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Abstract

This chapter discusses computational methods for the estimation and anal-
ysis of macroeconometric models.

1 Introduction

Advances in computer hardware in the last two decades have considerably lessened

the computational burden of working with large scale macroeconometric models.

Most methods for single equations are now computationally trivial, and many meth-

ods for complete models are now routine. In particular, the availability of fast,

inexpensive computers has made stochastic simulation routine, and this has greatly

expanded the ways in which models can be tested and analyzed.

This chapter discusses computational methods for the estimation and analysis

of macroeconometric models. The focus is on methods that, while possibly com-

putationally routine, are at least not trivial; computationally trivial methods are not

discussed. Most of the methods discussed are methods for complete models. Non-

linear optimization algorithms, such as the DFP algorithm, are not discussed. The

reader is assumed to be familiar with these algorithms.

*For the Handbook on Computational Economics. First draft. Comments Welcome.
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Much of the material in this chapter is taken from Fair (1984) and (1994), where

the methods are both discussed and applied, and the reader is referred to these two

sources for the applications. To save space, no applications are presented in this

chapter. It will help in what follows, however, to have an idea of the size of the

model to which the methods have been applied. The latest version of this model,

which will be called the "US" model, is presented in Fair (1994). It consists of 30

stochastic equations, 101 identities, and a little over 100 exogenous variables. The

basic estimation period is 1954:1-1993:2, for a total of 158 observations. There are

166 unrestricted coefficients to estimate.

No computer times are reported in this chapter. Advances in hardware are so

rapid that any times reported now would be out of date even by the time this book

is published at the turn of the century. Suffice it to say that none of the methods

discussed in this chapter—with the possible exception of FIML estimation of models

with rational expectations—are currently impractical in the sense of requiring days

of personal computer time to run.

All the methods discussed in this chapter have been programmed into the Fair-

Parke (1993) program, which is available for distribution. One advantage of this

program is that once a model has been set up in the program, the methods can be

carried out with a few simple commands. The only real work is setting up the model.

What I have tried to show in this chapter is that for the most part computational

issues are no longer a problem in macroeconometric model building. Methods are

available to be easily used if desired. If academic interest in model building returns

in the future, computational requirements should not be a major constraint.
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2 Notation

The general model considered in this chapter can be dynamic, nonlinear, and si-

multaneous and can have autoregressive errors of any order. The model is written

as:

fi(Yr, xt ,ai)	 um	 = 1,	 , n),	 (t = 1, ... ,T)	 (1)

where yt is an n–dimensional vector of endogenous variables, x t is a vector of

predetermined variables (including lagged endogenous variables), at is a vector of

unknown coefficients, and uu is the error term for equation i for observation t. It

will be assumed that the first m equations are stochastic, with the remaining nit

(i = rn + 1, . . , n) identically zero for all t.

The following notation is also used. ut denotes the T–dimensional vector

(n it ,	 ,u tT )' Gj denotes the lc, x T matrix whose tth column is afi(vt,xt,at)laat,

where kt is the dimension of 	 a denotes the vector of all the unknown coefficients

in the model: a' = (aj, . ,cent )' . The dimension of a is k, where k Jct.

Finally, Z 1 denotes a T x K1 matrix of predetermined variables that are to be used

as first stage regressors for the 2SLS technique.

The following additional notation is needed when discussing the FIML

and 3SLS estimators.	 .It denotes the n x n Jacobian whose ij element

is Oft laytt ,(i, j = 1, . , n).	 u denotes the in • T–dimensional vector

(a 11 , . • ,	 , • . , unit,	 , u m	 G' denotes the k xm- T matrix
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G'

Finally, Li t denotes the m—dimensional

rn x tn covariance matrix of ut.

G'1	 0	 .	 .	 .
0	 G'2

0

vector (ui t ,

0

, u,,, t ),

(2)

and E denotes the

Each equation in (I) is assumed to have been transformed to eliminate any au-

toregressive properties of its error term. If the error term in the untransformed

version, say wi t in equation i, follows a rth order autoregressive process, WI( =

P1i Wtt-1 PriWit—r ui t , where uit is lid, then equation i is assumed to

have been transformed into one with utt on the right hand side. The autoregressive

coefficients p 11 , pH are incorporated into the a 1 coefficient vector, and the ad-

ditional lagged values that are involved in the transformation are incorporated into

the xt vector. This transformation makes the equation nonlinear in coefficients if it

were not otherwise, but this adds no further complications to the model because it

is already allowed to be nonlinear. It does result in the "loss" of the first r obser-

vations, but this has no effect on the asymptotic properties of the estimators. u, t in

(1) can thus be assumed to be iid even though the original error term may follow an

autoregressive process.

3 Two Stage Least Squares

Probably the most widely used estimation technique for single equations that pro-

duces consistent estimates is two stage least squares (2SLS). Although the compu-

tation of 2SLS estimates is trivial, it will be useful for reference purposes to present
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the estimator. The 2SLS estimate of a i (denoted 64) is obtained by minimizing

Si = u;Zi (Z;Zir l Z;u i = u;Diui	 (3)

with respect to ai . Zi can differ from equation to equation. An estimate of the

covariance matrix of at i (denoted Q2ii) is

(72i i ern CO; DiOir i 	 (4)

where	 is Gi evaluated at öti,	 = T -1 Ell / Ct?t , and It' it = ft (yt, xt, at).
The 2SLS estimate of the k x k covariance matrix of all the coefficient estimates

in the model (denoted Q2) is

V211	 •	 •	 •	 V21m

V2 = (5)

V2m1	 •	 •	 •

where

fizij r-erii(O fi Dia VC4Di Dj d'i )(6"/ Dj O ij )- 1 	 (6)

and erij = T 1 Eft ' itait•

4 3SLS and FIML

3SLS estimates of a are obtained by minimizing

S = U f Ft-1 Z(Z / Z) -1 Z ilts = u t Du	 (7)

with respect to a, where E. is a consistent estimate of E and Z is a T x K matrix

of predetermined variables. An estimate of the covariance matrix of the coefficient

estimates (denoted 93) is

93 = (6' Dar'	 (8)
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where G is G evaluated at the 3SLS estimate of a. E is usually estimated from the

2SLS estimated residuals.

Under the assumption that u t is independently and identically distributed as

multivariate normal N(0, E), FIML estimates of a are obtained by maximizing

L = --
T 

logIrl+EloglJtI
2 t=1

with respect to a. An estimate of the covariance matrix of the FIML estimates

(denoted 174) is

(192L
174=	 	

&Ace

where the derivatives are evaluated at the optimum.

The FIML computational problem can be separated into two main parts; the first

is to find a fast way of computing L in (9) for a given value of a, and the second is

to find an algorithm capable of maximizing L.

