
Preliminary

Finite Horizons, Political Economy, and Growth*

James A. Kahn

Department of Economics, University of Rochester and
Institute for International Economic Studies, University of Stockholm

Jong—Soo Lim

Department of Economics, University of Rochester

June 1992

•N 1

*We thank seminar participants at the University of Rochester and the University of
Stockholm for helpful discussions.



Abstract

This paper analyzes the political economy of growth as an issue of inter—
generational distribution. The first part of the paper develops a model of endogenous
growth via human capital accumulation in an overlapping generations setting.
Equilibrium growth is inefficient due to the presence of an intergenerational externality.
We characterize the set of Pareto efficient paths :or physical and human capital
accumulation, and find that there is a continuum of efficient growth rate—interest rate
combinations. The preferred combination for an infinitely—lived planner will depend on
the social discount rate. Competitive equilibrium with subsidized or mandated human
capital accumulation may give rise to a Pareto efficient steady state, though for some
parameters efficiency requires some intergenerational redistribution.

We then argue that a social planner or government with an infinite horizon is
incongruous in an OG model when the agents all have finite horizons. Hence the
second part of the paper addresses the question of how a government whose decision—
makers reflect the finite horizons of their constituents would choose policies that affect
physical and human capital accumulation. Specifically we assume that each government
maximizes a weighted sum of utilities of those currently alive. Each period the
government selects a policy that takes into account the effect (through state variables)
on subsequent policy decisions (and hence on the welfare of the current young
generation). Numerical methods involving polynomial approximations are used to
compute equilibria under specific parametric assumptions. Equilibrium growth rates
turn out to be substantially below efficient rates.



This paper analyzes the political economy of growth as an issue of inter—

generational distribution. Much as static equilibrium theory points out the relationship

between initial endowments and the resulting distribution of goods in competitive

equilibrium, the model presented below highlights the relationship between the

intergenerational distribution of endowments and growth. The first part of the paper

develops a model of endogenous growth via human capital accumulation in an

overlapping generations setting. Equilibrium growth is inefficient due to the presence of

an intergenerational externality: We assume that a higher level of knowledge attained

by one generation reduces the cost of attaining that same level by the next. We

characterize the set of Pareto efficient paths for physical and human capital

accumulation, and find that there is a continuum of efficient growth rate—interest rate

combinations, the choice among which depends on the social discount rate.

Competitive equilibrium with subsidized or mandated human capital accumulation may

give rise to a Pareto efficient steady state, though for some parameters efficiency

requires intergenerational redistribution.

A social planner or government with an infinite horizon seems incongruous in a

model in which the agents all have finite horizons. The government itself is

presumably composed of agents who themselves have finite horizons, and—more

importantly—whose decisions reflect the preferences of their constituents. Hence the

second part of the paper addresses the question of how a government whose decision—

makers reflect the finite horizons of their constituents would choose policies that affect

physical and human capital accumulation. Specifically we assume that each government

maximizes a weighted sum of utilities of those currently alive. Policy decisions are

modeled as the outcome of a non—cooperative dynamic game: Each period the

government selects a policy that takes into account the effect (through state variables)

on subsequent policy decisions (and hence on the welfare of the current young

generation). Numerical methods involving polynomial approximations are used to

compute equilibria under specific parametric assumptions. The political equilibrium
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appears to be generally inefficient (though slightly superior to the laissez—faire

equilibrium) in the direction of insufficient human capital accumulation, i.e. the growth

rate is too low.

1. The Model

The model adapts the standard neoclassical overlapping generations model of capital

accumulation to incorporate endogenous growth via human capital accumulation. In a

sense it represents a cross between Diamond (1965) and Uzawa (1965). 1 Each

generation (or "cohort") allocates time between labor and the accumulation of human

capital. Output depends on physical capital and effective labor, and exhibits constant

returns to scale. Knowledge is passed (at least to some degree) from one generation on

to the next, along with physical capital. We assume only that a higher level of

knowledge attained in one generation makes it less costly for the next generation to

attain the same level. Thus the fact that the Wright brothers' generation discovered

how to make airplanes fly did not mean that the next generation was born with this

knowledge, only that it could attain that knowledge more easily, and without fully

rewarding their predecessors (hence the externality).

The production technology is similar to that of Lucas (1988) modified to discrete

time, except that we have no explicit productive externality of human capital. There

is, however, an intergenerational externality, owing to the nonexcludability of knowledge

across generations. That is, the older generation cannot sell its stock of knowledge to

the young generation. In the model this is simply assumed, but even if it were

technically possible to make the stock of knowledge excludable, the young have nothing

to offer the old in exchange for it.2

1Azariadis and Drazen (1990) explore different issues
Diamond model.

20f course in reality some knowledge is excludable.
is that some knowledge not be excludable.

with a similar extension of the

All that is required for the model
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Individuals live for two periods. All individuals within each cohort are identical.

In their first period they allocate time between accumulation of human capital and

labor. We will refer to the time spent on human capital accumulation as "schooling",

though a more apt interpretation is the share of flexible resources (in this case time)

that productive individuals allocate to increasing their knowledge rather than producing.

The wage they earn for labor depends on their accumulated human capital. They

allocate their wage income in the first period between consumption when young and

consumption when old. When old, individuals consume their savings plus interest.

Each individual solves the problem

(P1)	 Max u( cit) + Tr-au(
C2t+1)

subject to

(1.1)	 cit + czn1Al+rt.1) = &fat

(1.2)	 14 = g(4)71t-i

where wt is the wage per unit of human capital, Ht is the individual's human capital

stock, Ht - i is the average human capital level of the previous generation, An is the

interest rate, and 4 E [0,1] is the proportion of time allocated to labor. The remaining

time 1-1t is allocated to human capital accumulation. We assume that g' < 0, that

g(0) < to, g(1) > 0, and that u' > 0, u" < 0. Since all individuals within a cohort

are assumed to be identical, we know that Ht = At, so we will drop the distinction for

the remainder of the paper.

