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Introduction

This paper describes how recursive linear control and estimation theory
can be applied to estimate dynamic equilibrium models. Recursive linear con-
trol theory can be used to compute equilibria of linear-quadratic economies,
and linearly to approximate solutions of non-linear economies. Equilibrium
conditions define a mapping from a model's free parameters, describing pref-
erences, technologies, endowments, information, and government policies, to
equilibrium stochastic processes of observable variables. The estimation prob-
lem is roughly speaking to 'invert' that mapping, and to use time series of
observations on some of the variables in the model to make inferences about
the model's free parameters in light of the mapping defining the equilibrium
stochastic process. Maximum likelihood and the method of moments are used
to extract parameter estimates from time series data. Recursive linear esti-
mation theory can be used to compute a Gaussian likelihood function.' This
paper describes a collection of procedures for speedily calculating equilibria,
for computing an approximate likelihood function, and for maximizing that
likelihood function. The duality of linear control and filtering theory imparts
a unity to these procedures.2

Among the conveniences afforded by this framework is the ability ana-
lytically to differentiate the likelihood function with respect to the free pa-
rameters of the economic model. Obtaining these derivatives involves, via a
chain rule, two differentiations of solutions of some Riccati equations with
respect to the parameters in their return (or covariance) and transition ma-
trices. First, we must differentiate the equilibrium with respect to its free
parameters; and second we must differentiate the parameters of the 'innova-
tions representation' or 'vector autoregression' with respect to parameters of
measurement error processes and the equilibrium stochastic process for the
economic model. It is the relative ease of accomplishing the second piece of
the job that makes linear-quadratic models especially convenient. We describe
the nuts and bolts of these calculations.

This paper is organized as follows. We display two types of economies, and
how they are associated with social planning problems that can be formulated

1 Parts of this paper rely heavily on Anderson and Moore [1970, pp. 158-161]. For general
background, see Kwakernaak and Sivan [1972] or Sargent [1981]. The former mostly treats
continuous time systems, -while the latter focuses on discrete time systems.
2 Duality refers to the applicability of identical mathematics to solve the classical control

and filtering problems.
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as optimal linear regulator problems. We describe the optimal linear regu-
lator, then display two tricks of the trade, namely, a pair of transformations
that remove both discounting and cross-products between states and controls.
Next we describe Vaughan's eigenvector method for solving an optimal lin-
ear regulator problem without iterating on Bellman's equation. Vaughan's
method is typically much faster than Bellman's. We describe how Vaughan's
algorithm can be used to compute an equilibrium for a distorted economy.
As an alternative to Vaughan's method, we can use a closely related method
called the doubling algorithm, which we explain next. We then show how
the calculations can be further accelerated by partitioning the state vector to
achieve a 'controllability canonical form'. We describe how to use the Kalman
filter to obtain an innovations representation, and how to use it to compute a
Gaussian likelihood function. Finally, we display formulas for the gradient of
the log of Gaussian likelihood function with respect to free parameters of an
economic model. These formulas are homely, but easy to program and useful
for accelerating the process of maximizing the likelihood function.

Two Economies

General strategies

A class of 'asset pricing' and 'real business cycle' models use the optimal
linear regulator problem as the workhorse for computing equilibria. After an
equilibrium has been computed, the Kalman filter can be used to deduce the
vector autoregressive representation for variables that are linear functions of
the state. The autoregressive representation is used to interpret the data,
either informally or to form the Gaussian likelihood function recursively.

Two general types of models are used, which differ with respect to the
point in the analysis at which linear-quadratic approximations are imposed or
how they are interpreted. In the first type of model, preferences are specified
to be quadratic functions and transition laws are linear ones. The second
type of model uses a linear regulator problem to approximate a dynamic
programming problem that is not itself linear-quadratic.

Linear quadratic economy

There is an exogenous information vector z t governed by

zt-hi = A22; + C2Wt-I-1
	

(1)

where wt+i is a martingale difference sequence with Etu t iv = I, and the
eigenvalues of A22 are bounded in modulus by 1/0. The vector z t de-
termines a preference shock process k and an endowment shock process dt
via

dt	 Ud zt

bt = U6 Zt
(2)
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A representative household has preferences ordered by

cc

Eo	 ( st — bt) • (st — b t ), 0 < < 1
	

(3)
t=o

where st is a vector of household services produced at time t via the household
technology

h t = Ah ht _ i + ()het
sz = Aht _ j + Het	

(4)

where h t is a vector of household durable goods at t, c t is a vector of rates
of consumption, and A, H, Oh, Oh are matrices with the eigenvalues of At,
bounded in modulus by 1/0.

There is a constant returns to scale production technology

fa c t +	 = Pk t _ l + dt

k t = Akkt_i+ekit
	 (5)

where kt is a vector capital goods used in production, i t is a vector of invest-
ment goods, and Ak is a matrix whose eigenvalues are bounded in modulus
by 1/0.

The social planning problem in this economy is to maximize (3) over
choices of contingency plans for fct , i t , kt ,ht l.r_ o subject to (1), (2), (4),
and (5), and subject to given initial conditions for (zo,h_ 1 , k _ 1 ). The so-
cial planning problem fits within the optimal linear regulator framework, and
leads to a quadratic optimal value function V(x 0 ) = x'oProd- p where xi =
[ht _ i , kt-1, zt]. The law of motion for the economy is of the form

Xt+i A a x t Cuit+1.

Hansen and Sargent (1994) describe a competitive equilibrium for this
economy. Scaled time 0 Arrow-Debreu prices of the consumption vector de-
noted p°, can be computed from the information in (P, A0 ) and the household
technology parameters, and turn out to be a linear function of the state:

Pt = Mat/ Pi;

where Mc is a matrix, and po is a positive scalar giving the numeraire or
marginal utility of wealth.

The price of a claim to a stream of consumption vectors e t = ,51 x 2 is
given by

CO

no 
= Eo Efit Pt - et

t=0
Or co

0 0 = EE pt xit Za xt X 10
	

(6)
t=0



(7)

(8)

(9)
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where
Za = .51 116 a ploy

Hansen and Sargent show that ao can be represented as

a0 = X to Pa x0 +0a

where

pa -= E (KT Za A"
r=o

co
	  trace Z a E fir (Aar COA°1 ) r	 (10)
1 — /3 r=0

According to (8), the asset price a () turns out to be the sum of a constant a u ,
which reflects a "risk premium", and a quadratic form in the state vector xt.
To understand why o. a reflects a risk premium, notice that the parameters in
C that govern the covariance matrix of innovations to the state influence Ca
but do not influence ita

To implement (8) requires the application of numerical methods to cal-
culate the matrices pa and era that satisfy Eqs. (9) and (10). An efficient
`doubling algorithm' for calculating these matrices is described below.

A nonlinear economy

An alternative method for parameterizing linear-quadratic economies is
to generate them as approximations to non linear-quadratic economies by
using quadratic approximations to preferences and linear approximations to
transition laws. These approximations make the parameters in the linear
quadratic structure functions of deeper parameters in the underlying economy.

Here is a version of Kydland and Prescott's (1982) method for using
linear quadratic control theory to compute approximate linear solutions to
economies that are not linear-quadratic. Consider a social planning problem
of the form co

max Ea E r(zt)
t=o

subject to x2+1 Ax t + Bu t + Cuit+i
zt = [ilt,titY

where re) is a function of the type used in the literatures on stochastic
growth and real business cycles, and wt is a vector white noise.' Kydland
and Prescott generate an approximate solution of this problem by solving a
related problem:

CO

max E0EptztiMzi
{tit} t=o

x t _fr i = Ax t + But + Cwt+1.

Ca =

3 In most cases, r(.) is the utility function after nonlinear constraints have been substi-
tuted in.
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where

_,a
5
2 r (iy

M = e(r(2) 	 	 2z 52 z)e

1
(e 
ar 	 Or(2) ,	 ,02r(2)	 a2 r(E) ,	 82r(i)

e ez 	 	 ze +
2	 ai	 012	 as2	 )

where e is a vector of zeros with 1 in the element corresponding to the con-
stant term in xi , and Sz = [fa, 00,k] and St, = [0u,,,, h] are selector matrices
and imply zt = Sat +501,, where n is the dimension of x, and k is the
dimension of nt . This approximating problem is an optimal linear regulator
problem.

Linear-Quadratic Models with Distortions

The computational procedures under study were originally applied to
economies for which a competitive equilibrium allocation solves a social plan-
ning problem in the form of an optimal linear regulator problem, and for
which equilibrium prices (or approximations to them) can be deduced from
the value function for the social planner. Most of the methods can, with
some adaptations, also be used to study economies with particular types of
externalities and other distortions, like taxes. Such adaptations are described
by Dagli and Taylor (1980), Blanchard and Kahn (1980), Whiteman (1983),
King, Plosser, and Rebelo (1988), Hansen and Sargent (1993), and McGrattan
(1994).