The main cost of computing L is computing the Jacobian term. Two savings

can be made here. One is to exploit the sparseness of the Jacobian. The number of

nonzero elements in ,/t is usually much less than n 2 . For the US model, for example,

n is 131 (so n2 = 17, 161), whereas the number of nonzero elements is only 556.

Considerable time can be saved by using sparse matrix routines to calculate the

determinant of ft.

The second saving is based on an approximation. Consider approximating

Er=i log Ift I by simply the average of the first and last terms in the summation

multiplied by T: (T/2)(log I J1 I + log lir I). Let So denote the true summation, and

let Si denote the approximation. It turns out in many applications that So — S t does

not change very much as the coefficients change from their starting values (say 2SLS

(9)

(10)
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estimates) to the values that maximize the likelihood function. In other words, So —Si

is nearly a constant. This means that Sr can be used instead of Sp in computing L,

and thus considerable computer time is saved since the determinant of the Jacobian

only needs to be computed twice rather than T times for each evaluation of L. As

noted above, T is 158 for the US model. Using Si in place of So means, of course,

that the coefficient values that maximize the likelihood function are not the exact

FIML estimates. If one is concerned about the accuracy of the approximation, one

can switch from S1 to So after finding the maximum using Sr. If the approximation

is good, one should see little further change in the coefficients; otherwise additional

iterations using the algorithm will be needed to find the true maximum.

The choice of algorithm turns out to be crucial in maximizing L for large nonlinear

models. My experience is that general purpose algorithms like DFP do not work for

large problems, and in fact the only algorithm that does seem to work is the Parke

(1982) algorithm, which is a special purpose algorithm designed for FIML and 3SLS

estimation. The algorithm exploits two key features of models. The first is that the

mean of a particular equation's estimated residuals is approximately zero for FIML

and 3SLS estimates. For OLS this must be true, and empirically it turns out that it is

approximately true for other estimators. The second feature is that the correlation of

coefficient estimates within an equation is usually much greater than the correlation

of coefficients across equations.

The problem with algorithms like DFP that require first derivatives is that the

computed gradients do not appear to be good guides regarding the directions to move.

Gradients are computed by perturbing one coefficient at a time. When a coefficient

is changed without the constant term in the equation also being changed to preserve
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the mean of the residuals, a large change in L may result (and thus a large computed

derivative), and this can be misleading. The Parke algorithm avoids this problem

by spending most of its time perturbing two coefficients at once, namely a given

coefficient and the constant term in the equation in which the coefficient appears.

The constant term is perturbed to keep the mean of the residuals unchanged. (The

algorithm does not, of course, do this all the time, since the means of the residuals

must also be estimated.) To take advantage of the generally larger correlation within

an equation than between equations, the Parke algorithm spends more time searching

within equations than between them. General purpose algorithms do not do this, since

they have no knowledge of the structure of the problem.

If only a few coefficients are changed before a new value of L is computed,

considerable savings can be made by taking advantage of this fact. If, for example,

the coefficients that are changed are not in the Jacobian, the Jacobian term does

not have to be recomputed. If only a few equations are affected by the change in

coefficients, only a few rows and columns in the E matrix have to be recomputed.

Since the Parke algorithm spends much of its time perturbing two coefficients at a

time, it is particularly suited for these savings.

The estimated covariance matrix for the FTML coefficient estimates, CIL; in (10), is

difficult to compute. It is not part of the output of the Parke algorithm, and thus extra

work is involved in computing it once the algorithm has found the optimum. My

experience is that simply trying to compute the second derivatives of L numerically

does not result in a positive definite matrix. Although the true second derivative

matrices at the optimum are undoubtedly positive definite, they seem to be nearly

singular. If this is true, small errors in the numerical approximations to the second
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derivatives may be sufficient to make the matrix not positive definite.

Fortunately, there is an approach to computing V4 that does work, which is

derived from Parke (1982). Parke's results suggest that the inadequate numerical

approximations may be due to the fact that the means of the right hand side variables

in the estimated equations are not zero. If so, the problem can be solved by subtracting

the means from the right hand side variables before taking numerical derivatives. Let

p denote the coefficient vector that pertains to the model after the means have been

subtracted, and let a denote the original coefficient vector. The relationship between

a and 0 is

a M • p	 (II)

where M is a k x k matrix that is composed of the identity matrix plus additional

nonzero elements that represent the means adjustments. Unless there are constraints

across equations, M is block diagonal. Assume, for example, that the first equation

of the model is

Ylt = PI ± fi2(Y2t — m2) ± 133(Y3t — m3) + ult, (r = 1,..., T)	 (12)

where n12 and m 3 are the sample means of yet and Y3t respectively. This equation

can be written

Ylt	 — 02m2 fi3m3 + 02Y21 -1- 03y31 telt

= al ± a2Y2t ±a3Y3t air, 	 = 1, . . . , T)

In this case the part of (11) that corresponds to the first equation is

(1
a l —#12 

—1:3 ) ( I3P 12 )a2 ) = ( 0 1
a3	 0	 0	 I	 133

(13)

(14)
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Parke found that the covariance matrix of fi could easily be computed numeri-

cally. Let V4 (fl) denote this matrix:

Given 174(0), the covariance matrix of a is simply

94 = m • Q4(0) M	 (16)

V4 can thus be obtained by first computing the covariance matrix of the coefficients

of the transformed model (that it, the model in which the right hand side variables

have zero means) and then using (16) to get the covariance matrix of the original

coefficients.

Using the Parke algorithm and the various savings discussed above, I have found

it feasible to obtain FIML estimates of the US model. In fact, the main work in using

the FIML estimator is not the computational burden but making sure that no errors

have been made in taking the derivatives for the Jacobian.

Consider now the 3SLS estimation problem, which is to minimize (7). The only

cost saving to note for this problem is that the D matrix, which is m•Txm•T, need

not be calculated from scratch each time (7) is computed if only a few coefficients

are changed. In other words, pieces of D can be saved and used many times before

needing to be recomputed. This saves considerable time because D is large. For

example, for T = 158 and rn = 30, D is 4740 x 4740. I have also found the 3SLS

estimates easy to compute using the Parke algorithm.

(a2L(m 13)) 1

174 (P)—	 (15)
al a

10



5 Two Stage Least Absolute Deviations

A single equation estimator for which there are some computational issues is two

stage least absolute deviations (2SLAD). This estimator is as follows. It is assumed

for this estimator that the model in (1) can be written:

Yit =	 xt,ai)+ ut t ,	 =-- 1,	 , TO,	 1,..., T)	 (17)

where in the ith equation yit appears only on the left hand side. Let 9i = Di yi and

h i Di h i , where, as above, Di (Z; zi )-- 1 4, where Z 1 is a matrix of first stage

regressors. There are two ways of looking at the 2SLAD estimator. One is that it

minimizes

T

E
t=1

- hit! (18)

and the other is that it minimizes

Ekit
tz=1

(19)

Amemiya (1982) has proposed minimizing

E
t=t

iqytt + (1 —q)Yit- hitl (20)

where q is chosen ahead of time by the investigator. The estimator that is based on

minimizing (20) will be called the 2SLAD estimator.