The first order conditions for the individual's maximization problem are
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(1.3)	 u'(cit)	 (1+a)-1(1+rt.1)W(czt.1),

and

(1.4)	 itg'(4) + g(4) = 0,

assuming interior solutions. Thus the individual simply chooses 4 to maximize his

earnings wt/tHt, given (1.2). The solution to (1.4)—and consequently the equilibrium

growth rate—is independent of Kt and Kt-i.

Output is produced from a constant returns to scale production technology

F(Ift ,Ntitlit), where Nt is the number of individuals born in period t. We assume that

Nt = Nt_1(1-1-n). Competitive firms maximize profits, taking the wage and interest rate

as given. Defining k t = Kt/(Ntitlit), and Akt) = gict,1), profit maximization implies

(1.5)	 f' (kt) = rt,

and

(1.6)	 f(kt) – kJ' (kt) = wt.

Thus the model is a straight generalization of Diamond's (1965) model. To reproduce

that model we would set g(t) = 1. The equilibrium value of L would be 1, the level

of human capital would be fixed, and all of Diamond's results would follow.

In order to make the generalization interesting, we make one additional regularity

assumption on g(/). First define t = argmax ig(t). Then we assume

Al. e < 1.

The assumption that g(0) < to already rules out t	 0, so Al guarantees an interior



solution for

Equilibrium requires (1.3)1.6) and

Men + Ht - ica + K t .1 F(KaltHtlt) + Kt,

cit + c2t/(1+n) = Ht-ig(it)itlf( kt) + Jct. — (l+n)g(ItAktfilt31/41,

where th.. 1 and Kt are predetermined state variables for period t. Since is

independent of the state variables, we can fix g(1) and I Vt. The equilibrium

conditions imply that

(1.9)	 c2t	 (l+n)/*Htkt(l+P(kt))

(1.10)	 CIt = tHakt) – (l+n)g(e)kt e i – ktf (kt)]

(1.11)	 te(cit) = (1+a)-1(1-Ff(ktei))te((l+n)t*Hteiktn(l+P(ktei)))•

Given Ht - 1 and kt, we have Ht = g(e)Ht _ i, and equations (1.5)–(1.6), (1.9)–(1.11)

determine e t c,	 kt+1, wt , and rt.

We will focus on balanced growth steady states in which k is constant, under the

assumption that u(c) takes the form cl-1ic/(1-1/a), or log(c) if a = 1. In such a

steady state, KIN, H, CI, and c2 all grow at the rate g(1) – 1. Conditional on 9,
analysis of competitive equilibrium proceeds entirely as in Diamond (1965), albeit with

a fixed growth rate g(9) - 1. In particular, the equilibrium may or may not be

dynamically efficient. We shall see shortly, however, that the competitive outcome is

always Pareto inefficient. We first analyze the problem of a planner with a fixed

5
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social discount rate.

2. A Social Planner's Problem

We first consider the solution of an infinitely lived social planner who discounts

the utility of generations at rate p. At time 1 he chooses a path {c it ,c2t,lt} from t=1

to co to solve the problem

Ca	 1Max	 E (l+p) -t "Nt[u(cit) + +ctu(c2tn)]
t 1

subject to

(2.1)	 Ntcit + Nt - iczt +	 F(Kt,HtNtlt) + Kt,

(2.2)	 Ht =

given Kt, Ho, and c21 . Nt enters the objective for convenience, but does not affect the

analysis, since it just implies an effective discount factor of (1+n)/(1+p). Thus we will

need to assume p > n to assure a well-defined problem.

We can set up the following Lagrangian:

03	 1
(2.3)	 .2° = E (1+p) 4•1 [Nt[u(cit) + LT-u( c2tei)] +

t=1

At[F(Kt,HtNtlt) + Kt — Melt — Nt- ica — Kt+1] —

tht[lit -

(P2)
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where At and 1st are multipliers associated with the two transition equations. The first

order conditions for the solution of the optimization problem in {Kto,lit,cit,czt,4,At,114}

are

(2.4)	 u'(cit) = At

(2.5)	 u'(c2t) = At(l+a)/(1+p)

(2.6)	 AtNtHtF2(Kt,Ntlitit) = –fitg'(it)Ht-t

(2.7)	 AtNtitF2(Ift,NtHt4t) = ut – fit+ig(ito)/(1+P)

(2.8)	 + FI(Kt,Ntlitit)] = At-1(1+P)

along with the two constraints (2.1) and (2.2).

Although the adjustment to a steady state is of interest, we will focus only on the

optimal balanced growth steady state in which k and l are constant. First, (2.4) and

(2.5) imply that the growth rates of cit and cn are the same in the steady state, as

one would expect. Also, the homogeneity of F implies that the rate of growth of per

capita consumption is equal to the rate of growth of human capital. With the CES

utility function assumed above, and with F1(K,N111) = f'(k), F2(K,NIH) = 4k) –

kr(k), we have from (2.4):

(2.9)
	 eel = At/Atm•

Equation (2.8) implies that
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(2.10)	 At/Ato = [1 + fl(k)11(1+p).

Hence from equation (2.6) and (2.9) we have

	

(2.11)
	

= (1 + n)g(erlicr•

Dividing (2.7) through by Pt yields (after substitutions involving (2.2), (2.6), and

(2.11)):

	

(2.12)	 1 + g' (1)11g(1) = (1 + n)g(1)1-11c1(1+p).

Finally, (2.9) and (2.10) imply

	

(2.13)	 1 + (k) = (1+P)g(1)116.