In linear-quadratic economies, the approach is to formulate the choice
problem of a representative agent as a version of a linear regulator, while
keeping account of the distinction between objects chosen by that agent, and
economy-wide versions of those objects (the so-called 'little k – big K' dis-
tinction, where the 'little le' is chosen by the representative agent, taking 'big
K' as given, though in equilibrium 'little k' = 'big K'). The representative
agent's problem is

00

max fi
t

{ [ Yil [	
W

Q-y nCz 1H+	 + 2 [ Y.1 [ W- Y CO
{ad 1;5	 zt	 Qz	 22	 Zt	 Zt	 Wz

subject to
th+1 =Ay th Az + By fit,

where it t is a vector of controls set by the agent; pi is a vector of state vari-
ables consisting of two types of variables, first, state variables under the par-
tial control of the representative agent (the 'little k' variables), and, second,
stochastic processes like technology or preference shocks that are exogenous
to the model; and It consists of a vector of state variables that are exogenous
to the representative agent (the 'big K ' variables), but not to the model.
The representative agent takes the sequence {zt } as given when solving this
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problem, even though after equilibrium is imposed the individual's choices
determine the behavior of {zt } .

In equilibrium (i.e., after the agent has optimized), the following equations
must be satisfied:

zt = e Pt + fut.
Included in these equations would be the 'big K = little k' conditions.

Despite the fact the equilibrium allocation for this economy does not solve
a social planning problem, it remains possible to compute and equilibrium by
using algorithms closely related to ones that solve linear regulator problems.
McGrattan (1994) gives details.

The Optimal Linear Regulator Problem

Consider the following version of the optimal linear regulator problem:
choose a contingency plan for { u t }f_ o to maximize

DO

E	 13' [x /t Q x t + Rut + 24W ut], 0 < < 1	 (11)
t=o

subject to
xt + i = Art + But + Cwt +i , t > 0,	 (12)

where xo is given. In (11) — (12), x, is an n x 1 vector of state variables,
and u t is a k x 1 vector of control variables. In (12), we assume that wt+1
is a martingale difference sequence with Ew t u.4 = I, and that C is a matrix
conformable as required to x and w.

We impose conditions on (Q, R, W) and (A, B) that are sufficient to imply
that it is both feasible and desirable to set the controls in a way that implies
that

00

E 
o 

Jet	 (13)
t=	

xo < oo.

Dynamic programming

A standard way to solve this problem is by applying the method of dynamic
programming. Let V (x) be the optimal value associated with the program
starting from initial state vector xo = x. Bellman's functional equation is

V(xl ) = max{r t Qx t + n'Ru t + 2xWut -I- Et 1/(xt+1)} (14)

where the maximization is subject to (12). One way to solve this functional
equation is simply to iterate on a version of Eq. (14), thereby constructing a
sequence Vi (x t ) of successively better approximations to V (x t ). In particu-
lar, let

Vi+t(rt) = max{ x't Q xt + u't Rut + 2x't Wu t + fiEtlii(zt-F1)}
	

(15)
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where again the maximization is subject to (12). Suppose that we initiate
the iterations from Ve(x) = 0. Then direct calculations show that successive
iterates on Eq. (15) yield the quadratic form

Vi (xt)= ilt Pj xt +	 (16)

where Pi and pi satisfy the equations

Pj +1 Q + fik PJ A- (Pk Pj B +W)(R+ fig pi B) -1 (gB' PjA+ WV!)

pi+ i = NI; + p trace PiCC.	 (18)

Equation (17) is known as the matrix Riccati difference equation. Notice
that it involves only {Pi } and is independent of {pj }. Notice also that the
parameters in C, which multiplies the noises impinging on the system and so
determines the variances of innovations to information in the system, affect
the {pi } sequence but not the {Pi } sequence. This fact can be summarized
by saying that 1131 1 is independent of the system's noise statistics.

Under some regularity conditions described by Kwakernaak and Sivan
(1972) and Sargent (1981), iterations on Eqs. (17) and (18) converge. 4 Let
P and p be the limits of (17) and (18), respectively. Then the value function
V(x t ) that satisfies Bellman's equation (14) is given by

V(x t )= ZiPxt + p,

where P and p are the limit points of iterations on (17) and (18) starting
from Po = 0, pa = 0.

The decision rule that attains the right side of (15) is given by

—Fiat

where

	

Fj = (R+ 13.9 1 Pj B)- 1 (1313' PjA+W').	 (19)

The optimal decision rule for the original problem is given by a t = -Fxt,
where F = limj, Fi , or

	

F = (R+ P13' PB) -1 (OW PA +W')-	 (20)

According to Eq. (20), the optimum decision rule for u t is independent of the
parameters C, and so also of the noise statistics.

The limit point P of iterations on (17) evidently satisfies

P Q + 13A'PA- (3,4'PB + W)
x (R+ fig PB) -1 (#13 1 PA+ W')

4 See Sargent [1981] for a discussion of these conditions.
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This equation in P is called the algebraic matrix Riccati equation.
One standard way to solve an optimal linear regulator problem is simply

to iterate directly on Eqs. (17) and (18). However, faster algorithms are
available. These methods solve the algebraic matrix Riccati equation without
iterating directly on (17). Before we describe some faster algorithms, we shall
describe two useful transformations that permit simplification of some of the
formulas presented above.

Two Useful Transformations

Removing cross-products between states and controls

It is often simpler to study problems without cross-products between states
and controls. A simple transformation eliminates such cross-products. Con-
sider a linear regulator problem with objective function

E fi t { 4'1
L 	] Lazd

2 = 0

that is to be maximized with respect to the transition law

x t + i	ii*xt + But* + Cw1 + 1 .	 (21b)

Define the transformed control n t by

122 = 14 + R-1 1Vi xt .	 (22)

Notice that

It follows that

tiltRut
W'

ur [

[ a us e ) [?:, R= '
x t Qx t + ritRut

where Q = Q* — W R- 1 W1 . Further, notice that the transition law (12) can
be represented as

xt-o. = Axt + But + Cwt+i

where A = A* —
Collecting results, we find that the regulator problem (21) is equivalent to

the following regulator problem without cross-products between states and
controls: choose tu t } to maximize

00

(21a)

E E fit [x/i Qxt +tilt Ru t ]	 (23)
2=0



(24)

(25)
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subject to
rt+1 Art + But + Cwt+i,

where
Q = Q. — WIrC1W'

A= A* — BR-1W1

It is often convenient to avail ourselves of the opportunity afforded by this
transformation to focus on problems without cross products between states
and controls.

Eliminating discounting

Consider the following discounted optimal linear regulator problem: choose
a contingency plan for {u t } to maximize

CO

EEfi t {xCQxt + 010,0 < # < 1
	

(26)
t=o

subject to
xt + i = Art + But + CC2+1,	 (27)

where fet+ 0 is a martingale difference sequence with .E{ ten = cit. Con-
sider the transformed variables

it = g.xt
Y' ut.
n I
	 (28)

In terms of the transformed variables, Eqs. (26) and (27) can be rewritten as

CO

EDet Clit +	 (29)
2=0

_ _

= Art + But + Cp 2 Ci--1	 (30)

where
24.01A

=,34 B,
L+2.

and E03 2 et+i)(# Ct+i)1 = pt+int+i. The transformed optimal linear
regulator problem is to choose a contingency plan for {fi t } to maximize (29)
subject to (30). The optimal control law for üt is given by

fit = —

where

(31)

P.(nikä +ft)-,EiPA,	 (32)
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where P is the limit point of iterations on an appropriate version of the
matrix Riccati difference equation Eq. (17). The limit point P thus satisfies

P. + A/PA — AiPh(R+ EiPh) —, E , PA.	 (33)

This is a version of the algebraic matrix Riccati equation. The optimal closed
loop system in terms of transformed variables is

	

= (A - EP)it + S LII Qt+1 .	(34)

Multiplying both sides of this equation by /j- ( 41) gives

x t + i = (A - BP)x t + Cet + 1 .	 (35)

Under standard assumptions on the undiscounted problem (29) - (30),5
the eigenvalues of (A - BF) are less than unity in modulus. Since A -
BF = [3-* (A - BF), it follows that under these same assumptions about

	

the undiscounted problem, the eigenvalues of A- BF are less than	 in

modulus.

