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Introduction

This paper describes how recursive linear control and estimation theory
can be applied to estimate dynamic equilibrium models. Recursive linear con-
trol theory can be used to compute equilibria of linear-quadratic economies,
and linearly to appraximate solutions of non-linear economies. Equilibrium
conditions define a mapping from a model’s free parameters, describing pref-
erences, technologies, endowments, information, and government policies, to
equilibrium stochastic processes of observable variables. The estimation prob-
lem is roughly speaking to ‘invert’ that mapping, and to use time series of
observations on some of the variables in the model to make inferences about
the model’s free parameters in light of the mapping defining the equilibrium
stochastic process. Maximum likelihood and the method of moments are used
to extract parameter estimates from time series data. Recursive linear esti-
mation theory can be used to compute a Gaussian likelihood function.! This
paper describes a collection of procedures for speedily calculating equilibria,
for computing an approximate likelthood function, and for maximizing that
likelihcod function. The duality of linear control and filtering theory imparts
a unity to these procedures.?

Among the conveniences afforded by this framework is the ability ana-
lytically to differentiate the likelihood function with respect to the free pa-
rameters of the economic model. Obtaining these derivatives involves, via a
chain rule, two differentiations of solutions of some Riccati equations with
respect to the parameters in their return {or covariance) and transition ma-
trices. First, we must differentiate the equilibrium with respect to its free
parameters; and second we must differentiate the parameters of the ‘innova-
tions representation’ or ‘vector autoregression’ with respect to parameters of
measurement error processes and the equilibrium stochastic process for the
economic model. It is the relative ease of accomplishing the second piece of
the job that makes linear-quadratic models especially convenient. We describe
the nuts and bolts of these calculations,

This paper is organized as follows. We display two types of economies, and
how they are associated with social planning problems that can be formulated

> Parts of this paperrely heavily on Anderson and Moore [1470, pp. 158-1861). For general
background, see Kwakernaak and Sivan [1972] or Sargent [1981]. The former mostly treats
contimous time systems, while the latter focuses on discrete time systems.

2 Duality refers to the applicability of identical mathematics to solve the classical control
and filtering problems.
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as optimal linear regulator problems. We describe the optimal linear regu-
lator, then display two tricks of the trade, namely, a pair of transformations
that remove both discounting and cross-products between states and controls.
Next we describe Vaughan’s eigenvector method for solving an optimal lin-
ear regulator problem without iterating on Bellman’s equation. Vaughan’s
method 1s typically much faster than Bellman’s. We describe how Vaughan’s
algorithm can be used to compute an equilibrium for a distorted economy.
As an alternative to Vaughan’s method, we can use a closely related method
called the doubling algorithm, which we explain next. We then show how
the calculations can be further accelerated by partitioning the state vector to
achieve a ‘controllability canonical form’. We describe how to use the Kalman
filter to obtain an innovations representation, and how to use it to compute a
Gaussian likelihood function. Finally, we display formulas for the gradient of
the log of Gaussian likelihood function with respect to free parameters of an
economic model. These formulas are homely, but easy to program and useful
for accelerating the process of maximizing the likelihood function.

Two Economies

General straiegies

A class of ‘asset pricing’ and ‘real business cycle’ models use the optimal
Hnear regulator problemn as the workhorse for computing equilibria. After an
equilibrium has been computed, the Kalman filter can be used to deduce the
vector autoregressive representation for variables that are linear functions of
the state. The autoregressive representation is used to interpret the data,
either informally or to form the Gaussian likelihood function recursively.

‘Two general types of models are used, which differ with respect to the
point in the analysis at which linear-quadratic approximations are imposed or
how they are interpreted. In the first type of model, preferences are specified
to be guadratic functions and transition laws are linear ones. The second
type of model uses a linear regulator problem to approximate a dynamic
programming problem that is not itself linear-quadratic.