Equations (2.12) and (2.13) determine the planner's choice of 1, denoted 4, which in

turn determines the optimal growth rate g(t). The latter is a standard MRS = MRT

condition. Equation (2.12) equates the marginal foregone output from additional work

to the discounted value of the resulting increased output the following period, in utility

terms.

We can compare (2.12) with the equilibrium condition implied by (1.4),

1 + g' (1)11g(1) = 0. The two conditions coincide when p = w, as one might expect,

because then f' (k) = w by (2.13). The optimal and equilibrium growth rates also

coincide when a, the intertemporal elasticity of substitution, is zero. As a increases

the optimal growth rate increases as well, although it is necessary for p to increase

with a to keep the maximization problem well—defined. Except for the extreme cases,

the planner's optimal 1 is lower than the equilibrium 4 which means that the optimal
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growth rate generally exceeds the equilibrium growth rate for any p < co.

3. Efficient Human Capital Accumulation

The social planner's optimum yields a particular set of Pareto efficient allocations

associated with different social discount rates, but as is well known from the work of

Diamond (1965), Cass (1972), and others, the fundamental theorems of welfare

economics do not apply to these economies. The competitive equilibrium need not be

Pareto efficient, and the Pareto optima given by the planner's problem may not be

achievable by decentralized equilibrium. It is also unclear whether equations (2.12) and

(2.13) fully characterize the set of Pareto optimal steady state allocations, given that

they come from a particular intergenerational weighting scheme.

This section analyzes the relationship between efficiency and equilibrium. We

already know that	 is too large in equilibrium, so our default assumption is that a

planner can impose a choice of l directly (presumably the efficient choice) while

allowing competitive equilibrium to determine the other endogenous variables. We will

provide an alternative derivation of efficiency conditions for 1 that are independent of

the social discount rate. First, however, we will note necessary conditions for efficiency

of k given a choice of 1.

The work of Cass (1972) and others suggests that a sufficient condition for

dynamic efficiency of the path {Kt}, conditional on {4}, is that

(3.1)	 lim
t

 [1+P(kt)11[(1+n)g(4)] > 0.
t-ico s

In a steady state this condition translates into

(3.2)	 1 + f'(k)	 (l+n)g(1),
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which, as we have seen, is satisfied by the planner's optimum. Also in a steady state

the resource constraint (2.1) becomes

(3.3)	 cit + czt/(1+n) = Htt if(k) + k – (1+n)g(0.14.

If 1+P(k) < (1 -1-*(1), then reducing k would increase steady state consumption, a

contradiction of efficiency.

The characterization of efficiency or inefficiency in {4} is a problem of a different

nature, because it is no longer just a matter of aggregate consumption efficiency. We

can see from (3.1) that given Ht _ 1 and Kt, maximizing Nt4Ht yields the most resources

to divide between c it , c 2t , and 'Ctn. Given any choice of Kt + 1 , consumption efficiency

would appear to require just such a maximization, and that is what occurs in the

competitive equilibrium. It is easy to show, however, that this cannot generally be

efficient. Suppose we fix c 2t and consider the effects of reducing 4 below 9.
Intuitively, this has zero first order effect on Nt4Ht, since we are starting from an

interior maximum. Consequently we can leave cit and Kt ,1 unaffected on the margin.

But it has a first–order effect on Ht , which carries over into t+1. Hence we can make

the individual born at time t strictly better off, at least insofar as he has some

positive elasticity of substitution between cl and c2.

Starting from some path in which 4 =	 Vt, consider a perturbation of 4, holding

fixed everything but the path of Ht and the consumption of cohort t. The effect on

cit is

(3.4)	 dcaldtt = F2(Kt/Nt,4lit) Ht-1i1t8 / (4) + g(4)],

which is zero at 9. The effect on Ht . i from the change is
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(3.5)	 ,i/ d4 = Ht-1g(t4)g ' (Pt),

which is positive (for a marginal decrease in 4). Now consider the possibilities for

C2t.i. Even if we have 4.s =	 s = 1,2,..., which means that H is on a permanently

higher path as a result of the change in 4, the effect on cu. ' is

(3.6)	 dc2t, eddit = (Ns ,i/Nt.)F2(1Cs ,i/Nt,,be aft . 1)Ht-ieetng ' (9),

which, again, is positive for a marginal decrease in 4. Thus we can make the

generation born at t better off without making anyone else worse off.

To characterize efficient growth, we can proceed as above, except that we need to

take account of the fact that subsequent generations are made better off. We need to

maximize the increase in cu. ' as the consequence of lowering 4, which means leaving

cohort t+1 no better off. In other words, a path for l is efficient if it cannot be

altered to increase some cohort's lifetime utility without reducing some other cohort's

lifetime utility. So now in considering the effect of changing 4 on cu. ' , we will allow

for the possibility of lowering 4., so as to leave all future cohorts unaffected.

Now consider a path {c1s,c2s,Ks,Hs,4r • If it is efficient, then we should not be
s

able to make cohort t better off by changing 4, while leaving subsequent cohorts no

worse off. This will require

(3.7)	 u'(c it)dcit/d4 + (1+a)-'ili(c2 t + i)dczt . i/dtt = 0,

where deal dlt and dc2t . 11 dit are constructed so as to leave all other cohorts'

consumptions unchanged. Since there is no presumption that 4 =	 (in fact we know

that 4 < 9), we have to take account of the effect on cit. We also want to increase

4, 1 to the point that Ht ,/ is left unaffected, i.e. so that
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(3.8)	 = Ht-i[g(itel)g' (4)dit + g' (it +i)g(t)dlted = 0.

This implies

(3.9)	 Ail/ clit = —g(lt +i)g' (A)/[C (4 el)g(4)].

Also, holding c2t fixed, we have

(3.10)	 dcit/dit = F2(Kt/Nt,414)14-1[4.g ' (4) + g(4)1,

which is positive.