The 2SLAD computational problem is to minimize

T
E Ivitl	 (21)

with respect to cti , where mi. qytt + (1 -q)ht -Tz tt . This computational problem is

not particularly easy, especially when ve t is a nonlinear function of (xi . For example, I

have had no success in minimizing (21) using Powell's (1964) no derivative algorithm.
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Because standard algorithms do not work, other approaches must be tried. I have

found the following approach to work well, which uses the fact that

r v 2.	 T v2

	

E IViti = E* = E	 (22)
t-1	 t=1 ' Vat '	 t=1

where wit = For a given set of values of wit (t =-- 1, . , T), minimizing (22)

is simply a weighted least squares problem. If vu is a linear function of a,, closed

form expressions exist for «i ; otherwise a nonlinear optimization algorithm can be

used. This suggests the following iterative procedure:

1. Pick an initial set of values of w it . These can be the absolute values of the
2SLS estimated residuals.

2. Given these values, minimize (22).

3. Given the estimate of ai from step 2, compute new values of vit and thus new

values of Wit.

4. With the new weights, go back to step 2 and minimize (22) again. Keep repeat-
ing steps 2 and 3 until successive estimates of a, are within some prescribed
tolerance level. If on any step some value of wit is smaller than some small
preassigned number (say E), the value of w it should be set equal to E.

In the case in which the equation to be estimated is linear in coefficients, the

closed form expression for it i for a given set of values of wit is

	

ai = (grii)-1)Zr97
	

(23)

it); is the same as X i , where Xi = X i , except that each element in row t of X i is

divided by Vwit. The vector ;7 equal qyi + (1 — q) .9i except that row t is divided

by Viru. (pi equals D,

The accuracy of the estimates using this approach is a function of E: the smaller

is E, the greater is the accuracy. If vu is a linear function of 	 the estimates will
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never be exact because the true estimates correspond to ki values of wit being exactly

equal to zero, where ki is the number of elements of ozi . One might think that this

would be a serious problem in practice, but I have not found it to be. I typically use a

value of E of .0000001 and a percentage stopping criterion for successive coefficient

estimates of .001, and with these numbers it is seldom the case that any weight is

less than c. (I typically use a value of q of .5.) The method also works well when

the equation is nonlinear in coefficients, such as when the error term is assumed to

follow an autoregressive process and the autoregressive coefficients are estimated

along with the structural coefficients.

6 The Gauss-Seidel Technique

Turn now from estimation to solution. Most macroeconometric models are solved

using the Gauss-Seidel technique. It is a remarkably simple technique and in most

cases works remarkably well. Because the technique is so widely used, it is important

to understand what it does. The technique is easiest to describe by means of an

example.

Assume that the model in (1) consists of three equations, and let xi t denote the

vector of predetermined variables in equation i. The model is as follows:

	

h(y it, Y2t, Y3t, x tt, a l) = u It	 (24)

	

Y2t, Y3t x2t , a2) = u2t	 (25)

f3(Ylt, Y2t, Y3t, x3t cis)	 usi	 (26)

where ytt, Y2t, and Y3t are scalars. The technique requires that the equations be

rewritten with each endogenous variable on the left hand side of one equation. This
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is usually quite easy for macroeconometric models, since most equations have an ob-

vious left hand side variable. If, say, the left hand side variable for (25) is log(y2t/y3t),

then nt can be written on the left hand side by taking exponents and multiplying the

resulting expression by y3t . The technique does not require that each endogenous

variable be isolated on the left hand side; the left hand side variable can also ap-

pear on the right hand side. It is almost always possible in macroeconometric work,

however, to isolate the variable, and this will be assumed in the following example.

The model (24)–(26) will be written:

Ylt = gl(Y2t, Y3t, xit, al, ti lt) (24)'

Yet = 81(y11, Y3t, x21, 0(2, u21) (25)'

Y3t =	 Y21, x3t, a3, U3t) (26)'

In order to solve the model, values of the coefficients and the error terms are needed.

Given these values and given values of the predetermined variables, the solution

proceeds as follows. Initial values of the endogenous variables are guessed. These

are usually either the actual values or predicted values from the previous period.

Given these values, (24)'–(26)/ can be solved for a new set of values. This requires

one "pass" through the model: each equation is solved once. One pass through

the model is also called an "iteration." Given this new set of values, the model can

be solved again to get another set, and so on. Convergence is reached if for each

endogenous variable the values on successive iterations are within some prescribed

tolerance level.

There are two main options that can be used when passing through the model.

One is to use the values from the previous iteration for all the computations for the

current iteration, and the other is to use, whenever possible, the values from the

14



current iteration in solving the remaining equations. Following the second option in

the example just given would mean using the current solution for y it in the solution

of Yet and y3t and using the current solutions for y it and Yet in the solution of y3t.

In most cases convergence is somewhat faster using the second option. If the second

option is used, the order of the equations obviously matters in terms of the likely

speed of convergence. The first option is sometimes called the Jacobi technique

rather than the Gauss-Seidel technique, but for present purposes both options will be

referred to as the Gauss-Seidel technique.

There is no guarantee that the Gauss-Seidel technique will converge. It is easy to

construct examples in which it does not, and I have seen many examples in practice

where it did not. The advantage of the technique, however, is that it can usually be

made to converge (assuming an actual solution exists) with sufficient damping. By

"damping" is meant the following. Let 547-1) denote the solution value of y it for

".(n)iteration it — 1 (or the initial value if n is 1), and let y 1( denote the value computed by

solving (24)' on iteration n. Instead of using y 0it0 as the solution value for iteration

	

1)	
yyipn, one can instead adjust y ir	 only partway toward	 :

(n)	 A (n-1)	 (n)	 (n--1)
Ytt =	 MYlt	 Y11 ), 0 < X S 1

If A is 1, there is no damping, but otherwise there is. Damping can be done for any

or all of the endogenous variables, and different values of x can be used for different

variables.

My experience is that one can usually make small enough to achieve conver-

gence. The cost of damping is, of course, slow convergence. In some cases I have

seen values as low as .05 needed. In the vast majority of the problems that I have

solved, however, no damping at all was needed. Two other ways in which one can

(27)
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(28)

(29)

deal with problems of convergence are to try different starting values and to reorder

the equations. This involves, however, more work than merely running the problem

with lower values of A., and I have generally not found it necessary to experiment

with starting values and the order of the equations.

