors are still relatively large.

Countries that continue to produce a relatively large share of output with primitive

techniques will have low per capita product regardless of population size.

Our model reconciles two apparently contradictory notions about the influence of

population in LDCs. It emphasizes the essential role of population in driving the transition

from a primitive society to a modern economy. But it also allows for the possibility that
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population growth could actually reduce per capita product during the transition. Thus, our

model explains how population growth might appear detrimental to LDC development over

some periods. A key idea, however, is that without the the specialized modern sector, per

capita output would fall by considerably more under the weight of greater population. Our

model, then, predicts a potentially loose, short-term relationship between population

growth and per capita output growth, depending on where an LDC is in its transition. This,

in turn, is consistent with the insignificant correlation across LDCs found by Kuznets.

Taking a long, historical perspective, the above argument implies a U-shaped curve

for per capita product as a function of population in the pre-industrial era. 21 The effect on

per capita product of an exogenous population shock due to war or plague, for example,

would therefore depend on the society's position along this curve when the shock

occurred. A plague in a relatively primitive society would raise output per person, but it .

would reduce it in a highly urbanized economy. The pre-industrial data summarized in the

introduction suggests that population raised per capita product after 1500, but may have

had little effect prior to that date.

9. Conclusion

We have modelled early development as the transformation of society from a

collection of autonomous producing units into a modem economy based on firms,

specialization, and the division of labor. To do so, we relied on the idea that the extent of

the market limits society's ability to take advantage of increasing returns inherent in modern

production processes. For us, population is the critical factor limiting the extent of the

21 The possibility thus exists that a growing population could reduce per capita product to a minimum

subsistence level, precluding further increases in scale. Such a binding subsistence constraint in the pre-

industrial period would leave the economy in a Malthusian trap.
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market in the earliest phase of development. When population is too small, the economy

remains ina primitive state, unable to take advantage of increasing returns to

specialization. Once population becomes sufficiently large, a specialized modern sector

arises side-by-side with the primitive one. We showed, however, that primitive techniques

are not abandoned immediately. Rather, there is a long period of slow pre-industrial

development in which ongoing population growth expands the modem sector by gradually

increasing the size of the market.

Productivity gains during the pre-industrial period arise primarily from an ever-finer

division of labor applied to traditional techniques. An Industrial Revolution occurs in our

model when individuals begin to devise fundamental technological improvements by

devoting time to learning. Since learning productivity depends critically on access to

specialized tools and techniques, it is relatively low when the modern sector is small.

Individuals only begin to learn after the specialized modern sector has expanded sufficiently

to make learning worthwhile. In this way, we explained how a long period of slow pre-

industrial development eventually triggers an Industrial Revolution that learls to modem

balanced growth.

Population growth is no longer necessary for ongoing development once

industrialization begins, and plays only a minor role in modem balanced growth.

Industrialization thereby reconciles the crucial role of population in early development with

its apparently weak relation to per capita product in developed economies. Less developed

countries, in our model, are those with relatively large primitive sectors. For them, we

showed that population growth could actually reduce per capita product. Moreover, per

capita product would be considerably lower for countries with relatively large primitive

sectors, regardless of population size.

Several factors govern the timing of the Industrial Revolution and the speed with

which a society makes its transition from a primitive to a fully modern economy.
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Development proceeds more slowly, the more productive the primitive technology and the

smaller is diminishing returns. Faster population growth speeds development, though if it

results from a highly productive primitive technology the combined consequences for

development are ambiguous. Industrialization tends to occur sooner the faster the modem

specialized sector develops. Our model suggests that different development experiences are

due to different geographical initial conditions. To interpret different experiences in terms

of our model, we need to understand how geographical factors account for differences in

the primitive technology, since it provides the basis for the modem processes that follow.
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Appendices

A. The Household's Problem

The household decision maker maximizes:

1
o

J =	 n(t) u[c(t)) eln dt

by choice of c(t), ep(t), eM(t), and eL(t), subject to:

(A.1) Yp(t)n(t) + wb(t)h(t)em(t)n(t) - c(t)n(t) = 0

(A.2) e (t) + e (t) + eL(t) (t) = 1P	 M	 L

(A.3) it(t) = n n(t)

(A.4) h(t) = 6 eL(t) h 1 (t)ha(t) , where S= [a f/b("x")]7ema(07

(A.5) yp(t) = Yp(t)/n(t)

(A.6) Y (t) =111n (e (t) n(t) + 1)P	 P

(A.7) e (t) 2 0

(A.8) eM(t) 2 0

(A.9) eL(t) 2 0

(A.10) paths lwb(t), ha(t), em.(0) for t 2 0.