Next we have the effect on can, which is

(3.11)	 dc2t 4 i/dtt = (Nt.i/Nt)F2(Ktii/Nt41,44111t.i)lit-i

[g(4)[4.ig' (4.0 + dit.1)1dit.1/	 +	 (4)4 44 .1)] •

Substituting for dit .ddlt using (3.9), and noting that F2(Kt/Nt,4Ht) = (1-43t)f(kt),

where tit is capital's share, we have

(3.12)	 dczt eddet = —(1+ n)(1-flt• i) f(kt.i)Ht-igit40 28.1 (4)/g/ (4.0.

Consequently a necessary condition for efficient growth is (from substituting equations

(3.10) and (3.12) into (3.8)):

(3.13)	 u '( cit)f(kt)( 1—igt)fitg'(1t) + WO] =

( 1 + ct) -lu '( c2til)( 1 +n)( 178t4i)1(kt.i)g(441) 2t (4)/g ' (4.t).
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Equation (3.13) is a necessary condition for the path {4} to be Pareto efficient,

provided 4 E (0,1). A similar perturbational argument for K t i i yields another more

familiar efficiency condition:

(3.14)
	

(cit) 	
(1+Q)-111+P(k141)1e(c2"1).

Combining (3.13) and (3.14), we have

(3.15)	 i(kt)( 1-00[4g/ (4) +	 =

(1+n)(1–th.i)f(kt.08(4.1) 2g' (4)/g' (4 +1)/ [ 1 +P (kt.01.

The left side of (3.15) is proportional to the change in earnings from a change in 4,

and the right side is the corresponding discounted change in earnings from the

offsetting change in 4.1.

4. Steady State Analysis

Now consider a steady state in which 1 and k are constant. From (3.16) we have

(4.1)	 1 + 4'M/g(P) = (1-1-n)g(1)1[1+P(k)],

a condition that depends only on the economy's technology. In fact this condition is

implied by the conditions (2.12) and (2.13), as can be seen by substituting one into the

other. But equilibrium conditions will determine k, and these will generally depend on

preferences, population growth, and government policies.

Note that (4.1) implies

(4.2)	 1-1-11(k) > (1-1-n)g(1)
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for any steady state that has positive production. That is, in any efficient steady state

with positive production, k must be strictly smaller than that which maximizes

consumption per worker. This is because 1+P (k) = (l+n)g(l) and (4.2) together

would imply le (Mel) = 0, or I = 0. Consequently if I is chosen efficiently, dynamic

efficiency in k is assured, at least in a steady state.

How could a Pareto efficient outcome be implemented? Essentially, all that would

be necessary is some mechanism to control 4 e.g. "mandatory schooling", plus in some

instances the ability to make intergenerational transfers. Together with competitive

labor and goods markets, these suffice to bring about a Pareto efficient steady state.

Note, however, that the equilibrium k is normally increasing in I (i.e. decreasing in the

growth rate). This is because a higher growth rate causes reduced savings.

We can let OM denote the competitive equilibrium steady state value of k as a

function of an exogenously imposed I. Let ((/) denote the steady state value of k as a

function of l that satisfies the efficiency condition (4.1). With ?Xi) upward—sloping,

and C(I) downward sloping, the intersection yields the unique efficient steady state (4k)

under the assumption that a planner chooses the optimal 1 and k is determined

competitively.

Example: Suppose t(k) = Akfi, and again assume u(c) = log(c), g(I) = G(1 — le)e,

where 0 > 1, 6 < 1. Figure 1 displays the equilibrium for the parameters A = 20,

= .5, G = 2, 0 = 2, and 6 = .5 (so g(1) = 2/1 — 12 ). The efficient 4 denoted

4, is approximately 0.57, which corresponds to g = 1.65. With a 25 year time period

this would be approximately 2 percent annual growth. Equilibrium t*, on the other

hand is 0.71, g(t) = 1.41, so growth would be less than 1.5 percent. Shifts in policy

would correspond to shifts in XI), which would correspondingly shift the efficient I and

growth rate.
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To summarize, the endogeneity of growth in this model implies that equilibrium is

always inefficient, but that the way to efficiency must involve increasing human capital

accumulation, and need not involve reductions in physical capital.

5. Efficient Growth and Policy

Any government policies that affect k will shift the IV) schedule, implying that if

is shifted accordingly to maintain efficiency, that the policies alter the growth rate of

the economy. Differences in preference parameters or in population growth will also

alter the efficient growth rate. For example, consider a pay—as—you—go social security

system. This would be associated with a smaller steady state value of k, and

consequentially the efficient growth rate is smaller as well. This represents is a

movement along the Pareto frontier, favoring the current old at the expense of the

young and of future generations. This is not a new view of social security, but the

fact that it implies a lower efficient growth rate is new.

The same is true of any other policy that affects the equilibrium level of k, though

the model in its present form is not rich enough to permit a variety of government

policies. But, for example, if the government cannot set I but instead has to achieve a

desired value via taxes and subsidies, the 1 it wishes to achieve (and consequently the

growth rate) will depend, for example, on whether wages or interest earnings are taxed,

and on whether deficit or surplus financing is used.

The remainder of the paper will drop the assumption that governments necessarily

implement efficiency, and replace it with an assumption that governments have the

same time horizon as their constituents, and act sequentially and in an uncoordinated

fashion to maximize their welfare.

6. Political Economy

The normative implications of the model for government policy are straightforward,
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as we have seen. In particular, with the ability to make lump—sum transfers between

individuals, government policy can in principle attain any point on the Pareto frontier.

As a positive matter as well it would seem that a rational government ought to be

interested in efficiency, regardless of how it chooses to split the rents. When

distortions arise from the fact that individuals have finite horizons, however, it is less

obvious that governments composed of such individuals will necessarily opt for

efficiency. First, it might be necessary that those currently alive collectively

appropriate the full gains from increased efficiency, or else they will lack the incentive

to pursue it. Second, the gains must be distributed among those alive in accordance

with the government's preferences. Otherwise the government could face a tradeoff

between efficiency and the distribution of wealth.