Vaughan's Eigenvector Method
for Solving the Algebraic Matrix Riccati Equation

Vaughan [1970] described a fast algorithm for computing the limit point of
the matrix Riccati equation (33). The multipliers in a Lagrangian formulation
of the linear regulator problem can be represented in terms of derivatives of
the value function. Vaughan's method works with the Lagrangian formulation
of the problem and proceeds by deriving the linear restrictions that stability
imposes across the multipliers and the state vector. Those restrictions can
be used to compute the matrix P that solves the algebraic matrix Riccati
equation.

Consider the following version of the optimal linear regulator problem:
choose {u 'r 1 to maximize

	

E {x;Qxt + 'Ou t } + x'tiPtixt,	 (36)
ttrta

subject to
x t = Ax + Bu t .	 (37)

Let fii tri l_ to+1 be a sequence of matrices of Lagrange multipliers. Form the
Lagrangian

	

y = E {iliQx, + n 't Bui+ 2 14-1- 1 [Azt + Bu t - x241]1+ xit,Ptixt‘	 (38)
t=to

5 Again, see Sargent [1981].



(44)

(45)
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First order necessary conditions for the maximization of J with respect to
fu t Itt E2 and Ix trt E t k are

u t :	 2Rut + 2,0'pt+ i = 0,	 t = to, • • ., t i - 1	 (39)
xt :	 pt	 Qx t +	 pt+i, == tto1.-- 1, ..., t i - 1	

(41)
(40)

Pt = Pt,xt,

Solve Eq. (39) for u t and substitute into Eq. (37) to obtain

xt+i Ax t - B fr ig pt + i	 (42)

Stack Eqs. (39) and (40) to obtain

r xt-E-11 _ F A -BR- 1 B' 1 [ xt 1	 (43)µt J 	 IQ	 A'	 j	 j

For the finite horizon problem equation (43) is to be solved subject to the
two boundary conditions, x te given and p t , = Ptixt,

To solve the infinite horizon problem that emerges when we set t i = oo,
Vaughan proceeded as follows. Assume that A is nonsingular. Then represent
Eq. (43) as

{
xt l_ A- 1	 A-1 B R- 1 B'
itt	QA-' QS- I BR- 1 B' + .4' [pt+i

Or	

[ pxtti	 m 
[xt÷11
Pt+i

The matrix M is symplectie, which implies that its eigenvalues come in re-
ciprocal pairs. 6 Assume that the eigenvalues of M are distinct, so that M
has the representation

	

M = WDW- 1	(46)

where D is a diagonal matrix of the eigenvalues of M , W is a matrix com-
posed of the corresponding eigenvectors of M, and where D can be repre-
sented as	

D = ( A0 A9- 1 ) '
	 (47)

where A is a diagonal matrix composed entirely of eigenvalues whose modulus
exceeds unity. Because the eigenvalues appear in reciprocal pairs, we know
that a representation of the form (46) - (47) exists for M.

Multiply both sides of (45) by M- 1 to obtain

r
x i + 1 1
Pt+i

w {A- 1
0

O]
A

+ Vi2pti
V2i X; + V22pt (48)

6 See Anderson and Moore [1979 p. 160] for a treatment of the key properties of sym-
plectic matrices.



(51)

(52)
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where IC– ' = [V11
V21

1;121. Iterating on Eq. (48) times gives
V22

V12Pt
V2Ixt + Vssi2t

where recall that the eigenvalues, the diagonal elements of A all exceed unity
in modulus.

We want to solve Eq. (49) under conditions that imply that it is optimal to
drive x t	 0 as t	 oo, starting from any initial x to . Since each component
of A exceeds unity, the way to assure that xt 0 as t oo is to insist that
the components of the solution Eq. (49) multiplying A .' be set to zero. This
is accomplished by setting the shadow prices Pt to satisfy

V21 Xt V22itt = 0

Or	 Pt = V22 1 V21 Xt.
	 (50)

Equation (50) states that p t is a particular time invariant linear function of
xt , call it Pt = Pro where P --z - V221 V21 . Under restriction (50), (49)
becomes	 [rt+ii	 + V12Pt )1

Pt+i	 WztA–J(liiixt + 1/221tt)

However, we know that P t Pxt . Therefore, EqV16 implies that

[Pxti.-}	 (Viirt + V12/10
WsiA`i (Vuxt +1/42Pt)

which implies that PWii Wsi or

P = WnWril

Equation (52) is Vaughan's equation for the solution of the algebraic matrix
Riccati equation.

An Algorithm for Distorted Systems

Vaughan's method can be adapted to compute equilibria of models whose
allocations do not solve a dynamic programming problem. Consider the prob-
lem: choose fu t 11 1 7„1, to maximize_ 

t i -1 n

max E
{to} t=to

[y	 nQz
W22

[ Yt
Zi

+ uttRut} (53)

subject to
Yt+i = Ayyt + Az zt + Bawl. (54)

rA--i	 0	 rhix,
i xt+i	 W 0	 Ai j (49)
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We have used the tricks described earlier to convert our original problem to
one without discounting or cross-products between states and controls. In
equilibrium, we assume that the following conditions must also be satisfied:

Z t = ®Yt +	 .	 (55)

First order necessary conditions with respect to {u t } ti L-t.o and fyi l ti L7o in
this case are given by

ut :	 2Rut	 = 0,	 t = to,...,t i — 1	 (56)

Yt	 Pt = QyYt Qzzt + A;p241 ,	 t = to ± I, • • • , ti — 1	 (57)

pt= 	 t = t i .	 (58)

where {m} are Lagrange multipliers associated with the constraint in Eq. (54).
Solve Eq. (56) for ut and substitute it and Eq. (55) into Eqs. (54) and (57)
to obtain

Yt+i = (Ay + A : 0)m — (By + AsW)B-1B;it+i, 	 (59)

Pt = (Qy +Qz0)Yt + (A; —	 (60)

Note that this system is similar to that of (43) in the undistorted case. To
solve the infinite horizon problem that emerges when we set t 1 oo , proceed
as follows. Assume that the matrix Ay+A.,() is nonsingular. ? Then represent
Eqs. (59) and (60) as

or

Yt	 m[ Yt+i

(61)

(62)
Pt	 P1+1

where A = Ay + A2 0, Q	 Qy	 = By + Az	 and A = A 
By 11- 1 1F'Q', . Notice that if we replace A and A with A, B and By with
B, and Q with Q, then we have the same system as in (44). The differences
between the systems occur because of the side conditions in Eq. (55) that
must be satisfied. Notice also that in the case with distortions, M is not
necessarily symplectic. We assume, however, that M has a representation

M WDW -1	 (63)

A- 1 ER-'BCYt	 Yt+1
[Pt] L071.-1. QA -1 /3R -1-14 +,41 ] [Pi+1

7 See McGrattan (1994) for details of the finite horizon case and cases in which A is
singular.
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where D is a diagonal matrix of the eigenvalues of M , W is a matrix com-
posed of the corresponding eigenvectors of M, and where D can be repre-
sented as

D= Al CI
0 A2,) '

where A i is a diagonal matrix composed entirely of eigenvalues whose mod-
ulus exceeds unity, A2 is a diagonal matrix composed entirely of eigenvalues
whose modulus is below unity, and the dimensions of A 1 and A2 are equal.
We assume that A l and A2 have equal numbers of eigenvalues, a condition
for there to exist a unique bounded solution. In practice, we would check this
condition during the calculations.

From this point on, we can follow the same procedure as in the previous
section. Partition W , i.e.

w = [Wii W12
41121 14122

into four subpartitions of equal dimension. Set Pt = W21 41/1-1 1 yt so that
yt 0 as oo. Substitute this expression for p t into Eq. (59) to get tit-Fi
in terms of yt , i.e.,

	

Ilt+1= (P -1 + HH-1 Byt l iiyt	 (66)

where P = Wn	 . Therefore, the solution to the problem in Eq. (53) is
given by

	

ut —R-1 By (P- 1 + HK-1 B0 - 1	 (67)

Note that if 0 = 0 and = 0, then Eq. (67) is identical to the optimal
decision rule for the social planner of an undistorted economy linear-quadratic
economy.

A Doubling Algorithm

To compute asset prices and to solve a Riccati equation using the 'parti-
tioning' methods described below, we have cause to compute infinite sums of
the form

00
V = E GQDHi,

j=0

where the eigenvalues of G and H are bounded in modulus strictly below
unity. This sum can be evaluated by recognizing that it is the solution of
a discrete Lyapunov equation, and using an algorithm to solve that kind of
equation. Alternatively, it could be computed by iterating to convergence on

Vj = D+GtiH.

(64)

(65)
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Instead of using one of these methods, we often use a simple doubling algo-
rithm, which we implement by computing the following objects recursively;

Gi =

Hi =	 j-i
	 (68)

Vi =	 +

where we set Vo = D, Go= G, Ho = H. By repeated substitution it can be
shown that

23_1
Vi E DIP
	

(69)
i=0

Each iteration doubles the number of terms in the sum.
The idea of accelerating convergence by 'skipping steps' via doubling can

be used to solve a Riccati equation.