Note that nothing is changed in the foregoing discussion if, say, y it is also on the

right hand side of (24)'. One still passes through the model in the same way. This

generally means, however, that it takes longer to converge, and more damping may

be required than if y it is only on the left hand side; thus it is better to isolate variables

on the left hand side whenever possible.

The question of what to use for a stopping rule is not as easy as it might sound.

The stopping rule can either be in absolute or percentage terms. In absolute terms it

is

I n)	 (n-1 )1)1

It	Yit	 I < Ei
and in percentage terms it is

-(n)	 -(n-1)
yit	 yit 

(n-1)
yit

where ci is the tolerance criterion for variable i. (If damping is used, 9111 ) in (28)

and (29) should be replaced with i) i(nt ) .)

The problem comes in choosing the values for El . It is inconvenient to have

to choose different values of the tolerance criterion for different variables, and one

would like to use just one value throughout. This is not, however, a sensible procedure

if the units of the variables differ and if the absolute criterion is used. Setting the

tolerance criterion small enough for the required accuracy of the variable with the

smallest units is likely to lead to an excess number of iterations, since a large number

< Ei
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of iterations are likely to be needed to satisfy the criterion for the variables with the

largest units. Setting the criterion greater than this value, on the other hand, runs

the risk of not achieving the desired accuracy for some variables. This problem is

lessened if the percentage criterion is used, but in this case one must be concerned

with variables that can be zero or close to zero.

My experience is that the number of iterations needed for convergence is quite

sensitive to the stopping rule. It does not seem to be the case, for example, that

once one has converged for most variables, one or two additional iterations increase

the accuracy for the remaining variables very much. There is no real answer to this

problem. One must do some initial experimentation to decide how many different

values of EA are needed and whether to use the absolute or percentage criterion for a

given variable.

7 Stochastic Simulation

As noted in the Introduction, computer hardware advances have now made stochastic

simulation routine, and this has greatly expanded the ways in which models can be

tested and analyzed. Many applications of stochastic simulation are contained in Fair

(1994), but these will not be discussed here. The following discussion will focus on

computational aspects only. The notation in Section 2 will continue to be used.

Stochastic simulation requires that an assumption be made about the distribution

of ti t . It is usually assumed that u t is independently and identically distributed

as multivariate normal N(0, E), although other assumptions can clearly be used.

Alternative assumptions simply change the way the error terms are drawn. Stochastic

simulation also requires that consistent estimates of a t be available for all i. Given
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these estimates, denoted e?e, consistent estimates of //it, denoted au , can be computed

as fe(ye,xe,ei e). The covariance matrix E can then be estimated as (1/ T)CI ti t , where

U is the m x T matrix of the values of ail.

Let u7 denote a particular draw of the m error terms for period t from the N(0, ±)

distribution. Given 14 and given Ct i for all i, one can solve the model for period t

(using, say, the Gauss-Seidel technique). This is merely a deterministic simulation for

the given values of the error terms and coefficients. Call this simulation a "repetition."

Another repetition can be made by drawing a new set of values of ti;'` and solving

again. This can be done as many times as desired. From each repetition one obtains a

prediction of each endogenous variable. Let yi it denote the value on the jth repetition

of variable i for period t. For J repetitions, the stochastic simulation estimate of the

expected value of variable i for period t, denoted The, is

1
=	 Y•eJ .

J=1

	

2j	 j	 - 2

	

air	 (yie.	 1211)

The stochastic simulation estimate of the variance of variable i for period t, denoted

aid 	 thenIt'

1	 •2	 2j
(Tit =

i=t

Given the data from the repetitions, it is also possible to compute the variances of

the stochastic simulation estimates and then to examine the precision of the estimates.

-The variance of (zee is simply ai2t /J. The variance of "cr denoted var(ei 2 ) is

1 2 J
_ ai2d2varCed (—)

J

Let

(30)

(31)

(32)

(33)
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In many applications, one is interested in predicted values more than one period

ahead, i.e., in predicted values from dynamic simulations. The above discussion can

be easily modified to incorporate this case. One simply draws values for U r for each

period of the simulation. Each repetition is one dynamic simulation over the period

of interest. For, say, an eight quarter period, each repetition yields eight predicted

values, one per quarter, for each endogenous variable.

It is also possible to draw coefficients for the repetitions. Leta denote, say, the

2SLS estimate of all the coefficients in the model, and let 9 denote the estimate of

the k x k covariance matrix of a. Given 9 and given the normality assumption, an

estimate of the distribution of the coefficient estimates is N(a,17). When coefficients

are drawn, each repetition consists of a draw of the coefficient vector from N(11 ,17)

and draws of the error terms as above.

Numerical Procedures for Drawing Values

A standard way of drawing values of a* from the N (6t , V- ) distribution is to I) factor

numerically Q into PP', 2) draw k values of a standard normal random variable

with mean 0 and variance 1, and 3) compute a* as a + Pe, where e is the k x 1

vector of the standard normal draws. Since Eee' = I, then E(a* — ty)(a* —

E Pee' P i = , which is as desired for the distribution of a*. A similar procedure

can be used to draw values of u7 from the N(0, £) distribution: t is factored into

PP' , and u; is computed as Pe, where e is a in x 1 vector of standard normal draws.

An alternative procedure for drawing values of the error terms, derived from

McCarthy (1972), has also been used in practice. For this procedure one begins with

the m x T matrix of estimated error terms, T standard normal random variables

are then drawn, and r: is computed as T —(112) 0e, where e is a T x 1 vector of the
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standard normal draws. It is easy to show that the covariance matrix of u7 is t,

where, as earlier, E is (1/T)U U'.
An alternative procedure is also available for drawing values of the coefficients.

Given the estimation period (say, 1 through T) and given 2, one can draw T values

of u t* (t 1, , T). One can then add these errors to the model and solve the

model over the estimation period (static simulation, using the original values of the

coefficient estimates). The predicted values of the endogenous variables from this

solution can be taken to be a new data base, from which a new set of coefficients

can be estimated. This set can then be taken to be one draw of the coefficients.

This procedure is more expensive than drawing from the N(&, V) distribution, since

reestimation is required for each draw, but it has the advantage of not being based

on a fixed estimate of the distribution of the coefficient estimates. It is, of course,

based on a fixed value of t and a fixed set of original coefficient estimates.

8 Optimal Control

There is a large literature on the use of optimal control techniques in

macroeconometrics, 1 and it is beyond the scope of this chapter to review this lit-

erature. Instead, I will simply discuss one technique that I have found to be very

useful in solving optimal control problems for large models. This technique is pre-

sented and applied in Fair (1974).