In this part of the paper the political system is assumed each period to maximize

a weighted sum of the utilities of those currently alive, taking into account the fact

that the same decision process will take place in the next period, and that the choice

today will influence next period's choice through its influence on the state variables of

the economy. Thus political choice is depicted as a dynamic game between generations.

A solution technique is developed to solve for the equilibrium of this game as applied

to the model from the first part of the paper. We assume that the political system

chooses / and the size and direction of intergenerational transfers.

In general the inability to coordinate with subsequent governments gives rise to

inefficiency in the steady state. It turns out that the government improves upon the

competitive equilibrium, but does not achieve Pareto efficiency. There exists a steady

state policy that would make everyone better off by increasing growth (at the expense

of current output) and increasing transfers to the old. That policy is not selected,

however, because each government cannot coordinate with subsequent governments to

carry out the transfer that results in the Pareto improvement. In equilibrium some of

the gains from growth spill over to those not yet alive. Consequently governments opt
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for inefficiently low growth.

The model is the same as in Section 1 except that it now will incorporate an

explicit policy of lump–sum intergenerational transfers. The consumption and savings

decisions of individuals are determined in a competitive equilibrium in which each

individual takes the political decision as given. The political decision, however, takes

into account its effect on individual decision–making, and hence on the political decision

of the next period. We introduce at this time a minor refinement in notation: It

denotes the aggregate per capita quantity (which individuals view as exogenous), while

kt denotes the value that a representative individual chooses. Of course in equilibrium

the two quantities are identical.Hence the individual's budget constraint is

(6.1)	 cit + c2t .7(1+rt n) = wtHtlt – Tat + rtilHt.1(1+n)/(1+Ttil),

where wt is the wage, and Tt is the politically–determined lump–sum transfer (scaled by

the level of the economy so that T will be constant in a balanced–growth steady state)

from cohort t to cohort t-1 at date t.

Market equilibrium requires r t = (kt) and wt = /go - ktfi(kt). The first order

conditions for the individual's maximization problem are as before:

(6.2)	 (cit) = (1+a)-1(1+f1(It.0)/21(c2t+i)

and the budget constraint (6.1). Equilibrium still requires (2.1) and (2.2), the

equations that give the evolution of Kt and lit . Consequently we have

(6.3)	 cit/Ht-i = elt)[1tP(rt) –	 (kr)] - elt.1)(1+n)kt.14.1 - Ts]

(6.4)	 czt/Ift-1 = ( l +n)g(4)Iitkt(1+P(It)) +
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For a given path of the policy variables Tt and 4, the model can be solved for the

equilibrium path of kt , c it , czt, wt, and rt.

The political system at time t is assumed to choose r t and 4 to solve

Max	 -047--u(c2t) + (1-0)[u(cu) + .1r4—..all(C2te1)]

t ,Tt

given It and Ht . ! , given (6.2)–(6.4) and knowing that at t+1 the same decision process

will determine rt 4 1. 3 Thus it follows that the political decision at t takes into account

its effect on all future political decisions, since the decision at t+1 takes into account

its effect on t+2, and so forth.

The result is a decision for (ra t) that should only depend directly on It , 14_1 and

next period's decision rule (rt,t,4,i) 	 rtegt.1,14;•..). Consequently we have

rt(Itput-1iPt.gt.1,lit;rt+2(kti2 I Ht .1; .. • )i• • • )). But in a symmetric equilibrium the state of

the system at entering time t is fully described by I t and Ilt _ 1 , so the equilibrium

strategy can be described simply as r(I,11-1)•

Even so, actually finding an equilibrium policy function remains a difficult task. It

is possible in general only to characterize equilibrium sufficiently so that numerical

techniques can find a solution under specific parametric assumptions. The results are

suggestive of more general conclusions, and in any case can be compared to the

"cooperative" solution of a longer– or infinitely–lived social planner. We do not

address the questions of existence and uniqueness of equilibrium.

6.1. Solution Technique

The technique for solving the model consists of starting at an arbitrary time t

with an arbitrary policy rule Ftsi(It.blit) specified for the next period. This generates

3The 1/(1+a) before u(c 2t) is there just to simplify some of the formulas that follow.
It obviously does not affect the qualitative results.

(P2)
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first–order conditions that characterize a policy rule fat,Ht-tIrtfi( kt,blit)). This

process can be repeated until the function so generated converges to a rule r(k,11-1).

The iteration process should not be thought of as dynamic convergence to a "steady

state" 1.1(•) function; it is just an expositional method for characterizing the

equilibrium. The function so computed is valid globally, not just in steady state.

Although both kt - i and Ht are state variables, in fact the model has been

formulated in such a way that the two policy instruments 4 and rt will only depend

on It . This is because of the homotheticity built into both preferences and technology.

Substituting (6.3) and (6.4) into (P2), we can express the political decision problem as

(P2')	 Maxmi.° u((l+n)g(tt)[itkt(l+P(It)) +	 +
r t ,4

(1-0){u(g(4)11t[i(lt) -	 (It)] - g(4.1)(1+n)kt .itt 41 - rt]) +

1..-_au((l+n)g(tt)g(lt. 0[4.114.1(1+f' (It i t)) + rt+1])}

subject to (6.2)–(6.4), given I t = kt and Ht - 1 , and given rt,i(Itsi),

Note that (6.2)–(6.4) determine a function ktert,rt.gt+i),It,ft.1(Et.1)). That is,

individuals choose savings taking policy variables as given. But they know that It .1 =

kt o; hence if rt or 4 change, with perfect foresight consumers take account of the

effect on ru t through the effect on It s t . So to get, for example, the total effect of a

change in rt, on kt n (and hence on It e i ), we have

(6.5)
dkto. = akt o Okt+i drt + 1 akt+1 dltil aktei d/t.i
drt 	art artil akt.t a4.1 at* t akt . 1J drt

t +1,and since —at+i	 dk we have
drt	 drt
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(6.6)	
_ akty - akt . 1	 aktei (14. 1 at+,

drt,	 art	art+i ate!	 54.1 dEtsi

We similarly have

(6.7)	 dirt./	 akty 1	 akt., dr" ,	 akt+i
clit	 54	 ort+i cgt+i	 54+1 dEtn

for the total effect of It on kt.