Another Doubling Algorithm

The algebraic matrix Riccati equation can be solved by using a doubling
alum-it/m. 8 The algorithm is related to Vaughan's method in the prominent
role it assigns to the matrix M in equation Eq. (45).

We consider the same version of the optimal linear regulator focused on in
Vaughan's method, namely, an undiscounted, nonstochastic problem without
cross-products between states and controls. The problem is to choose a plan
for {u } t ' -1 to maximize

11-1

E { x1 Q X /. 	 +xitiPbxj,	 (70)
I=to

subject to
r t + J. = Ar t + But .	 (71)

Let the value function for the tail of the problem starting from initial condition
x t at time t be x',Pi x t , for t = to, to + 1, ..., t 1 - 1. The matrix Riccati
difference equation is

Pt = Q + Pt+ 1 A - A' Pt .44 B(R + P,+ 1 B) -1 B' Pt + 1 .A.	 (72)

The first step in deriving the doubling algorithm is to use some facts from
linear algebra to show that Eq. (72) implies the following difference equation
for Pt:

Pt =-- {QA -1 + [A' + (211 -1 BR-1 ff]Pt+i}

x 1A -1 + A-1-BR-1B1Pt+11-1-

6 This section is based on Anderson and Moore [1979, pp. 158-160].

(73)
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Equation (73) is of the form

Pt = IC + DPt + i l x {E	 FFt+1}-1	 (74)

where
C	 QA-1-
D = A' -1-QA-1BR-1
E	 A-1	

(75)

F	 A -1 B R-1B'

We can represent the evo ution of Eq. (75) via the equivalent system

Yt[Xti_
cE[	 DP] [Xt++11 (76)

where Pt + i = 1%-F 1X1.4.11 and Pt = Yt X1 1 . Notice that

F
A-1	 A-1B'-ibq

{ EC D QA-1	 A' + QA-1BR-1B1 (77)

The matrix on the right hand of Eq. (77) is the matrix M on the right side of
Eq. (44) or (45). The solution of Eq. (76) can be computed rapidly by using
the fact that the matrix M on the right side, is a symplectic matrix, and by
exploiting the properties of symplectic matrices.

A symplectic matrix Z can be represented in the form

[ a -1	 ori
Z	 7a-1 a'+7a_ 1 al

Notice how the matrix in (77) is in such a form, where we set a = A, 7 = Q,
= BR-1B'.
Represent Eq. (76) in the form

(78)

(79)

Take the eigenvector decomposiCon of M give 1 in (46), namely,

M = w (A9 A_1 ) w_

where the A is a diagonal matrix consisting of the eigenvalues of M that
exceed unity in modulus. Represent M in the partitioned form

M= W11V12W12  IA	 0 1 [V11

W21 	 L o A-1 j L V21 V22
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where [1/2j) is the partition of W- 1 . Iterating on the partitioned form of
Eq. (79) k times and noting that the elements of A exceed unity in modulus,
it follows that

157 t r
11

iInn Pi - k + 1 = lira }Pt—	 =— r• 21 r• k—•oo

which is a version of Vaughan's formula (51) for computing the solution of
the algebraic matrix Riccati equation. In Eq. (80), we have established that
for any terminal matrices Xt+t, that satisfy P1+1 = Yt+IXT+11 , the
limit of Pt+l—k = Yt+i-kX1+11 _ k is the solution P, which determines the
value function for the infinite horizon version of the optimal linear regulator
problem.

To compute Pt— k+1 we can proceed by computing higher and
higher powers of M. Rather than computing the sequence M, M 2 , M3,
..., the doubling algorithm proceeds by skipping steps and only computing
the sequence M, M 2 , M4 ,	 Define OM = M and define 56(2) = M2
= 0(1) 2 Then define

c6(2k) = 0(2k - 1 ) 2 	(81)

for k = 2,3 .... Evidently, we have that

0(2 k ) = M 2k , k = 1, 2, 3, ....

Thus, we recursively compute the sequence M, M 2 , M4 , M s , ..., M2k,...
by simply squaring the preceding element of the sequence. We represent the
solution of (79) in the form

	

[
X2_2k+11	 M2k [ Xt+1 1
Yt-2 k +1	 Yt+I

We can compute Pt _ 2k+ = Yt_2k+IXT12-±i •
Equation (82) is the key to the doubling algorithm. The algorithm is

completed with the following two details. First, one computes the squares of
the matrices M 24 by using the following algorithm for squaring symplectic
matrices:

ok+i = ok(f + 47k)_iak

Ok+1 = 13k + ak(r+,301) -1 fltaC	 (83)

7k+1 = 7k + ce ikyk(I Nik)-lak

where we set ag = A, 70 = Q, 3o	 113' . With this algorithm, we have
that

-1

	

M2k = [ ak
-

1- 1	 ak Pk	 I	 (84)

	

+h a;	 +	 -•Tha113k

Second, with M 2k given by Eq. (84) in Eq. (82), and setting X t + i = I,
0, we obtain

(80)

(82)

= 7k•	 (85)
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Equality (85) implies that we can compute the solution P of the algebraic
matrix Riccati equation from

P = m ryk ,	 (86)
k
li
—.co

where 7k is computed via Eq. (83).
Even though it was assumed that A- 1 exists in deriving the doubling al-

gorithm, notice that in (83) there is no call to invert A. Indeed, the algorithm
seems to work well even when A- 1 does not exist.

It is worth noting that while -y4 converges as le cc, neither a k nor Ok
converges. On the contrary, both C; and f/k diverge at a rate determined
by the eigenvalue in A that is largest in absolute value. The matrix M2k
diverges as k --* co; what converges is the "ratio" Yt _ 2 kXt112„ .

The doubling algorithm is much faster than iterating on the Riccati equa-
tion because it skips so many steps.

Adding Speed by Partitioning the State Vector

After application of the two transformations described above to remove
discounting and cross-products between states and controls, often our control
problem occurs in a controllability canonical form: choose { u t } to maximize

E

t=0

Vitthit}	 (87)[Xi

subject to

[
Xlii-1	 [A11 1[X1

r2t+1.	 —	

XA.1.12 22	x2 [B }

0 tit;	 (88)

with [4 0 , x120]` given. The pattern of zeros in the partitioned versions of
A and B in Eq. (88) reflect that x2t is an "uncontrollable process" from
the viewpoint of a social planner s Two things distinguish a controllability
canonical form: (1) the pattern of zeros in the pair (A, B) and (2) a require-
ment that (A11 , B,) be a controllable pair, by which is meant that the matrix
[B 1 A11B1 A11.% • Ann-l Bi ] have rank equal to the dimension of A 11 . A
controllability canonical form adopts a description of the state vector that
separates it into a part X 2t that cannot be affected by the controls, and a
part xlt that can be controlled in the sense that there exists a sequence of
controls 1 ./0 that sends x 1 to any arbitrarily specified point within the space
in which x 1 lives.

An advantage in working with a system in controllability canonical form
is that computing the optimal controls can be simplified by organizing the
calculations in a recursive way, first focusing on the controllable point of the
system.

9 See Kwakernaak and Sivan [1972] or Sargent [1981].

[	 Q12]
x 2-I 1Q21 Q22	 Z2t
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Define an operator T associated with Bellman's equation:

T(P)= Q A'PA - A.' PB(R+ PB)- 1 13/ PA.	 (89)

Partition P and T(P) conformably with the partition 
[T2t
	 The (1,1)

and (1,2) components of T(P) satisfy

Tii(Pn) = Qii + AlA PnAii - AnPuBi(R+.81PnBi.) -1 if/ PnAi i (90)

and
Ti2(Pii,P12) = Q12 +1111P11Al2

- 11C i PuB 1 (R+ INPuBi)-1BCPnAi2	 (91)

+ [AC -	 Pi / (R + WiPuBt)-i-Bi]Pi2A22
Notice from Eq. (90) that T11 depends only on P11 , and not on other elements
of the partition of P. From Eq. (91), T12 depends on P11 and P12, but not
on P22. Because T maps symmetric matrices into symmetric matrices, the
(2,1) block of T is just the transpose of the (1,2) block. Finally, the (2,2)
block of T depends on	 P12, and P22.