The current-valued Hamiltonian, with utility price 9 used to value increments to

human capital, is given by:

= nu(c) + 08 eL
(A.11)

+ Xi (ypn + wbheMn cn) + A.2(1 - ep - em - eL)n + fl iepn + 112emn + fisein ,

where the Al and Cli are the multipliers for the two equality and three inequality constraints.

The first-order conditions for a maximum are found by differentiating K with

respect to c, ep, em, and eL; the shadow price 9; and the multipliers AT The first-order

conditions are, respectively:

(A.12) uc = X 1

(A.13) Ar2 = X1 (aYpThed f21

a*
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(A.14)

(A.15) -

(A.16)

(A.17)

(A.18)

21-2=X1 wbh+Q2

l712 = 0 8111-1 117 +0 n
a	 3

8eLhilh:

YP Wb eM = C

eP em Cm '1.

The utility-price of human capital must be a continuous function of time, and it must

change according to:

(A.19) 0 = Op - await = Op - 0(1 - y) 8 et, hl -	 em n

Together with the transversality condition,

(A.20) lim eln 0(t) h(t) = 0 ,
t —4 co

and the initial conditions

(A.21) n(0) = no

(A.22) h(0) = 1 ,

conditions (A.12) - (A.19) are necessary and sufficient for a household optimum.

Finally, in moving from this system to the one presented in the text, we define q

0 / n. This is done to eliminate n from the first-order conditions, except insofar as it

influences wages and the marginal product of labor in the primitive sector.

B. Motion in the Transition

Here we characterize the motion of q and h in the transition region of the phase

diagram of Figure 4. We do so by deriving the h = 0 boundary and the 4 = 0 locus, using

the household's necessary conditions from Section 4, including the restriction that the

modem sector wage equal the primitive marginal product of labor.

Wage equalization and the logic of Section 6 imply that em and e, depend on h, n,

and e as follows:
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em = em(h, n, e) ; emi > 0 , em. > 1 ;

ep = ep(h, n, e) ; epi < 0 ; for i = h, n

Since a rise in work effort, e, e p, we know that em must rise by more than e itself; hence,

e > 1.Me

Work effort is determined by the state variables, h and n, and the shadow price, q.

To see this, note that when eL is unconstrained, the necessary conditions (4.10) and (4.11)

together with log utility imply:

(B.3) 8(em)qh = (e+-17 ]-1 ,

where s s yp - w ep > 0, and 8 depends on em by virtue of (4.14). The variable s is output

per capita in the primitive sector, less per capita earnings in the modem sector. The logic of

Figure 2 -- wage equalization, diminishing returns to the primitive technology, and

increasing returns in modem production -- implies that s depends negatively on h, n and

e. The modern sector wage, w, depends positively on these same variables. Hence, the

ratio s I w depends negatively on them, and we write:

(B.4) s/w = S(h,n,e) , S1 <0 .

Using, (B.1) and (B.4), (B.3) implicitly defines work effort, e, as a function of qh, h, and

n. Express this as:

(B.5) ( q h) 1 = 8 fem (h, n, e)] (e + S (h, n, e) 	 e = E (qh, h, n)

Assuming that -S. < 1, we have that Eqh < 0, while Eh and E. are ambiguous. This means

that as qh falls, work effort rises to its upper bound of 1. For any (h, n) pair, there is a

specific q just low enough to make eL = 0 and e = 1.

Still assuming that eL is unconstrained, equation (B.5) allows us to express all of

the time allocations in terms of the shadow price and the state variables. Substituting (B.5)

into (B.1) and (B.2), and using the time constraint, yields:

(8.6)	 em = Em (qh, h, n) ; Emo < Eqh < 0 ;

(B.7)	 ep = Ep (qh, h, n) ; Epqh > 0 ;
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(B.8) eL = EL (qh, h, n) = 1- E (qh, h, n) ; ELqh = - Eqh > 0 .

Since ep falls when e rises, Epqh > 0. This means that em must fall more than e does when

qh rises, so Emqh <Eck. We assume that the signs of the partials with respect to h and n in

(B.6) and (B.7) are the same as those in (B.1) and (B.2): E mh, Em. > 0 ; and Ems,	 < 0.