The effects given by (6.6) and (6.7) will enter the political decision process for rt

and 4. They can be found by differentiating (6.2), and are detailed in the Appendix.

As one would expect, the direct effect of a transfer from young to old is normally to

decrease the saving of the young (i.e. clkt . 11 drt < 0), while the effect of increased time

working relative to accumulating capital is to increase saving (i.e. dkoddi t > 0),

assuming that the marginal effect on current earnings is positive, which it always will

be at the optimum.

The first–order conditions for (P2') are

(6.8)	 0(14-n)uqc2t)M=	 x

7-1}104f, (kt.1)) 
–
 0.4_,yt+odkuirtntiold4,1

+ kt.14.if"(kt+1)	
c1

Girt	at./	 dEt41

and

(6.9)	 0(1+n)u qc2t)[( 1+ q tit)kt( 1 +f (kt)) + Ttqt] =

(1-0)u qc2t+diTt l.i+P (kt40)[4 1 +qtit)(ft – le (kt)) + rtqd –
	, IL	 IL,	 , thrtnili.

(1+7t41){9trt,t+—	 a[rt.it.i
dl

111 + Ctlint•il, l 1 ka .1
\
) + —

(lit	dloi	 cift.11-1

where l+7t . i	(l+n)g(it,i) and qt a g' (lt)Ig(lt). Given kt and sufficiently well

behaved functions r t , i (kt . i ) and It . i (kt + t) equations (6.2)–(6.4) and (6.8)–(6.9) can (in



21

principle) be solved for rt and 4 as function of kt. An equilibrium is a pair of policy

functions r(k), 1(k) such that if r t . / = r(kt o) and 4+1 = 1(kt . i), then the rt and 4

values that satisfy (6.8) and (6.9), given that k t ,i comes from (6.2)—(6.4), are r(kt) and

Akt)•

If we combine (6.8) and (6.9) to eliminate the marginal utility terms we get (after

some simplification)

(6.10) 1+7 t el 1 + 4tit — 1+1+f' (kw)

{—qtrt.i + [[(1+qt/t)kt(l+P(kt.)) +
dkt el 	dkt . 1 1 xWJrtchl Th-Tt—

kt ilqt,4 1CB-Iil kt . i/t e ' (kw) + —drt 11
V
1 /

AT 4 1	 (Akt) + kt)
dlt+i	 “nt+I

Using the relationship (A3) from the Appendix to eliminate dkt , ildit we get

clkrt i i „

(6.11)	 l+chlt = 1+11;qt: 14 x

{—qtrt41	 Elgtitkt(i+r (kt))	 rtqt	 t(kt)
kti

1/(f(kt) + kt)(1441
irt.ich 4 r 

kat of uct.1)	 drt .11

dEtiiOki]

It may be helpful to bear in mind that the laissez—faire equilibrium has 1 + gat = 0,

while the optimal steady state has 1 + ql = (1+y)/(1+f'(k)).

6.1.1. A Special Case

It is perhaps easier to see what is going on in the model in a simpler special case.

Consider the case in which there is no physical capital in the economy, i.e. the

production function is lit = Anat. For simplicity, output is assumed to be perishable.

Hence, as in Samuelson's (1958) monetary model, consumption of the old is zero in the
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absence of intergenerational transfers in their direction. Thus there are two reasons for

intervention in this economy: To mitigate the distortion in in the human capital

market, and to keep the old from starving.

The optimality condition for a steady state in this economy is

(6.12)	
1 +	 g(,)[14 	

This condit on can be derived as was the earlier efficiency condition. Note that the

[ 1	 u' fen .1) term	 u' ci.t) corresponds to the inverse of one plus the shadow interest rate.

Hence (6.12) amounts to the same condition that we had earlier.

Note also that (6.12) again does not imply a unique efficient growth rate. There

is a continuum of ft,r1 policy combinations that are efficient. A higher level of

transfers from young to old would be associated with a lower growth rate if one were

to compare across efficient steady states. Consequently one cannot characterize the

inefficiency of a particular set of policies solely in terms of the growth rate. If a

policy is inefficient a Pareto improvement is generally available that does not alter the

growth rate. (The exception is the policy of laissez—faire, which unambiguously has too

low a growth rate).

The question is whether the political system, with its finite horizon, will choose an

efficient solution. In this case it will be clear from the derivations that the political

equilibrium is characterized by underaccumulation of human capital relative to the

private intertemporal marginal rate of substitution. That is, the growth rate is too low

relative to the size of intergenerational transfers. The intuition behind this result is

that although starting from the equilibrium it would be possible to lower / and more

than compensate the current young for their sacrifice with additional consumption the

next period, there is no way for the political system to bring about the compensation.

Consequently, although the equilibrium with the shortsighted political system is an
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improvement over laissez–faire, the non–cooperative nature of the system leads to

inefficiency relative to a system that binds current and future policy to the cooperative

or efficient solution.

If we again deflate by Ht .. 1 , the resource constraint facing the government at

time t along with (6.1) is:

(6.13)	 ctt + c2t/(1+n)	 Ag(it)lt.