Partition the optimal control state feedback matrix F =	 F2], where
the partition is conformable with that of xt . The optimal control is

Ut = -[F1 F2] [ X12 } .
12t

Let Ph be the fixed point of Eq. (90) and let P12 be the fixed point of
T12(Pir1 ,P12). Then F1 and F2 are given by

F1 = (R + BCPAB I )- 1 MPAA 11	 (92)

F2 = (R + BC.Piri Bi) 1 (B1Pill A l2 gl.P12A22)
	

(93)

Equation (92) shows that Pi depends only on Ph, while F2 depends on Pifi
and 42 , but not on 42 , the fixed point of T22.

We can compute the fixed points of T11 and T12 as follows. First, note
that the T11 operator identified by (90) is formally equivalent with the T
operator of (89), except that (1,1) subscripts appear on A and Q, and a
(1) subscript appears on B. Thus, the T11 operator is simply the operator
whose iterations define the matrix Riccati difference equation for the small
optimal regulator problem determined by the matrixes (An , B1, R, Qii).
We can compute P(1 using any of the algorithms described above for this
smaller problem.

Second, given a fixed point Ph of T11 , we apply our simple doubling
algorithm to compute the fixed point of T12(P11 , .)• From (68), this mapping
has the form

112(1'li, P12 ) = D + GIP-12H, 	 (94)
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where

D = Q12 ± AC 1 Pill 2 - AC t Piri th (R +	 )-1 Bi PilAt2

G =	 - /3 1 (R + H(PiCHi) . i
H = A22

Notice that G = Al t - B1 F1 , where F1 is computed from (92). When zz-t
is set to zero for all t, the law of motion for x12 under the optimal control is
thus given by

xit+1 = GWIt

We have assumed regularity conditions that are sufficient to imply that the
eigenvalues of G have absolute values strictly less than unity. The eigenvalues
of H also are strictly less than unity by assumption. That the eigenvalues of
G and H are both less than unity assures the existence of a limit point to
iterations on Eq. (94). The limit point of iterations on T12 (PII , P12 ) starting

= 0 can be representedfrom P12

ce
P r2 = E ODHi
	

(95)
r-0

We compute P12 by using the doubling algorithm described above.

Innovations Representations

Constructing an innovations representation is a key step in deducing the
implications of a model for vector autoregressions, and for evaluating a Gaus-
sian likelihood function. 10 An innovations representation is a state-space
representation in which the vector white noise driving the system is of the
correct dimension (equal to that of the vector of observables) and lives in the
proper space (the space spanned by current and lagged values of the observ-
ables).

Suppose that our theorizing and data collection lead us to a system of the
form

Xt+1 = Aoxt+Ctut+1
zt = Gx t + v t 	 (96)

vt = Dvt _ i + qt
where D is a matrix whose eigenvalues are bounded in modulus by unity and
1t is a martingale difference sequence that satisfies

Ent ilt =
Ewt .4. 1 q; = 0 for all t and s.

I ° The calculations in this section are versions of ones described by Anderson and Moore
11979).
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In Eq. (96), tit is a serially correlated measurement error process that is
orthogonal to the xs process.

We define the quasi-differenced process

Dzt.

From Eq. (96) and the definition (97) it follows that

zt = (GA O - DG)xs + Gews÷ i + Th+1

Then (x t , it ) is governed by the state space system

X t = Aoxt +

it = aXi GGIllt+1

where 0 GAO —DG. This system has nonzero covariance between the state
noise Ctut + i and the "measurement noise" (GC wt+1+ qt+i). Let [Kt , Et ] be
the `Kalman gain' and 'state covariance matrix' associated with the Kalman
filter, namely,

	

(CC'G' + AoEsC)C2T 1	 (99)

	

Of GEt0 + R + GCC'G'	 (100)

Et+1 = 110EtAo' +CC -- (CC' +AuEtGi)Q-1(GEtA.; +GCC'). (101)

Then an innovations representation for system (98) is

it +1 = Aois + K tut

zt =Ol t + us

where
x i = P[Xt 2t-1 2 it-21 • 2 20210]

Ut = zt - Et [k-t I it-1 2 • • • 4210]

no; = 0Etat + R.

Initial conditions for the system are 20 and E 0 . Using definition (97), it

	

follows that [zt+i , zt, 	 zo, lo] and	 [it,	 • • • ,	 lo] span the same space,
so that

	

it = k[it I zt,	 2.2-1, •	 4)10]

tit = Zt+i - E[zt+1 I zt,. • ., zo, 10]-

So us is said to be an innovation in zt+i
Equation (101) is a matrix Riccati difference equation. The Kalman filter

has a steady-state solution if there exists a time-invariant matrix E which
satisfies Eq. (101), i.e., one that satisfies the algebraic matrix Riccati equation.
In this case, the same computational procedures used for the optimal linear
regulator problem apply. This is a benefit of the 'duality' of filtering and

(97)

(98)

(102)
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control referred to earlier. The steady-state Kalman gain, K , is given by
Eq. (99) with E t = E and R 0E0' + R+GCC'G'

The innovations representation is equivalent with a Wold representation
or vector autoregression. Estimates of these representations are recovered
in empirical work using the vector autoregressive techniques promoted by
Sims (1980) and Doan, Litterman, and Sims (1984). It is convenient to have
a quick way of deducing the vector autoregression implied by a particular
theoretical structure. To get a Wold representation for zt , substitute Eq. (97)
into Eq. (102) to obtain

zt-k1 — Dzt = Ol t + ut.

it44 = 411 + Kut	
(103)

A Wold representation for zt is

zi±i = -	 + G(1- - A D L) —I KL]ut ,	 (104)

where again L is the lag operator. From Eq. (103) a recursive 'whitening
filter' for obtaining { u t } from {zt } is given by

u t = zt-kt — Dzt —

= Aat + Kut
	 (105)

Vector autoregressive representation

Hansen and Sargent show that an autoregressive representation for zt is

zt+i = {D + (I — DL)0[1. — (AD — KG)L] —i K L} z t + wt .	 (106)

Or
00

.zi+1 =[.0 + OK]zt + E[G (11 0 — KG)i K
j=1
	 (107)

— DG(A O — Kar l Klzt _j +

This equation expresses zt + 1 as the sum of the one-step ahead linear least
squares forecast and the one-step prediction error.

The Likelihood Function

We start with a 'raw' time series {yt } that determines an adjusted series
zt according to

zt = f (Yt , e),
where 0 is the vector containing the free parameters of the model, including
parameters determining particular detrending procedures. For example, if
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our raw series has a geometric growth trend equal to 1.4 1 which is to be re-
moved before estimation, then the adjusted series is zt whit . We assume
that the state space model of the form (98) and the associated innovations
representation (102) pertains to the adjusted data {24. We can use the in-
novations representation (102) recursively to compute the innovation series,
then calculate the log-likelihood function

T-1
L(0) = L flog	 + trace(Oi l utt ) — log 0f(Y1 0)11

and find estimates, O = argmin0L(0) where fit = Eut i4 is the covariance
matrix of the innovations. To find the minimizer O, we can use a standard
optimization program. In practice, it is best if we can calculate both the log-
likelihood function and its derivatives analytically. First, the computational
burden is much lower with analytical derivatives. Consider, for example, the
model of McGrattan, Rogerson, and Wright (1993), which has 84 elements
in O. For each step of a quasi-Newton optimization routine, L and t‘ are
computed. To obtain Fre numerically for the McGrattan, Rogerson, Wright
(1993) example, the log-likelihood function must be evaluated 168 times if
central differences are used in computing an approximation for g-# , e.g.,

OL	 ee) — L(9 — ce)

00	 2c

where e is a vector of zeros except for a 1 in the element corresponding to
0, and c is some positive number. Usually, the costs of computing L a large
number of times far outweigh the costs of computing &e If L and Ph
are to be computed many times, which is typically the case, then the costs
of computing numerical derivatives can be quite large. A second advantage
to analytical derivatives is numerical accuracy. If the log-likelihood function
is not very smooth for the entire parameter space, there may be problems
with the accuracy of approximations such as Eq. (109). With inaccurate
derivatives, it is difficult to determine the curvature of the function, and
hence, to find a minimum.

For L(0) in Eq. (108), the derivatives noCe) are easy to derive. We derive
them in Appendix A and distinguish formulas that are steps in the derivation
from those that would be put into a computer code. Note that although the
final expression for 04' derived in the Appendix is complicated, we can use
numerical approximations such as Eq. (109) to uncover coding errors.

Once we have the log-likelihood function and its derivatives, we can apply
standard optimization methods to the problem of finding the maximum likeli-
hood estimates. In practice, we will have a constrained optimization problem
since the equilibrium is not typically computable for all possible parameteriza-
tions. For example, we may have simple constraints such as t < 0 < u where
t and a are the lower and upper bounds for the parameter vector. In this
case, we either use a constrained optimization package or penalty functions
(ref. Fletcher (1987)).