The first step in setting up an optimal control problem is to postulate an objective

function. Assume that the period of interest is t =1, ...,T. A general specification

of the objective function is

I See, for example, Chow ... and ...
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W = h(yi • • • , XT , x t, • • XT)

	
(34)

where W, a scalar, is the value of the objective function corresponding to values of

the endogenous and exogenous variables for t = 1, ,T. In most applications the

objective function is assumed to be additive across time, which means that (34) can

be written

W = Eht(Yt, xt)
	

(35)
t=1

where ht (yt , x t ) is the value of the objective function for period t. The model can

be taken to be the model in (1).

Let Zs be a k–dimensional vector of control variables, where z t is a subset of xt,

and let z be the k • T–dimensional vector of all the control values: z = (Z1 	  zr)•

Consider first the deterministic case where the error terms in (1) are all set to zero.

For each value of z one can compute a value of W by first solving the model (1)

for y i ,	 , yr and then using these values along with the values for xi 	 ,xr

to compute W in (34). Stated this way, the optimal control problem is choosing

variables (the elements of z) to maximize an unconstrained nonlinear function. By

substitution, the constrained maximization problem is transformed into the problem

of maximizing an unconstrained function of the control variables:

W='b(z)	 (36)

where 'V stands for the mapping z yi, yr, , x 1 , , xT W. For nonlin-

ear models it is generally not possible to express yt explicitly in terms of xt , which

means that it is generally not possible to write W in (36) explicitly as a function of

x i ,	 , xT. Nevertheless, given values for xi , .. , xT, values of W can be obtained
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numerically for different values of z.

Given this setup, the problem can be turned over to a nonlinear maximization

algorithm like DFP. For each iteration, the derivatives of 4) with respect to the ele-

ments of z, which are needed by the algorithm, can be computed numerically. Each

iteration will thus require k T function evaluations for the derivatives plus a few more

for the line search. Each function evaluation requires one solution (dynamic simula-

tion) of the model for T periods plus the computation of W in (34) after yi,

are determined.

There is one important cost saving feature regarding the method that should be

noted. Assume that there are two control variables and that the length of the period

is 30. The number of unknowns is thus 60, and therefore 60 function evaluations

will have to be done per iteration to get the numerical derivatives. In perturbing the

control values to get the derivatives, one should start from the end of the control

period and work backward. When the control values for period 30 are perturbed,

the solution of the model for periods 1 through 29 remains unchanged from the base

solution, so these calculations can be skipped. The model only needs to be resolved

for period 30. Similarly, when the control values for period 29 are perturbed, the

model only needs to be resolved for periods 29 and 30, and so on. This cuts the cost

of computing the derivatives roughly in half.

My experience is that algorithms like DFP are quite good at solving optimal

control problems set up in the above way. See, for example, Fair (1974) for the use

of the DFP algorithm to solve quite large problems.
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Stochastic Simulation Option

Consider now the stochastic case, where the error terms in (1) are not zero. It is

possible to convert this case into the deterministic case by simply setting the error

terms to their expected values (usually zero). The problem can then be solved as

above. In the nonlinear case this does not lead to the exact answer because the values

of W that are computed numerically in the process of solving the problem are not

the expected values. In order to compute the expected values correctly, stochastic

simulation has to be done. In this case each function evaluation (i.e., each evaluation

of he expected value of W for a given value of z) consists of the following.

1. A set of values of the error terms in (1) is drawn from an estimated distribution.

2. Given the values of the error terms, the model is solved for y 1 , , yr and
the value of W corresponding to this solution is computed from (34). Let Wf
denote this value.

3. Steps 1 and 2 are repeated J times, where J is the number of repetitions.

4. Given the J values of	 (j	 1, ... J), the expected value of W is the mean

of these values:

= (1 J) >W 1
	

(37)

This procedure increases the cost of solving control problems by roughly a factor

of J, and it is probably not worth the cost for most applications. The bias in predicting

the endogenous variables that results from using deterministic rather than stochastic

simulation is usually small, and thus the bias in computing the expected value of W

using deterministic simulation is likely to be small.
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9 Asymptotic Distribution Accuracy

Computer advances have also increased the ability to compute "exact" distributions

of the estimators that are used for macroeconometric models. These distributions can

then be compared to the asymptotic approximations of the distributions that are gen-

erally used for hypothesis testing to see how accurate the asymptotic approximations

are. If some variables are not stationary, the asymptotic approximations may not

be very good. In fact, much of the recent literature in time series econometrics has

been concerned with the consequences of non stationary variables. As will be seen,

computing the exact distributions requires stochastic simulation and reestimation.

The procedure for examining asymptotic distribution accuracy is as follows.

Take an estimator, say 2SLS, 3SLS, or FIML, and estimate the model. Take these

coefficient estimates, denoted a, as the base values, and compute E using these

estimates. From the N(0, 2) distribution (assuming the normality assumption is

used), draw a vector of the m error terms for each of the T observations. Given these

error terms and à, solve the model for the entire period 1 through T. This is a dynamic

simulation of the model over the entire estimation period. The lagged endogenous

variable values in (1) are updated in the solution process. Also, the matrices of first

stage regressors, Zit , are updated to incorporate the new lagged endogenous variable

values if the matrices are used in the estimation, as for 2SLS. The predicted values

from this solution form a new data set. Given this data set, estimate the model by

the technique in question, and record the set of estimates. This is one repetition.

Repeat the draws, solution, and estimation for many repetitions, and record each set

of estimates. (Remember that the draws of the errors are always from the N(0, 2)

distribution and that the coefficient vector used in the solution is always a.)
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If J repetitions are done, one has J values of each coefficient estimate, which are

likely to be a good approximation of the exact distribution. For ease of exposition,

this distribution of the J values will be called the "exact distribution," although it is

only an approximation because E is estimated rather than known. The asymptotic

distribution can then be compared to this exact distribution to see how close the two

distributions are.

Once an exact distribution has been computed, there are a number of ways to

examine the closeness of the asymptotic distribution to it. For the application in

Fair (1994) the median of the exact distribution was first compared to the coefficient

estimate to examine the bias of the estimate. Given the median from the exact

distribution and given the estimated standard error of the coefficient estimate from

the asymptotic distribution, one can compute the value above which, say, 20 percent

of the coefficient estimates should lie if the asymptotic distribution is correct. For 20

percent, this value is the median plus 0.84 times the estimated asymptotic standard

error. One can then compute the actual percent of the coefficient estimates from the

exact distribution that lie above this value and compare this percent to 20 percent.

For the work in Fair (1994), this comparison was made for 20, 10, and 5 percent

values and for both left and right tails.