Consequently we have

(6.14)
	

cit = eitllAtt - rt)

(6.15)
	

c2 t = rt(l+n)g(tt)•

Given some arbitrary policy rtii, the current government would solve

(P3)	 Max	 iii-uert(l+n)g(it)) + (1-0)[u(g(it)ilitt – rt)) +
t rt

/47tuert.i(1+n)g(it)g(ltia

given (6.1). We know that Ht will not be affected by rt, so the first–order condition

from differentiation with respect to rt will in fact yield the equilibrium policy function

directly:

(6.16)	 0(1+n)e(rt(l+n)g(4)) = (1-0)(1-1-a)u' (ettilAtt – rt) )•

For the same CES preferences as before this implies
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(6.17)	 rt = tAlt/(1 + n + e)

—_ [  (l+nwhere C	 (1+a) ( 1)0) . As for A, we have

(6.18)	 ui(c/t)Afg' (4)4 + g(4)] +

(1+ a)- lui (c2t , t)(i+n)rt at (4) = 0.

Making these substitutions yields

(6.19)	
1 + g,(ityt/g1/4) — [1.tna] 	 cc2ittii)[,ggEptl 	 Inf:e(it)I 

Hence the equilibrium I policy is characterized by

(6.20)	
1 + Rd (co gm	 1+n 	 V11) 

is f ilgThThe ratio of the right—hand side of (6.20) to that of (6.12) is ( +a+ e g ), which is

less than one. Consequently the sacrifice of current output for growth is smaller

(relative to the intertemporal marginal rate of substitution) for the equilibrium policy

than under the efficient policy, which means that growth is inefficiently low (or the

marginal rate of subsitution is inefficiently high).

If the governments could fix for all time (7-,1) policies that satisfied (6.12),

everyone could be better off: There exists a cooperative policy that would lead to a

higher growth rate without any sacrifice in utility by any generation. The fact that

1 + g'(1)11,g(t) is smaller in equilibrium than under the efficient policy implies that a

marginal sacrifice of current output for growth would yield more than enough gains in

the next period to compensate the current young (who would then be old), while

leaving the next and all future generations no worse off. The problem is that the next
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government will not make that compensation. The equilibrium policy fails to

internalize the benefits of human capital accumulation. Consequently although the

equilibrium 1 is smaller than under laissez—faire (since the equ;librium policy does

internalize some of the benefits), it is still too large.

The equilibrium can be dynamically inefficient as well as Pareto inefficient. In

that case the problem is that each government would be willing to make the larger

transfer provided the next government would do so as well. Then the current young

would be more than compensated for their sacrifice by the larger transfer to them in

the next period. But without precommitment the reoptimization that takes place in

the subsequent period will fail to follow through with the larger transfer.

6.2. Numerical Methods and Results

The discussion now will focus on the first method of solving for the equilibrium

policy functions r(k) and 1(k) in the general case. The method to be used here will be

to assume that they can be approximated by a polynomial. Specifically we will assume

that

	

(6.21)	 r(k) = E vipi(k)
it0

	(6.22)	 /(k) = E wipi(k)
1=0

where pi is the ith—order Chebyshev polynomial in k (with the appropriate domain

adjustment). The Chebyshev polynomials are a family of orthogonal polynomials

defined by po(x) = 1, p i(x) = x, p i(x) = 2xpi _ 1(x) — pi _2(x), on the interval [-1,1].

If r(k) and 1(k) satisfy the above, then r'(k) and (k) are defined accordingly.

The solution procedure involves selecting a value of m and finding values of w and z

that approximately satisfy the system (6.8)—(6.9). Of course unless the true solution is
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a polynomial of order less than or equal to in, there will not be a solution at each

stage that holds for all values of kt. A variety of methods can be used to find

solutions that are good approximations. One convenient method advocated by

practitioners of numerical techniques (e.g. Judd (1991)) is to solve the system exactly

at m+1 points, specifically the roots of pm . i. The accuracy of the fit can than be

checked at intermediate points, and in particular at the steady state value of k.

Results were computed for a the case of Cobb—Douglas production f(kt,) = Aktfl

and CES utility u(c) = c1-1ia/(1-1/a) under a variety of parametric assumptions. It

turns out that relatively low order polynomials (e.g. m = 4, meaning a cubic equation)

provide a good approximation to the true equilibrium policy functions, at least for k

not too small. Figure 2 plots a representative graph of the steady state equilibrium

interest rate 1 + (k) and aggregate equilibrium growth rate (1+n)g(4) against 0.

Also plotted are the steady state efficient growth rate (denoted (l+n)g(4)) given k and

the laissez—faire growth rate (l+n)g(e). The specific parametric and functional form

assumptions are ,8 = 0.3, a = 1, A = 6, n = 0.3, and g(L) = 1.65V1 —	 Figure 3

plots the equilibrium and efficient growth rates against the interest rate, while Figure 4

plots the two equilibrium policy functions r(k) and L(k) for the case of 0 = 0.6.

The main finding is that the equilibrium growth rate falls substantially short of

the efficient growth rate, not only for each value of k, but globally. This is because

the equilibrium growth rate is essentially flat with respect to the interest rate, hence

there is no k for which the equilibrium growth rate would be efficient. For the case

plotted in the Figures the per capita equilibrium growth rate hovers at about 0.7

percent, while the efficent rate varies between one and two percent. By comparison,

the laissez—faire equilibrium growth rate is approximately 0.6 percent. Similar results

were obtained for a variety of parameters.

The intuition for the qualitative result is that the benefits of growth largely spill

over onto subsequent generations. There is no mechanism available by which a
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subseqent generation can commit to reward the previous generation for its sacrifices.

To some extent each generation can extract some reward for growth via its influence

on subsequent policy decisions through the state variables of the economy. The

government is assumed to exploit this to the extent possible in choosing a point along

a pseudo—Pareto frontier. In the examples computed this effect is rather meager, and

leads to only a slight improvement over laissez—faire.