Now we derive the h = 0 boundary. The motion equation for h, (4.12), can be

written as:

(B.9) = h (em) = h [Em (qh, h, n )] (1 - E(qh, h, n) ,

from which it can be seen that the boundary where e L and h are zero is also the set of

points where E(qh, h, n) is unity. This corresponds to the smallest value of qh for which

the interior condition (B.5) is valid. Setting e to unity in (B.5) yields:

(8.10) h = 0 boundary	 q h = 8 em (h, n, 1)] {1 + S (h, n, 1) ]	 1.

We see that eL > 0 above the h = 0 boundary, and is equal to zero below it, since,

according to (B.9), a h/aq>0 when evaluated ate =1.

Next, we derive the 4 = 0 locus. This must be done in two parts. First, we find the

q = 0 locus below the it = 0 boundary where e L is constrained to zero. From (4.13) we can

write:

(B.11)
	

/q=(p-11)-em(h,n, 1) ([ I +S (h,n, 1)]qh} -1 ,

where we have set eL = 0, and used (BA) and (3.4) with e = 1. Setting (B.11) to zero

yields the 4 = 0 locus:

(B.12) 4 = 0 locus	 q h = em (h, n, 1) a	
1

1 + S (h, n, 1)] (p -11)) 	 .

This locus repels q itself, as is evident from (B.11) where q appears only in the second

term.

Now we turn our attention to that portion of the 4 = 0 curve that lies on or above

the h = 0 boundary, where e L is not constrained. To do so, note that (4.13), (4.1), and

(4.10) and (4.11) now yield the following:
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(B.13)4 / q = (p	 – 8 [Em (qh, h, n)] { (1 – y) E L(q h, h, n) + Em(q h, h, n) 1.

Setting -(B.13) to zero and using (4.1) yields:
= 0 locus

(B.14)
p –	 8 [Em(qh, h, n) 1 – y– (1– y) Ep(qh, h, n) + y Em(qh, h, n) } .

By (B.6) and (B.8), we know that Eba < - EMS, which means, by (B.13), that the 4 = 0

locus is repellent in the region where learning takes place, just as it is in the region below

the boundary. Together, (B.12) and (B.14) imply that the 4 = 0 locus rises with

population.

In the text, we assume that at the moment the modern sector opens the 4 = 0 locus

starts at point D below C on the hT border . If so, it must eventually cross into the learning

region while still in the transition. To see why, suppose the contrary, so that 4 = 0 hits the

hM border below A in Figure 4. But at h M, below the h = 0 boundary, we know that em =

1 and S = 0, so that qh = 1 / (p –	 according to (B.12). But at A, qh = 1 / v = 1 1 8(1)

which is less than [1 / (p –1))] if (5.1) is satisfied. Hence, there is a contradiction.

The q = 0 locus must also be continuous as it crosses the h = 0 boundary. To see

this, note that the value of h at which the 4 = 0 locus hits the boundary from below is the

one that solves the expression found by equating (B.10) and (8.12). Using (B.10) with

(B.14), we see that the 4 = 0 locus hits the h = 0 boundary from above at the same h.

Finally, we can see that the 4 = 0 locus connects with its fully modem counterpart

exactly at the hM border (point E) as follows. Use (4.10) and (4.11) to substitute S (e m) for

ucw / qh in (4.13). Now set 4 equal to 0 in the result. Then write e m as 1– eL – ep. Use

(B.3) and e = 1 – eL to express et, = 1 + S - 1 / [8(em) q h] and substitute into the

expression for 4 = 0. As h ---> hM, ep 0 and S 0, implying that qh y/(p – tl – (1 –

y) S (em) J, which is (5.8) by virtue of (5.3).
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C: Existence and Uniqueness of an Equilibrium

Path When (5.1) Is Satisfied

Following the discussion in the text, we assume e m (t) is sufficiently small so that

the left endpoint of the 4 = 0 locus in the transition region, point D in panel (1) of Figure 5,

is beneath point C when the modern sector opens at time 2. At t = 0 < 2, the household can

pick a value for q(0) such that q(c), as given by the point P(r) in panel (1) of Figure 5, lies

anywhere between D and C along h = 1. This is true since the speed of the rising q(t) to the

left of hT is 4 q (p —1), and hT itself is moving leftwards at a rate governed by

exogenous population growth,

Let time t1 be the time it takes for the intersection point of q = 0 and h = 0 (labelled

F in Figure 4) to reach h = 1. Note that t 1 is exogenous. Let t2 be the time at which P(t)

reaches the h = 0 boundary. By selecting P(T) appropriately, we can insure that T t2 5 t1.