The results that I have obtained so far show that the exact and asymptotic distri-

butions are generally quite similar regarding their tail properties. If this conclusion

holds up upon further work, it has important consequences. It means that the unit root

problems that have received so much attention lately may not be of much concern

to macro model builders. While the existence of unit roots can in theory cause the

asymptotic approximations that are relied on in macroeconometrics to be way off, in

25



practice they seem fairly accurate.

10 Solution and FIML Estimation RE Models

Introduction

The rest of this chapter is concerned with the estimation and solution of models with

rational expectations. As will be discussed, these models have severe computational

requirements.

The single equation estimation of equations with rational expectations can be

carried out using Hansen's (1982) method of moments estimator, and there are no

serious computational requirements here. It is also possible, however, to use FIML to

estimate models with rational expectations, and here there are serious computational

issues. Methods for the solution and FIML estimation of these models are presented

in Fair and Taylor (1983). The basic solution method, called the "extended path" (EP)

method, has come to be widely used for deterministic simulations of rational expec-

tations models, 2 but probably because of the expense, the full information estimation

method has not been tried by others. This earlier work discussed a "less expensive"

method for obtaining full information estimates, but the preliminary results using

the method were mixed. Since this earlier work, however, more experimenting with

the less expensive method has been done, and it seems much more promising than

was originally thought. This work is reported in Fair and Taylor (1990), and the

following discussion is taken from this paper.

2For example, the extended path method has been programmed as part of the TROLL computer
package and is routinely used to solve large scale rational expectations models at the IMF, the
Federal Reserve, the Canadian Financial Ministry, and other government agencies. It has also been
used for simulation studies such as DeLong and Summers (1986) and King (1988). Other solution
methods for rational expectations models are summarized in Taylor and Uhlig (1990). These other
methods do not yet appear practical for medium size models and up.
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The first part of this section discusses the new results using the less expensive

method that have obtained and argues that full information estimation now seems

feasible for rational expectations models. In the process of doing this some errors

in the earlier work regarding the treatment of models with rational expectations and

autoregressive errors are corrected. The second part discusses methods for stochastic

simulation of rational expectations models, something that was only briefly touched

on in the earlier work.

The Solution Method

The notation for the model used here differs somewhat from the notation used in

equation (1). The lagged values of the endogenous variables are written out explicitly,

and x t is now a vector of only exogenous variables. The model is written as

fi(Yt, yr-1, • • • , Yt—p, Et—lYt, Et—lYt+1, • • , Et—lYt+h,	 Uit
	 (38)

U it	 el,	 = 1, • • • ,	 (39)

where yt is an n—dimensional vector of endogenous variables, x t is a vector of

exogenous variables, Et_ 1 is the conditional expectations operator based on the

model and on information through period t — 1, a, is a vector of parameters, A is the

serial correlation coefficient for the error term UM and Ei t is an error term that may

be correlated across equations but not across time. The function fi may be nonlinear

in variables, parameters, and expectations. The following is a brief review of the

solution method for this model. In what follows i is always meant to run from 1

through n.
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Case 1: =

Consider solving the model for period s. It is assumed that estimates of a, are

available, that current and expected future values of the exogenous variables are

available, and that the current and future values of the error terms have been set to

their expected values (which will always be taken to be zero here). If the expectations

Es-1 Ys. Es—lYs+1, •	 Es—lYsth were known, (38) could be solved in the usual

ways (usually by the Gauss-Seidel algorithm). The model would be simultaneous,

but future predicted values would not affect current predicted values. The EP method

iterates over solution paths. Values of the expectations through period s + h k h

are first guessed, where k is a fairly large number relative to 11.3 Given these guesses,

the model can be solved for periods s through s + h + k in the usual ways. This

solution provides new values for the expectations through period s +h + k—the new

expectations values are the solution values. Given these new values, the model can

be solved again for periods s through s + h + k, which provided new expectations

values, and so on. This process stops (if it does) when the solution values on one

iteration are within a prescribed tolerance criterion of the solution values on the

previous iteration for all periods s through s + h + k.

So far the guessed values of the expectations for periods s + h + k + 1 through

s + h + k + h (the h periods beyond the last period solved) have not been changed.

If the solution values for periods s through s + h depend in a nontrivial way on these

guesses, then overall convergence has not been achieved. To check for this, the entire

process above is repeated for k one larger. If increasing k by one has a trivial effect

3 Guessed values are usually taken to be the actual values if the solution is within the period for
which data exist. Otherwise, the last observed value of a variable can be used for the future values
or the variable can be extrapolated in some simple way. Sometimes information on the steady state
solution (if there is one) can be used to help form the guesses.
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(based on a tolerance criterion) on the solution values for s through s + h, then overall

convergence has been achieved; otherwise k must continue to be increased until the

criterion is met. In practice what is usually done is to experiment to find the value of

k that is large enough to make it likely that further increases are unnecessary for any

experiment that might be run and then do no further checking using larger values of

k.

The expected future values of the exogenous variables (which are needed for

the solution) can either be assumed to be the actual values (if available and known

by agents) or be projected from an assumed stochastic process. It is also possible

to assume that agents have incorrect expectations about the exogenous variables, in

which case one extra step is needed at the end of the overall solution. In the above

process the expected values of the exogenous variables would be used for all the

solutions, the expected values of the exogenous variables being chosen ahead of

time. This yields values for Es—IYst Es-153+1, • • • Es—I Yt+h• Given these values,

(38) is then solved for period s using the actual value of xs , which yields the final

solution value ji g . To the extent that the expected value of xs differs from the actual

value, Es _ j y, will differ from 9,.

Two points about this method should be mentioned. First, no general convergence

proofs are available. If convergence is a problem, one can sometimes "damp" the

solution values to obtain convergence. In practice convergence is usually not a

problem. There may, of course, be more than one set of solution values, and so there

is no guarantee that the particular set found is unique. If there is more than one set,

the set that the method finds may depend on the guesses used for the expectations

for the h periods beyond s + 1/ + k.
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Second, the method relies on the certainty equivalence assumption even though

the model is nonlinear. Since expectations of functions are treated as functions of the

expectations in future periods in equation (38), the solution is only approximate unless

f, is linear. This assumption is like the linear quadratic approximation to rational

expectations models that has been proposed, for example, by Kydland and Prescott

(1982). Although the certainty equivalence assumption is widely used, including in

the engineering literature, it is, of course, not always a good approximation.

Case 2: p, 0 and Data Before s — 1 Available

The existence of serial correlation complicates the problem considerably. The error

terms for period t —1 = 1, , n) depend on expectations that were formed

at the end of period t — 2, and so a new viewpoint date is introduced. This case is

discussed in Section 2.2 in Fair and Taylor (1983), but an error was made in the

treatment of the second viewpoint date. The following method replaces the method

in Section 2.2 of this paper.