(108)

(109)



24	 Mechanics of Forming and Estimating

After computing the maximum likelihood estimates, we need to compute
their standard errors,

Se (0) ding(
aL, a Lti
—68 00 ) (110)

where L t (0) is the logarithm of the density function of the date t innovation,
i.e.,

Lt(9)=. log ji2 t + u't Qi i n t — log af (nYt 0) 1 	 (111)

The formula for PAL is also given in Appendix A.89

Conclusion

We have consigned perhaps the most useful parts of this paper to the
appendixes, which contain formulas for computing -* . Resort to these for-
mulas can be avoided by using numerical derivatives, as was done for example
by Selahattin Imrohoroklu (1993). However, for problems with sizable num-
bers of parameters, these formulas are very valuable. In terms of consequence
for speed of the computations, the decision whether or not to use these for-
mulas as against numerical derivatives will dwarf the choice of a particular
equilibrium computation algorithm.

Appendix A: Computing Pi and &cl- for a state space model80	 09

Differentiating the log-likelihood function with respect to the free parame-
ters of the economic model can be broken into two steps: first, differentiating
the log-likelihood function with respect to matrices appearing in the state
space model (102); and second, differentiating the parameters of the state
space model (98) with respect to the free parameters of the underlying eco-
nomic model. In this appendix, we derive a in terms of the derivatives of
A0 , C, G, D, R, I D , E0, and Izt ,t 0, —T1. We ignore the Jacobian
in Eq. (108) since it differs for each problem. In Appendix B, we show how
to compute derivatives of A,, and C for the linear-quadratic and nonlinear
economies with and without distortions.

The formula for a
For the first step, we take as given A 0 , C, G, D, R, io, E0 , and

{zt , t 0, ...T} , and their derivatives with respect to the deeper economic
parameters. We shall show that the derivative of the log-likelihood function
is

	

L	 0A„	 DCE 2 trace{--w E I G'Mt G — tICQT 1 G} + 2 trace{,790-CCAG}ao
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OG
+ 2 trace{—(AoEt G'Mt Et O'Aft D + CCGI Mt - Aoitu't54-1

00

+ ±tug1D)}

	

- 2 trace{ 
OD
—GE011it - zt t ttli	 tt+ G"	 1)}
ao

aR	 8E2	 Oit
trace{- -Mt }+ trace{--O'llit O} - 2 trace{-1452T

ao	 no	 ao
az,

+ 2 tracef—azt+1,4ccii. - 2 trace{ a8
ao 	ao

where

(°to
arn _ 2A G, EtA,o+ Ao_wEtA,0 AoEtTc0A 0 ' + 79.678c c, caocot

ac 	 OG' 0A0
60 CGI + C 79

ac
-ti GI' +CC' w -V E9EtGi

+ A, aTa tai + A0E, To fi t + At-art

	

OG	 - 6Et	0Aa'
- K	 +	 + GEt

	

00	 00	 00

ait+i _ A- a 
ao	 ° a

+ CC' +G—
ac

C' + GC
act)

ao	 a°	 ao
OA D aRt 	ac	 OKt _

+ (-DT	 - Ktw,)it +	 zt

azi+ ,	 azt
+ Kt ( 	  D ).

00	 BO

The expressions in (113) and (114) follow from the definitions of E t in
Eq. (101) and ±' t in Eq. (102). The initial conditions, Io and En, and their
derivatives are assumed to be given.

If E0 is given by the steady state solution of the Riccati equation, then
the computation can be simplified. The formula for the derivative of the
log-likelihood function is given by

aL
00 

= 2T trace{Ps -	 -1-1&,(1 -	 KG)
ao
- EGT2 -1 1Th uA (/ KG) - EAZ,AfrIG

+ ERJI(/ - KG))}

ac
+ 2T trace{ ---C	 - G'Sr 1 1-1,4A (I - KG)ao

- (I -	 + (I - G'K')11(I - KG))1

+ 2T trace{
8

(A,,EG 1 M -	 MD + CC'G'Mao
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— Aor,,cri + r,52-1D+AorAK

- FiA K D -	 - GIK'W,A0-1

- .4,,Eko rt A n-

+E.No r:,,cri p + A0EGI52-1P„AK

- EG'12 -1 P„ ),KD - Ao EiliD UK +EA'QIIKD

- CC'IIK +CCC KIRK)}

- 2T trace{ 
OD
—(GECM + (r. — Gri.)(2-100

+ GrtA K - P,AK - GEAo r A52-1

+ GECS-1 -1 1",, A K - GEA,IIK)}

-2
1

+ 2T trace{ —
OR

(M + C2 -1 f,,xK + KIIK)}
00 2

T-I azt+i
+2 trace{E(w

t=o

Oio	 (115)
azt D aztl piCK1 - 2 trace{-50 A°}

- 2 trace lE(To- -	 00
2=1

where E is the asymptotic state covariance matrix found by iterating on
Eq. (101) and G, K, u t and it are defined in Eqs. (98), (99), (100), and
(102), and

	

A t (A o -	 t 0, .	 T - 2KO) / At+i +Cirlut,
AT-1 = Olfr i t/T-1

ruu — E utut
1 T-1

2=0

rt, = —T E ituit
1 T-1

2=0
T-11 n

r" = L zt;t=a
T-1

ru , — E ut_at
2=1
T-1

r .thA = —T E it-IXC
t=1

(117)
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T-11
rzA = — E	 A't	 (118)

t=1
M = Q-1 crirtmcri

A, = A, - KG
II =	 + 114G - Gir i ruA A ° -

In the remainder of this appendix, we derive the formulas in Eq. (112) and
Eq. (115). Readers who are not interested in this derivation can skip the rest
of this appendix.

Derivation of the formula
The derivative of the log-likelihood function with respect to any element

0 of the parameter vector is given by
T-1	 T-1aL	 /au, ,	 au,

trace -Ni t } + E trace t	 ut —t )C2 / 171ao	 a&	 ao	 ao	 (119)t=0	 t=0

= S1 	 + 82

where Mt = Q t-1 - Si t-l u t ul t-1 and Q t = Eu t t4. We start with the first
term in the expression for the derivative of the log-likelihood function, SI.
For this, we need the derivative of the covariance matrix, Q t , which satisfies

Oft t ac	 aEt	 „ aG' aR aG
= — + U-v +	 + +80	 80	 80	 80	 80	 00

8C	 OC'	 DG'

	

+G-gC/G 1 	+ GCC'
 a

,OG	 ,aA0 OD 
G D-w

ac 
)EiG

-, 
+G-

Tint 
G= o n°

, aG' &A,' „arY aG'
+GEt (A o uo- +	 G - G	 - - - D )

 ao 	ao

	

aft ac	 ac	 OC'	 aci+ — + —GeV +GC'G' +GC G I + Geo' (no)au	 ao	 ao	 ao	 ao
The second equality follows from the definition of G. If we post-multiply the
derivative of Q t by Mt and take the trace of the result, we have the first term
of the derivative of the log-likelihood function in Eq. (119):

T-1 OA,	 acSi = E [2 trace(-
00 E t G1 Mt G)+ 2 trace(—CCMIG)

00t=0

+2 trace(-0G {A„E t GI Mt - Et CMt D + (VIC .11.1a)ao

- 2 trace( 
OD
—GEt G1 M t ) + trace

aR
(— Mt)80	 00

OE+ trace(-a-i; C Mt G)].
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	Note that the formula for SI depends on derivatives 1?-10	 se ,	 , and
W, which are known, and ae, which is yet to be derived.

We now turn to the second term of the log-likelihood function derivative,
Sy = trace(Out uVO0R-1 ). Let 110„(t) = ui n't . By definition, r,,,,(t)
(Et –Git)(it –Gio , and, therefore, its derivative is given by

ar,,,,(0	 02t	 Do	 _01, ,	 azt	 00	 -Dit
at) =( ae wrt G-5.(7)ut+ Ut( TO- -	 Xi -

,azt + i OD	 nazt aG 	 ,OA,
zt - m-- -- -29.0 x t -G

80	 De 	 De	 ao

T-
°:

ap	 OG
ii

zit _Ft Dr, °O.Dx2 Ga—f°' ) /tilt ,„ OG'	 OA,' ,
+ ut (-8-0-- zrtg -	 D - zt A, w - x t -b7 G

n OD' 2,0G' , 0.12'
+ i

I
tu f 	 +xt — - — ).	 (122)

ao	 Do	 ao

If we post-multiply this derivative by 121 1 , take the trace of the resulting
matrix, and sum over t, then we have the second term of the derivative of
the log-likelihood function, i.e.,

T-1

	

DA,	 aG	 1	 toT1D)}-Sy = - E [2 trace{---isuA-1 G} + 2 trace{ (AoittitaT

	

80	 8612=0

ap	 T-1
uzi+1

+ 2 trace{—(ztu; - G± t 14)Qi i } - 2 trace{E -u,S2-1}
au	 ao 

2=0

T-1	 T-1

	

Ozt	 _ 1	 r Olt	 -+ 2 trace{E	 142 t D} + 2 trace{	 --1/52-1G}].	 (123)

	

ao	 (90 t t

t=0	 t=o

Sum the expressions in Eqs. (121) and (123) to get the expression for the
derivative of the log-likelihood function in (112).