The other notable feature of the numerical results is that the equilibrium 1(k)

function is virtually flat, and that steady state 1 also does not vary much with 0.

This would appear to rule out explaining differences in growth rates by differences in

social policy preferences (as represented by 0), in contrast to the infinite horizon case

where the social discount rate matters a lot.

7. Discussion and Conclusions

The lack of coordination in this model has symptoms that are similar to those

from more familiar models. In monetary models (e.g. Samuelson (1958)) each young

generation's willingness to accept money for goods is dependent on their belief that the

subsequent generation will accept it from them. In the capital accumulation model

each young generation's willingness to transfer wealth to the old is dependent on their

belief that the same thing will happen in the subsequent time period. The ability to

bind subsequent generations does not in itself induce the socially desirable outcome in

the current period. Indeed the fact that subsequent governments are bound to their

policies (or that subsequent beliefs are independent of whatever happens in the current

period) makes it all the more tempting for the current young to exploit the situation.

In the monetary model they could consume all of their endowment, and then

reintroduce money in the following period. In the capital accumulation model the

young could refuse to transfer to the old, and then still obtain transfers the next

period by virtue of the government's being bound. In other words, the incentive to
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deviate is present with or without precommitment. By themselves (i.e. without some

kind of mechanism to resolve the intergenerational conflict) these models are not

equipped to deal with the types of positive policy questions addressed in this paper.

The approach adopted here yields explicit policy outcomes in equilibrium, and we

suspect that it could be useful for a variety of policy questions beyond those addressed

here. Each government's objective mirrors the objectives of the individuals currently

alive. Each rationally takes its effect on subsequent governments' actions into account

when making its policy decision. The crucial factor, however, that leads to potential

inefficiency is the inability to coordinate, not the strategic interaction. Even if each

government ignored its effect on subsequent governments' decisions the outcome could

be inefficient. Indeed in numerical solutions it appeared that the likelihood of

inefficiency was actually greater under the naive behavior than under the more

sophisticated. The naive behavior is analogous to the Cournot assumption in models of

imperfect competition, where each producer takes the others' quantities as given in its

own quantity decision. The sophisticated behavior corresponds to the Stackleburg

assumption that one producer can act first and take the others' responses into account.

As in the imperfect competition models, in which neither Cournot nor Stackleburg

maximizes joint profits, here neither the naive nor sophisticated behavior necessarily

guarantees efficiency. Only full cooperation accomplishes that. But surely between the

sophisticated, Stackleburg—like behavior and the the naive Cournot—like behavior, the

former is a priori the preferred assumption.

The more fundamental question is whether this model has anything to say about

differences in growth rates across countries. Clearly if the model is simply applied to

all countries, then all should have the same low growth rate, since differences in policy

preference parameters appeared to have little effect on the equilibrium growth rate.

What the analysis suggests, rather, is the possibility that the model might apply more

to some countries than others, perhaps because of differences in political stability. A
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country that can set up a stable intergeneral redistribution institution that rewards

human capital accumulation appropriately can clearly do better than one that cannot.

Endogenizing the ability to create such an institution is beyond the scope of the

present paper, but certainly a stable political system would be one ingredient.

In terms of empirical support, we know that less developed countries have a

significantly higher return to human capital accumulation (e.g. the return to schooling)

than developed countries (see Psacharopolous (1973)). Ljungqvist (1992) suggests a

second—best insurance explanation for this stylized fact, but the explanation suggested

here is that the high returns in those countries reflect policy decisions not to encourage

human capital accumulation to the same extent as in developed countries. These

decisions in turn reflect a lack of incentive on the part each current generation to

accumulate human capital when the benefit falls primarily on subsequent generations.

If developed countries have overcome this obstacle, it must be either the result of

institutions that allow those who accumulate human capital to recoup more of the

benefits, or the result of a longer horizon. But it is doubtful that redistributional

mechanisms such as Social Security serve the purpose of inducing human capital

accumulation. Moreover, rapid growth in developed countries preceded the development

of such institutions. So it is probably hard to sustain the case that the redistributive

mechanism itself is crucial. Institutions that enhance property rights to knowledge may

be more important. This research shows, though, that a finite horizon has potentially

catastrophic effects on growth, and that the ability to set up institutions that overcome

this by appropriately rewarding human capital accumulation may be crucial.
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Each of the components of (6.6) and (6.7) can be found by total differentiation of

(6.2). After converting second derivatives of utility into relative risk aversion, and

substituting (6.2) in various places, we get

Th1) &14 +1 = —cot .1/(Al)	 (1+

dn.!

drt

1111	 rt+igtildltit{(1-Ef (kt.1)-1-cot.0[1tn + (1-1-golito)ksti—
dIt+i	 dEt..1

+ f" (kt . I)Iit i lk 4 1 – cr(1t . ikt +1 + rt,i/Il+f'(kt.l)])}

(A2) (1+7t.Odkt+1 =
dlt

(Pt [(1+ q t./t)(4k0 – ktf (kt))–(1t[g(it.i)Itiikt.1(1+n)+Tti]

(1+7t.09t[lt.ikt.i(1+P(kt+i))+Ttni/

,{(
1

+P(kt 41)+cot4)[44 1 + (1+qt . itt n)kt . i	+ rt .,qt . di"- thrte1-
crkt.+1	 dkt.i	 ei

+ f"(kt. i)Iit. ikt . 1 – cr(It e ikt + i + rt.i/El+fi(kta}

where 1+7t+i = g(440(1+n), qt = g'(101 g(4), and cot.i = [(1+P(kt.i))i(l+a)]r-

Further manipulations of the numerator of (A2) (using the fact that cow also equals

c2t , 1 /cit ) lead directly to the result that

dkt = _tot) – ktp (ko] dkt .1
dtt	 drt

30

(A3)
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