Consider again solving for period s. If the values of rie s _ I were known, one

could solve the model as above. The only difference is that the value of an error term

like tris+,._i would be pj u, s_ i instead of zero. The overall solution method first uses

the EP method to solve for period s — j, where j > 0, based on the assumption

that u is_ j_ = 0.. Once the expectations are solved for, (38) is used to solve for

u i s_i . The actual values of ysmi and xs _j are used for this purpose (although the

solution values are used for the expectations) because these are structural errors

being estimated, not reduced form errors. Given the values for u is_ i , the model is

solved for period s — j +1 using the EP method, where an error term like u is_j+,. is

computed as plu, s _ j . Once the expectations are solved for, (38) is used to solve for
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Uis—j+1, which can be used in the solution for period s — j + 2, and so on through

the solution for period s.

The solution for period s is based on the assumption that the error terms for period

s — j — 1 are zero. To see if the solution values for period s are sensitive to this

assumption, the entire process is repeated with j increased by 1. If going back one

more period has effects on the solution values for period s that are within a prescribed

tolerance criterion, then overall convergence has been achieved; otherwise j must

continue to be increased. Again, in practice one usually finds a value of j that is large

enough to make it likely that further increases are unnecessary for any experiment

that might be run and then do no further checking using larger values of j.

It should be noted that once period s is solved for, period s + 1 can be solved

for without going back again. From the solution for period s, the values of u is can

be computed, which can then be used in the solution for period s + 1 using the EP

method.

Case 3: A $ 0 and Data Before Period s — 1 not Available

This case is based on the assumption that Eis_i = 0 when solving for period s. This

type of an assumption is usually made when estimating multiple equation models

with moving average residuals. The solution problem is to find the values of uis_t

that are consistent with this assumption. The overall method begins by guessing

values for u, s _2 . Given these values, the model can be solved for period s — 1

using the EP method and the fact that uis ÷r _2 = pfuis_2 . From the solution values

for the expectations, (38) and (39) can be used to solve for E zs _ i 4 If the absolute

4These are again estimates of the structural error terms, not the reduced form error terms. Step
(iii) on page 1176 in Fair and Taylor (1983) is in error in this respect. The errors computed in step
(iii) should be the structural error terms.
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values of these errors are within a prescribed tolerance criterion, convergence has

been achieved. Otherwise, the new guess for u;,-2 is computed as the old guess plus

e, s _ i / pi . The model is solved again for period s — 1 using the new guess and the

EP method, and so on until convergence is reached.

At the point of convergence uis_ i can be computed as A u(s-2, where u,s_2 is

the estimated value on the last iteration (the value consistent with eis _ i being within

a prescribed tolerance criterion of zero). Given the values of u is_ i , one can solve

for period s using the EP method, and the solution is finished.

Computational Costs

The easiest way to think about the computational costs of the solution method is

to consider how many times the equations of a model must be "passed" through.

Let N1 be the number of passes through the model that it takes to solve the model

for one period, given the expectations. N1 is usually some number less than 10

when the Gauss-Seidel algorithm is used. The EP method requires solving the

model for h + k + 1 periods. Let N2 be the number of iterations it takes to achieve

convergence over these periods. Then the total number of passes for convergence is

N2Ni (h +k + 1). If, say, h is 5, k is 30, N2 is 15, and N1 is 5, then the total number

of passes needed to solve the model for one period is 11,250, which compares to

only 5 when there are no expectations. If k is increased by one to check for overall

convergence, the total number of passes is slightly more than doubled, although, as

noted above, this check is not always done.

For Case 2 above the number of passes is increased by roughly a factor of j if

overall convergence is not checked. Checking for overall convergence slightly more

than doubles the number of passes. j is usually a number between 5 and 10. If q is
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the number of iterations it takes to achieve convergence for Case 3 above, the number

of passes is increased by a factor of q 1, In practice q seems to be between about

5 and 10. Note for both Cases 2 and 3 that the number of passes is increased relative

to the non serial correlation case only for the solution for the first period (period s).

If period s 1 is to be solved for, no additional passes are needed over those for the

regular case.

FIML Estimation

Assume that the estimation period is 1 through T. The objective function that FIML

maximizes (assuming normality) is presented in equation (9) above. In the present

notation, the ij element of E is (1 / T) ET fi t ki t . Since the expectations have view-

point date t —1, they are predetermined from the point of view of taking derivatives

for the Jacobian, and so no additional problems are involved for the Jacobian in the

rational expectations case. In what follows a will be used to denote the vector of

all the coefficients in the model. In the serial correlation case a also includes the pi

coefficients.

In the standard case computing E for a give value of a is fairly inexpensive. One

simply solves (38) and (39) for the Ei t error terms given the data and the value of

a. This is only one pass through the model since it is the structural error terms that

are being computed. In the rational expectations case, however, computing the error

terms requires knowing the values of the expectations, which themselves depend on

a. Therefore, to compute E fora given value of a one has to solve for the expectations

for each of the T periods. If, say, 11,250 passes through the model are needed to

solve the model for one period and if T is 100, then 1,125,000 passes are needed

for one evaluation of E and thus one evaluation of L. In a 25 coefficient problem
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discussed in Fair and Taylor (1990), the Parke algorithm required 2,817 evaluations

of L to converge, which would be over 3 trillion passes if done this way.5

It should be clear that the straightforward combination of the EP solution method

and FIML estimation procedures is not likely to be computationally feasible for most

applications. There is, however, a way of cutting the number of times the model has to

be solved over the estimation period to roughly the number of estimated coefficients.

The trick is to compute numerical derivatives of the expectations with respect to

the parameters and use these derivatives to compute E (and thus L) each time the

algorithm requires a value of L for a given value of a.

Consider the derivative of E t _ i y,.+r with respect to the first element of a. One

can first solve the model for a given value of a and then solve it again for the first

element of a changed by a certain percent, both solutions using the EP method. The

computed derivative is then the difference in the two solution values of Et_iyt+,

divided by the change in the first element of a. To compute all the derivatives

requires K + 1 solutions of the model over the T number of observations, where

K is the dimension of a. 6 One solution is for the base values, and the K solutions

are for the K changes in a, one coefficient change per solution. From these K + 1

solutions, K • T • (h + 1) derivatives are computed and stored for each expectations

variable, one derivative for each length ahead for each period for each coefficient?

Once these derivatives are computed, they can be used in the computation of E for a

5 Note that these solutions of the error term Ed are only approximations when ft is nonlinear.
Hence, the method gives an approximation of the likelihood function.