A t2 equal to 2 means that P(r) coincides with C M panel 1 of Figure 5. When t2 = t 1 , on

the other hand, P(t) is "overtaken" by the rising 4 = 0 locus just as it reaches the h = 0

boundary.

In fact, an equilibrium requires that t 2 must be somewhere between the two

extremes. If t2 = 2, then the path would head into the purely primitive region. If, on the

other hand, t2 = t1 , the path would immediately get caught by the rising 4 = 0 locus, and

the economy would never accumulate human capital. In order to reach BG eventually, the

system must enter into the region of positive learning ahead of the 4 = 0 locus. This is the

situation shown in panel (2) Figure 5.

By appropriate choice of P(c) we can achieve any position we like for P(t 2) along

the lefthand portion of the h = 0 boundary relative to the intersection point of the q 0

locus. In terms of Figure 4, we can effectively "place" the starting point anywhere along
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the segment FC of the h = 0 boundary.22

Suppose for the moment that, after the path point reaches P(t 2) somewhere along

the h = 0 boundary, population growth, eq, becomes zero. The system would then be

autonomous. Under these conditions, it is always possible to hit the terminus of BG --

which we now call point Z -- given the motion illustrated in Figure 4. To see this, consider

Figure C.1 below. Transition region motion indicates that paths starting along FC near F

must spiral either toward F or away from it. 23 Note, first, that paths cross the 4. 0 locus

horizontally and then head to the southeast. Second, note that point Z must lie between

points E and A; that is, Z itself must lie to the southeast of the 4= 0 locus. Because of

continuity from variation in initial conditions, there must be a point beginning on the 4= 0

line that just hits Z. Working back from this point on the 4= 0 locus allows us to find the

equilibrium point, P(t2). That point, moreover, must be unique.

If ri were positive, but very small, the system would be nearly autonomous and the

above arguments would go through with minor modification, since the path point would

still move much faster than the loci defining the transition region.

For faster population growth (although 1 must be less than p) the transition region

moves more rapidly to the left and we need, in particular, to account for: (i) the fact that the

q = 0 locus rises more quickly now relative to the path point and, (ii) the fact that the

terminal point Z of BG moves more rapidly to the northwest along its rectangular

hyperbola Both move at exogenous speeds governed by n. The problem now is to

intercept the rising Z. Figure 5 in the text shows how this is done. The question here is:

22 This statement is, of course, misleading, in the sense that it is the FC segment (appropriately distorted

by the collapsing of the transition region) that moves over the value h = 1, and not the value of h that is

being moved under the FC segment.

23 This is true only of the region above the h = 0 boundary, which is all we care about.
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must there always exist a path beginning along FC that intercepts Z?

By continuity, we can always select a point on the now-rising 4 = 0 locus to

intercept the rising Z . This only requires us to find paths that deviate to either side of Z.

Using the same reasoning, we can always find a P(t 2) that is guaranteed to hit the proper

point along the 4 = 0 locus. Thus, an equilibrium path always exists. Moreover, even

though the P(t) path intersects the trajectory of Z twice, P(t) can only intercept Z when P(t)

is falling. Therefore, the equilibrium path must be unique.

The above establishes that the economy industrializes eventually if (5.1) is satisfied.

We can also show that (5.1) must be satisfied for the economy to industrialize. To begin,

suppose that (5.1) is not satisfied so that 8 (1) 5 p

Recall that (B.13) describes the motion of q above the h = 0 boundary in the

transition region. Divide (B.13) by 8 [ 	 J. Since EM < 1 above the h = 0 boundary, it

follows that if (5.1) is not satisfied, then by (2.4) the first term on the RHS of (B.13)

exceeds one. Recalling (4.1), the second term on the 11115 is less than one. Hence, q > 0

everywhere above the h = 0 boundary in the transition region.

We have established already that the h = 0 boundary is continuous across the

transition and modem regions. We also know that the q = 0 locus lies below the h = 0

boundary in the fully modem region when (5.1) is not satisfied, and that 4 > 0 above the 4

= 0 locus in that case.

It follows directly that if learning ever took place during the transition, it would

have to continue forever. But we know from Section 5 that if (5.1) fails to be satisfied

households would not wish to learn when the transition is complete. Hence, we have a

contradiction and we conclude that the economy will never learn, i. e. industrialize, unless

(5.1) is satisfied.

We have thus shown that (5.1) is both necessary and sufficient for the economy to

industrialize eventually, provided only that population continues to grow until the Industrial
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