Linear quadratic economy

There is an exogenous information vector z; governed by
741 = Aoz 4+ Cowiy (1)

where w;,; is a martingale difference sequence with Fw,w] = I, and the
eigenvalues of Asg are bounded in modulus by 1/v/F. The vector z de-
termines a preference shock process b, and an endowment shock process d;
via
dt = Ud 1 .
bi=Up 2. (2)
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A representative household has preferences ordered by
o0
EOZﬁi(St—b:)'(St—bt), 0<pg<l (3)
t=0

where s; is a vector of household services produced at time ¢ via the household
technology

s¢ = Aby_1 4+ 1e

e = Aphy 1 +Opey

where h; is a vector of household durable goods at ¢, ¢; is a vector of rates

of consumption, and A, I, A, ©p are matrices with the eigenvalues of Ay
bounded in modulus by 1//8.
There is a constant returns to scale production technology

(4)

Gocs + D8 =Tl + dy (5)

ke = Apkioy + Ol
where k; is a vector capital goods used in production, i; is a vector of invest-
ment goods, and Ay is a matrix whose eigenvalues are bounded in modulus
by 1/+/8.

The social planning problem in this economy is to maximize (3} over
choices of contingency plans for {ci, s, ki, hs}52, subject to (1), (2), (4),
and (5), and subject to given initial conditions for (zg,h-1,k-1). The so-
cial planning problem fits within the optimal linear regulator framework, and
leads to a quadratic optimal value function V(x¢) = zhPro+ p where &} =
[ht—1, ki1, z¢]. The law of motion for the economy is of the form

ﬂft+1 = AD."Jt + th+1-

Hansen and Sargent (1994) describe a competitive equilibrium for this
economy. Scaled time 0 Arrow-Debreu prices of the consumption vector de-
noted p?, can be computed from the informationin (P, 4,) and the household
technology parameters, and turn out to be a linear function of the state:

Py = Mo /py

where M, is a matrix, and pp is a positive scalar giving the numeraire or
marginal utility of wealth.

The price of a claim to a stream of consumption vectors & = Sgx, is
given by
oo
a=Eoy 89! &
i=0
or
0]
aD:EZ Blat Zoxy | I (6)
i=0
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where
Za :SéMc/pB”. (7)
Hansen and Sargent show that ag can be represented as
Gy = ThHe To + 04 (8)
where
o
Ho = E ﬁT (Aor)r Za A°T (9)
=0
ﬁ [a:]
. = t T o T f Aor T- 10
o, T3 raceZaTZ_:Oﬁ (Ao)” CC'(A™) (10)

According to (8), the asset price ap turns out to be the sum of a constant o,
which reflects a “risk premium”, and a quadratic form in the state vector ;.
To understand why o, reflects a risk premium, notice that the parameters in
C that govern the covariance matrix of innovations to the state influence o,
but do not influence y,.

To implement (8) requires the application of numerical methods to cal-
culate the matrices p, and o, that satisfy Egs. (9) and (10). An efficient
‘doubling algorithm’ for calculating these matrices is described below.

A nonlinear economy

An alternative method for parameterizing linear-quadratic economies is
to generate them as approximations to non linear-quadratic economies by
using quadratic approximations to preferences and linear approximations to
transition laws. These approximations make the parameters in the linear
quadratic structure functions of deeper parameters in the underlying economy.

Here is a version of Kydland and Prescott’s (1982) method for using
linear quadratic control theory to compute approximate linear solutions to

economies that are not linear-quadratic. Consider a social planning problem
of the form

[2=]
max Ey z ﬁtr(zt)
{ue} =0
subject to z;41 = Azy + Buy + Cwrsy
7 = [, w]
where r{-) is a function of the type used in the literatures on stochastic
growth and real business cycles, and w; is a vector white noise.® Kydland

and Prescott generate an approximate solution of this problem by solving a
related problem:

o
max F Ty M2
e o;ﬁ M 2,

ri41 = Azy + Buy + Cwiq.