6 1n the notation presented in Section 2 k rather than K is used to denote the dimension of a. K

is used in this section since k has already been used in the description of the EP method.
7 Derivatives computed this way are "one sided!' "Two sided" derivatives would require an extra

K solutions, where each coefficient would be both increased and decreased by the given percentage.
My experience is that two sided derivatives are generally unnecessary.
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given change in a, and no further solutions of the model are needed. In other words,

when the maximization algorithm changes a and wants the corresponding value of

L, the derivatives are first used to compute the expectations, which are then used in

the computation of E. Since one has (from the derivatives) an estimate of how the

expectations change when a changes, one does not have to solve the model any more

to get the expectations.

Assuming that the solution method in Case 3 above is used for the FIML esti-

mates, derivatives of un— ' with respect to the coefficients are also needed when the

errors are serially correlated. These derivatives can also be computed from the K 1

solutions, and so no extra solutions are needed in the serial correlation case.

Once the K + 1 solutions of the model have been done and the maximization

algorithm has found what it considers to be the optimum, the model can be solved

again for the T periods using the optimal coefficient values and then L computed.

This value of L will in general differ from the value of L computed using the deriva-

tives for the same coefficient values, since the derivatives are only approximations.

At this point the new solution values (not computed using the derivatives) can be

used as new base values and the problem turned over to the maximization algorithm

again. This is the second "iteration" of the overall process. Once the maximization

algorithm has found the new optimum, new base values can be computed, a new iter-

ation performed, and so on. Convergence is achieved when the coefficient estimates

from one iteration to the next are within a prescribed tolerance criterion of each other.

This procedure can be modified by recomputing the derivatives at the end of each

iteration. This may improve convergence, but it obviously adds considerably to the

expense. At a minimum, one might want to recompute the derivatives at the end
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of overall convergence and then do one more iteration. If the coefficients change

substantially on this iteration, then overall convergence has not in fact been achieved.

Stochastic Simulation

For models with rational expectations one must state very carefully what is meant

by a stochastic simulation of the model and what stochastic simulation is to be used

for. In the present case stochastic simulation is not used to improve on the accuracy

of the solutions of the expected values. The expected values are computed exactly as

described above—using the EP method. This way of solving for the expected values

can be interpreted as assuming that agents at the beginning of period s form their

expectations of the endogenous variables for periods s and beyond by 1) forming

expectations of the exogenous variables for periods x and beyond, 2) setting the error

terms equal to their expected values (say zero) for periods s and beyond, 3) using the

existing set of coefficient estimates of the model, and then 4) solving the model for

periods x and beyond. These solution values are the agents' expectations.

For present purposes stochastic simulation begins once the expected values have

been solved for. Given the expected values for periods s through s h, stochastic

simulation is performed for period s. The problem is now no different from the

problem for a standard model because the expectations are predetermined. Assume

that the errors are distributed N(0, E), where E is the FIML estimate of E from the

last subsection. From this distribution one can draw a vector of error terms for period

s. Given these draws (and the expectations), the model can be solved for period s in

the usual ways. This is one repetition. Another repetition can be done using a new

draw of the vector of error terms, and so on. The means and variances of the forecast

values can be computed using equations (30) and (32).
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One can also use this approach to analyze the effects of uncertainty in the co-

efficients by assuming that the coefficients are distributed N (a, Cis), where Ce is the

FIML estimate of a and fict is the estimated covariance matrix of Cf. In this case each

draw also involves the vector of coefficients.

If Eta t is serially correlated as in (39), then an estimate of ct is _ i is needed for

the solution for period s. This estimate is, however, available from the solution of

the model to get the expectations (see Case 2 in the previous subsection), and so no

further work is needed. The estimate of uis_i is simply taken as predetermined for

all the repetitions, and u, s is computed as pi u is_ i plus the draw for eis . (Note that

the e errors are drawn, not the tt errors.)

Stochastic simulation is quite inexpensive if only results for period s are needed

because the model only needs to be solved once using the EP method. Once the

expectations are obtained, each repetition merely requires solving the model for

period s. If, on the other hand, results for more than one period are needed and

the simulation is dynamic, the EP method must be used p times for each repetition,

where p is the length of the period.

Consider the multi period problem. As above, the expectations with viewpoint

date s —I can be solved for and then a vector of error terms and a vector of coefficients

drawn to compute the predicted value of ye s . This is the first step.

Now go to period s 1. An agent's expectation of, say, yis+2 is different with

viewpoint date s than with viewpoint date s — 1. In particular, the value of yis is in

general different from what the agent at the end of period s — 1 expected it to be

(because of the error terms that were drawn for period s).8 A new set of expectations

8 It may also be that the actual value of differs from what the agent expected it to be at the
end of s — I.
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must thus be computed with viewpoint date s. Agents are assumed to use the original

set of coefficients (not the set that was drawn) and to set the values of the error terms

for periods s 1 and beyond equal to zero. Then given the solution value of yis and

the actual value of six , agents are assumed to solve the model for their expectations

for periods s +1 and beyond. This requires a second use of the EP method. Given

these expectations, a vector of error terms for period s + 1 is drawn and the model is

solved for period s +1. If equation i has a serially correlated error, then u is± i is equal

to piPlt is_ i plus the draw for Eis+1. Now go to period s + 2 and repeat the process,

where another use of the EP method is needed to compute the new expectations.

The process is repeated through the end of the period of interest. At the end, this

is one repetition. The overall process is then repeated for the second repetition, and

so on. Note that only one coefficient draw is used per repetition, i.e., per dynamic

simulation. After J repetitions one can compute means and variances just as above,

where there are now means and variances for each period ahead of the prediction.

Also note that agents are always assumed to use the original set of coefficients and

to set the current and future error terms to zero. They do not perform stochastic

simulation themselves.

Stochastic simulation has also been used to evaluate alternative international

monetary systems using the multicountry models in Carloyzi and Taylor (1985)

and Taylor (1988). For this work values of Eit were drawn, but not values of the

coefficients. The vector of coefficients a was taken to be fixed.

It seems that stochastic simulation as defined above is computationally feasible

for models with rational expectations. Stochastic simulation is in fact likely to be

cheaper than even FIML estimation using the derivatives. If, for example, the FIML

38



estimation period is 100 observations and there are 25 coefficients to estimate, FIML

estimation requires that the model be solved 2600 times using the EP method to get

the derivatives. For a stochastic simulation of 8 periods and 100 repetitions, on the

other hand, the model has to be solved using the EP method only 800 times.

Conclusion

The results reported in Fair and Taylor (1990) using the methods discussed in this sec-

tion are encouraging regarding the use of models with rational expectations. FIML

estimation seems computationally feasible using the procedure of computing deriva-

tives for the expectations, and stochastic simulation is feasible when done in the

manner described above. FIML estimation is particularly important because it takes

into account all the nonlinear restrictions implied by the rational expectations hy-

pothesis. It is hoped that the methods discussed in this section will open the way for

many more tests of models with rational expectations.
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