For the time-invariant case, several more steps are needed. First, we derive
the last term in Eq. (123) in terms of the derivatives that are taken as inputs.
To simplify notation, we first define the sequences {d t } and PO as follows

8.4 ° 8K -	 0G	 aK	 Olt

	

= ( 7F - 7FG - . -g)it ± —00 +	 t 0, T - 1

At = (A, - KG)94 + 1 + 01 1r1 u t ,	 t = 0,	 T - 2

	

= OfQ - lUT-1.	 (124)

Notice that the time subscripts have been dropped from K and Q since the
time-invariant case assumes that E t E for all t. Let A, = A0 - KG.
Notice that since /o+% = A pit + f“. 1. , its derivative is given by

"t+1 = Äo	 dt.ae (125)
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Write out the last term in Eq. (123) and substitute in i t = At + = 10 Aridt_3.
Then group terms involving i t, and dt , t = 0, ...T - 2. These steps lead to

	

--2 trace( E --utC2	 ) =	-Ttrace
	 ait , _IoN	 ___±,-trace \	 -	 t=1

	

t=0	

T-1
2	 ( 81 ° A in + E dt-IA;)

	

2	 aio	 aft, aK	 aG

	

=- T trace(	 ,X 10 ) - 2 trace{(	 - 60 G - Kw-A,
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°e
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1 T 1 azt	SD	 1	 uZt–
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t=1	 =1

= - 2 tracel—f .th x (I - K Gil
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ac+ 2 trace{—(A 0 E- A K - Tt-AKDIao

- 2 trace{ 
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—(GT-xK - PzxK)}
00	 r

T-1 T-1 a,
- -2- trace{K E	 - KDE

z 
-1 A'}

00	 00

	

=i	 t=1

2 - trace(-81 A ,0 ) — 2 trace{—TuA}ao	 ao
where Tu x , Pea, and Ez x are the sums defined in Eqs. (116) through Eq. (118)
and Pia = E17 it-IA;/T. The second equality follows from the definitions
of dt _ 1 and G and some algebraic manipulation. The last term in Eq. (126)
uses the fact that u t = it - Gi t . With the exception of PA, the expression in
Eq. (126) is a function of known derivatives. The expression for Pill follows
from the definition in Eq. (99) and is given by,

	

aKr ac ri, n, . ,ac G,	 a* ,	 DE ,
CC'eGi

	

,T, = Lao' (-1 -I- (-1 ao	 ±	 To +	 EG + .40-5-9-G
aB
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api	 OG'	 aR aG
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(126)
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OC	 OC'	 OGI+G—C'G' +GC— G' +GCG1--19-1.00	 ao	 80

Note that we have written 84, in terms of as DA , and 14 . Substituting

ae into the expression in Eq. (126) and rearranging terms, we have

--

2	 T-1 ait
trace(_

t=0

aAo
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+Eicort,sr1G1

-2 trace{--
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t=i	 t=i

2	 aE- trace{°ai	– 2 trace{(G/I2-11"„),A0)}.60	 00

Therefore, the expression for the second term of the log-likelihood function
derivative, 82, is given by

OA °
82 = - 2 trace{ —(l'eu 11 - 1 G +reA (1 - KG) + EG'Cir i ft, A (I - KG)
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+EA:,ItAfriG}

- 2 trace{ 
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- AD EGT2-1 r,,K + EG'Crift,),KD)}

- 2 trace{ 3°—((rzu - Gr ts)S.2 -1 + Gri),K -	 — Gaelfot,AQ-1ao
+ GEGI C2 - 1 ruAK)}

+2 trace{ OR C2 -1 1'„A K}
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(129)

Our expressions for Si in Eq. (121)
OC 8G OD OR which are known,00 3	 fie	 80
Using the expression in Eq. (113) with

and 52 in Eq. (129) depend on Ma,
and g, which we will now derive.

= Et = E, we get

—aE ,4 0-8E
/1 10 + w +au	 ao

where

aAo 	ac	 pc 	 act	 pc'W=	 Y)c/	 —	 - CCyi A'
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0A	 0D
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ac- KD—
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EG'K' + K—
OG

GC'G'K' + KG—C 1GIK'. (131)ao	 ao	 30

The terms W and W' in Eq. (130) include all derivatives but -,a§i
the expression in Eq. (131), we substituted the expressions for fce' and
into Eq. (130). Let II be a symmetric matrix that satisfies

(130)

To get
8G
ae

II = ko llA s + 2(H+1-11),	 (132)
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where

	

H = G'MG - 2G/Q- 1 EuA A,,.	 (133)

Then,

OE	 OE 1
trace(gH) = trace{ 

8B 
2 + H ' )}

trace{ n—u (11 - tlionflo)}a
= trace{ —

OE 
- trace{Aao	 ao

as	 0E
= trace{(	 - Ao y./0)11)

= trace{(W + WW}
= 2 trace{WH}.

If we post-multiply W by II and take 2 times the trace, then we have an
expression for trace(RH) in terms of known derivatives, i.e.,

trace( OE
H)= 2 trace{-Bo—Eko f1(/ - KG)}

00	 00

OC
+2 trace{ —C(/ - G 1 1011(1- KG)}

00

- 2 traceta—
G

(A„Eko lIfi - E.411KD +CCU - G'K')IIK}
ao

a D
+2 trace{—GE411KI+traceIL

R
K'IlKl. 	(135)

ao	 ao

Sum Si , which appears in Eq. (121) with Et = E and Si t = Q, and
S2 in (129). Substitute in the expression for trace(g-H) from Eq. (135).
The result is the derivative of the log-likelihood function which is given in
Eq. (115).

Standard errors

After we have computed parameter estimates, we want to compute their
standard errors as given in Eq. (110). For this, we need to compute the
derivative of

Lt(0) = log	 tOilut
with respect to any element 0 of the parameter vector. 11 This derivative is
given by

aLt = trace(Q.1
1
—
ant

) + 
8B`L 

Sit
,
Qt

_

00	 00	 00
r, au,	 n1 ac2 t n11

14 14	 80 — uoit	 ut

(134)

11 Note that we are again ignoring the Jacobian since the relationship between z and y
differs for each problem.
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acz 
} ± trace{ 13---

ut
12-= trace{(QT 1 - f2T 1 uoilt f2,-1)-79-e-

ao	 t
oat 	 _1 (9(titui,)	

+70,-1-0: }

= trace{--Mt } + trace{Q, 	  	 (136)
00	 00

-1 1where Mt	f2, - S2i lut u t u t ' Above, we calculated —Lan89
These expressions are given in Eq. (120) and Eq. (122).

and a(1184) 
06	 •
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Appendix B: Differentiating the state-space model
with respect to Economic Parameters

In this appendix, we describe how to compute derivatives of Ao and C
with respect to the free parameters of an economic model. We do this for four
economies: a linear-quadratic economy without distortions; a nonlinear econ-
omy without distortions; a linear-quadratic economy with distortions; and a
nonlinear economy with distortions. Because we use linear approximations
for the nonlinear economies, most of the work is in deriving the formulas for
the linear-quadratic economies.

A linear-quadratic economy without distortions

The optimization problem is
00

max E 13i (Zt Qxi +14Ru t +2x'tWut)
{u,}

subject to x 1 + 1 = Ax t + But +Cct+i,

where each element of et is a random variable that is normally distributed
with mean 0 and variance equal to 1. We assume that the matrices Q, R, W ,
A, B, and C depend on a vector of parameters, O. Typically, the number of
elements in 0 is small relative to the combined number of elements in these
matrices. We also assume that the derivatives of the matrices in Eq. (137)
with respect to the elements of 0 are known.

The optimal decision function is given by u t = -Fxt where

F = (R + PB'PB)-1(f3BIPA+W')

for P satisfying

P = Q+ BA'PA- (W + A'PB)(R+ PB'PB)-1(B'PA-FW').

The law of motion for x in equilibrium is

xt+i = A o x t + Cet+i, A„ = A- BF.