? In most cases, r(.) is the utility function after nonlinear constraints have been substi-
tuted in.
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where
_ - (91"(2)'_ 1—1627'(5)’— ’
M =e(r(z)— B z+2z 352 z)e
1oar(z) | 8r(m),  _8%(2) &z, 8%r(2)
+ilegs + 57 ¢ ¥ 5 gz ¢t gz )

where e is a vector of zeros with 1 in the element corresponding to the con-
stant term in ¢, and Sy = [/, 0,,%] and S, = [Ok,n, Ir) are selector matrices
and imply #zx = Spz; +S,u:, where n is the dimension of x; and k is the
dimension of u;. This approximating problem is an optimal linear regulator
problemnt.

Linear-Quadratic Models with Distortions

The computational procedures under study were originally applied to
economies for which a competitive equilibrium allocation solves a social plan-
ning problem in the form of an optimal linear regulator problem, and for
which equilibrium prices (or approximations to them) can be deduced from
the value function for the social planner. Most of the methods can, with
some adaptations, also be used to study economies with particular types of
externalities and other distortions, like taxes. Such adaptations are described
by Dagli and Taylor (1980), Blanchard and Kahn (1980), Whiteman (1983),
King, Plosser, and Rebelo (1988), Hansen and Sargent (1993), and McGrattan
(1994).

In linear-quadratic economies, the approach is to formulate the choice
problem of a representative agent as a version of a linear regulator, while
keeping account of the distinction between objects chosen by that agent, and
economy-wide versions of those objects (the so-called ‘little £ - big K’ dis-
tinction, where the ‘little &’ is chosen by the representative agent, taking ‘big
K’ as given, though in equilibrium ‘little " = ‘big K’). The representative
agent’s problem is

o0

(8] [& &][]ewmaee[E] [3]o0

{ﬁt} 1=0

subject to
Yer1 = Ay@t + A5+ Byﬁty

where 1, is a vector of controls set by the agent; g is a vector of state vari-
ables consisting of two types of variables, first, state variables under the par-
tial control of the representative agent (the ‘little £’ variables), and, second,
stochastic processes like technology or preference shocks that are exogenous
to the model; and Z; consists of a vector of state variables that are exogenous
to the representative agent (the ‘big K’ variables), but not to the model.
The representative agent takes the sequence {z;} as given when solving this
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problem, even though after equilibrium is imposed the individual’s choices
determine the behavior of {z:}.

In equilibrium (i.e., after the agent has optimized), the following equations
must be satisfied: _

Et = égt + \I’ﬂ;.

Included in these equations would be the ‘big K = little &k’ conditions.

Despite the fact the equilibrium allocation for this economy does not solve
a social planning problem, it remains possibie to compute and equilibrium by
using algorithms closely related to ones that sclve linear regulator problems.
McGrattan {1994) gives details.

The Optimal Linear Regulator Problem

Consider the following version of the optimal linear regulator problem:
choose a contingency plan for {u;}$2, to maximize

E)  B[ziQzc + v Ruy + 22iWuwy), 0< g < 1 (11)
=0
subject to
T4 = .41'1 + Bu; + th+1, t >0, (12)

where zg is given. In (11) - (12), », is an n % 1 vector of state variables,
and u; is a k x 1 vector of control variables. In (12), we assume that wsyy
is a martingale difference sequence with Ewgw) = I, and that C is a matrix
conformable as required to = and w.