Therefore, the derivative of A c, with respect to an element of 0 is

DA, aA OB	 oF
ao — au	 Dot
	 B 

80'

The derivatives PA and M depend on the specification of the problem inae	 as
Eq. (137) and are assumed to be known. The derivative of F is

OF
— = -(R+ PB)-
ao

+ (R + OB'PB)

OR	 Da'	 ap	 aB
( + fei —R- PB 0.91 -wB+ flB'Pv)F

OB'	 UP	 OA OW'
"([3 9 PA+ #11'-aiA+	 +	 )1.42)

(137)
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Notice that this formula depends on the derivative of P, with the remaining
derivatives provided by the modeler. The derivative PS satisfies the following
equation:

ap aQ ag 	ap	 OA aw aiti
7 7 +13-g 

PA+ PA' , A+PA'P — (-5-0--+ 07 PB

OP	 aR	 OB'	 ap+ iiA1 —B+,(3A`P—
aB

)F+ F'(— +,5— PB+ pa' —,9ao	 ao	 ao	 ao	 ao
OB'	 ap	 aA ow'+ fin—

OB
)F — F'03— PA+ fig—A+ t3B 1 P— -I- —)ao	 ao	 ao	 00	 00

, ./ ap ,	 aQ— gs —A0+	 + a° ao	 ao	 ,
[ aA'	 , awl
g — r '	 i PA0+

,$A 0 P [ aA
ao

OB	 I
—	 Fao

aw	 aw'	 OR—	 — raF +	 (143)

Although this formula determines only an implicit function for the gra-
dient of P and can be represented explicitly in terms of things we know.
Define the gradient operator as follows: for any matrix A that depends on
the parameter B, '■70 A = vec(S4). Then,

GreP = (r —	 wa)-' { V9Q + /3(A,P	 +13(I A',,P)N7sA.

— P(A10 PG 111 ) .78 B' — [3(F' ./1.,P)C70 13 — (F' 0 I)V9W

(I® F') vow' +(F'® F')VoRl, (144)

which is a function of the gradients of A, B, Q, R, and W. The gradient
of P can then be substituted into the following formula for \781%

Vs.F = 13(1 ORB' P)VG A — a(r 07ZWP ) V0 B + fi(A:,P 0 7Z) V9B'

— (F I 72.) \79 ft + (I CD R.) VEX' +13(A',, 0 1-1W)V0P, (145)

where 1Z = (R+ B i PB)' . Finally, we substitute this expression for '79F
into

70AD = Vit A — (F I I)V8 B — (I® B)\78F. (146)

Since C is chosen by the modeler, we assume that its derivative with respect
to 0 is known.

A nonlinear economy without distortions
The optimization problem that we start with is

max Ec	 )5' c(zt)	 (147)
{us}	 =1

subject to xi 4. 1 = Axt + But -I- Cwt-Fi
z t = [L.bit/tit.
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We solve a related problem, namely,

0.,

max E0 E fi t zit M zt	 (148)
s.o

x t + i = Ax t + Bu t -I- Cwt+i,

where

ar(iy 
z
_	 1 , 827-(2')

m = efr (I) —	 + 2 z ak2 z)e
1 arm'	 Or(i)_,O 2 rP)	 a2 r(i. ) ie, (32r(0\ (149)

+ (e	 +	 e ez
2	 as	 81

and where e is a vector of zeros except for a 1 in the element corresponding
to the constant term in x t , z and tr) are the steady state values of z t and wt,
and Sr = [1,-„ O„ ,k] and Su = Ik] are selector matrices and imply zt =
Sat +Su it t , where n is the dimension The latter problem yields the same
decision function as that of Eq. (137) (where Q = Sr MSx , R = MS„,
and W = Sr' MS„).

In the nonlinear case, however, the derivatives are slightly more compli-
cated. To derive 2,642-, we need to calculate derivatives of the coefficient
matrices of the objective function. For this, we need the derivative of M
with respect to 0:

OM	 arm a2 r(I)' _ arm ai 1 01' 0'4(2)	 1 _,O3 r(i) _
ao	 ao	 awe z	 ai ao + 2 80 av z + 2 z avao z

1 8 2 r(1) 81 ,	 1 ( 0 2 r(i)'	 82r(1) 82r(i)
ao )e + 2 ce	 &we e e ao

	

83 r(2)	 8a r(2)	 02r(i) 01. ,	 a3r(E)— ez
avao avao 

ze,

	

522 ao e 	avao 1-

As this formula indicates, the modeler must provide first, second, and third-
order derivatives of the return function. The derivatives of Q, R, and W
follow immediately from , e.g., 952$ = Sri W Sr . The remaining deriva-
tions are the same as in the linear-quadratic case.

A linear-quadratic economy with distortions

The optimization problem that we start with is given by

maEfi
co

x	
n	 _

t { [M [AV n- 	 [H + tl i ttat + 2 [
ma} t=0	 w 22	 t

subject to
th+1 = AyA	 + Boi t +

1 [W=I
}	 (151)

(150)
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To ease notation, we convert the problem to one without cross-products or
discounting. Let

yt = 0" Yt

z t = poit
nt = ot/2ut

Et = sti2et

R=R

QY = QY – WY R-1 I41‘

Qz Q, - Wu	 i/V‘

Q22 – Q22 – WzR
Ay = 0(Av - By R- 1 WO

A, = VT3(A z - By R-1147,a

By = V2.5By
O = (1+ R-1 4VD -1 (0 - R-1147‘)

= (I+ qtR-1WD-141.	 (152)

With these definitions, we can restate the optimization problem as follows

CO

Mt [yi 1 nQY	 nQz ][ M ] let Mit } (153)
t=0

subject to

J W22 ZtL

Y24-1	 AyM ± Az Zt + By 	 CEt+1.

Let A	 Ay + A,O, Q = Qv Q z B, = By + A,T, and A Ay -

By R- 1 111' Q'z . The decision function in this case is given by

F= (R+ L1PB) 1 B;Pil

where P satisfies

(154)

F1 = Q + At PA -	 PÉ(R+ By P13) - 1 By PA. (155)

The decision function for the original problem is given by

F	 (R+WN) - 1 (RF + Ws; + (156)

and the equilibrium law of motion for tj, is

Pi+ = Ao -gt + Cet+i, A o = Ay ± A,C) - A,WF - By F = 13- A - EF).
(157)
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Therefore, the derivative of A, with respect to a parameter 0 is given by

	

OA,	 / aA at?	 aF

	

00	 00 00 F B00

To calculate a* requires several steps. First, we need the derivatives of A,
B, and F with respect to e:
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	Note that these derivatives are functions of of *I , -2-81,39 '	 ' 06'4- '	 ' 09
and V-; . The derivative of R is given since R= A. The derivatives for By,
Ay , A,, B and 4' follow from their definitions above, e.g.

°By
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OW	 a+
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++R-' 8w21 LP )
ao	 ao •

The derivative for P is given by
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The last two derivatives needed are a+291 and ;St :
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We now have everything that we need to compute the derivatives of the

matrices in the decision rule and the law of motion for the state vector. To
avoid iterating on Eq. (167) for sf, we instead take the gradient, e.g.

veP=(1-	 /1'0 0 illo ) -1 1	 + (1 0 ;11,,P').79A

+ VT-3(A'Q PI 1) .7 9 A' - (F' J4'0P')V8

- -VT3(A'o P' F')Voify + (F' P')VeR.	 (172)

Thus, the gradient of F is given by

718 F = (1 0 RV) VOAy ((e - W IF') 0 RifiP)V0A-2

- (F' 0 R.% P)V9 By + \173(44'o Pt 0 7Z) VeB'

j3(Aili, 0 RB;) P - (F1 0 Te) R

	

+ (1 ORB; Pit„)C70 0 - (F' RBy' P A479 )11,	 (173)
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where R = (ft + B;PB)- 1 . In terms of the computer code, we start with
Eqs. (162)-(166) and Eqs. (170)-(171), which relate the derivatives of the
original problem to those of the problem without discounting or cross-product
terms. To compute the gradients of these objects in terms of our inputs, we
use the fact that vec(ABC) = (C' 0 A)vec(B) for any matrices A, B, and
C with the appropriate dimensions such that ABC exists. We next compute
the derivatives for A, B , Q and A which appear in Eqs. (159), (160), (168),
and (169). Finally, we compute 170 P in Eq. (172), V9 1-41 in Eq. (173), and

Volo =	 (v9A - (F' 0 .07's — (I B) VW).

A nonlinear economy with distortions

The optimization problem that we start with is given by

max ED E fit r(Zt)
tr:o

subject to Vt+1 = Ay pi + A= it+ By itt Cgt+1

Zi = [91t,

As in the case of the economy without distortions, we solve a related problem
that has the same form as the problem of Eq. (151). The approximation
method is the same as in the model without distortions and, thus, all of the
required derivatives have already been computed.
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