We impose conditions on (@, R, W) and (A4, B) that are sufficient to imply
that it is both feasible and desirable to set the controls in a way that implies
that

00

EY  ptaje | o < 0. (13)

=0

Dynamic programming

A standard way to solve this problem is by applying the method of dynamic
programming. Let V(z) be the optimal value associated with the program
starting from initial state vector o = ¢. Bellman’s functional equation is

Viz,) = max{x;Qr; + uf Ruy + 22, Wuy + BE, V(rH.l)} (14)

Uy
where the maximization is subject to (12). One way to solve this functional
equation is simply to iterate on a version of Eq. (14), thereby constructing a

sequence V;(r;) of successively better approximations to V(z;). In particu-
lar, let

Vigr(ze) = ntlj:?x{a:;Qa:, + uy Ruy + 2eiWu; + ﬁE;Vj(:E¢+1)} (15)
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where again the maximization is subject to (12). Suppose that we initiate
the iterations from Vp{z) = 0. Then direct calculations show that successive
iterates on Eq. (15} yield the quadratic form

Vilz)) = ziPize + ps, (18)
where P; and p; satisfy the equations

Piv1 = @+ BA' PA— (BA'P,B + W)(R+ 8B P,B) (3B' Py A+ W{LT)
pi+1 = Bp; + B trace PCC". (18)

Equation (17) is known as the matriz Ricceti difference equetion. Notice
that it involves only {F;} and is independent of {p;}. Notice also that the
parameters in C', which multiplies the noises impinging on the system and so
determines the variances of innovations to information in the system, affect
the {p;} sequence but not the {#;} sequence. This fact can be summarized
by saying that {F;} is independent of the system’s noise statistics.

Under some regularity conditions described by Kwakernaak and Sivan
(1972) and Sargent (1981), iterations on Egs. (17) and (18) converge.* Let
P and p be the limits of (17) and (18), respectively. Then the value function
V(x:) that satisfies Bellman’s equation (14) is given by

V(zy) = 2Pz + p,
where P and p are the limit points of iterations on (17) and (18) starting

from Py =0,p0 =0.
The decision rule that attains the right side of (15) is given by

i = —F}‘$¢
where
F; = (R+ BB'P;B)"Y(BB' P;A+ W'). (19)
The optimal decision rule for the original problem is given by u; = —Fuz,,
where F' = lim;_. F}, or
F=(R+ 8B PB) ' (BB'PA+W'). (20)

Accarding to Lig. (20), the optimum decision rule for u, is independent of the
parameters C', and so also of the noise statistics.
The limit point P of iterations on (17) evidently satisfies

P=Q+ BA'PA—(BA'PB+ W)
x (R+ BB PB)"Y(BB'PA+ W)

% See Sargent [1981] for a discussion of these conditions,
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This equation in P is called the algebraic matriz Riccali eguation.

One standard way to solve an optimal linear regulator problem is simply
to iterate directly on Egs. (17) and (18). However, faster algorithms are
available. These methods solve the algebraic matrix Riccati equation without
iterating directly on (17). Before we describe some faster algorithms, we shall
describe two useful transformations that permit simplification of some of the
formulas presented above.

Two Useful Transformations

Removing cross-preducts between states and controls

It is often simpler to study problems without cross-producis between states
and controls. A simple transformation eliminates such cross-products. Con-
sider a linear regulator problem with objective function

oo
Y. s {[x; |9 V}‘;] [55]} (21a)
that is to be maximized with respect to the transition law
T3 = A%z + Buf + Cwiy. (21b)
Define the transformed control u, by
uy = u} + R W'z, {22)
Notice that

uiRuf = ['Ei “:'] 1% R *

u;

e ]

1t follows that

[ [ 2] = st i

iy

where @ = @* — WR™'W’. Further, notice that the transition law (12) can
be represented as

Tyl = Az + Buy + Gw\:+1
where A = A* — BR™'W',
Collecting results, we find that the regulator problern (21) is equivalent to

the following regulator problem without cross-products between states and
controls: choose {u;} to maximize

EY BleiQe + v} Rug (23)

=0
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subject to
Ligl = A.Zt + BU; + C'U.Jt+1, (24)

where
Q - Q* — WR—IWI’
A=A*"-BR'W''
It is often convenient to avail ourselves of the opportunity afforded by this

transformation to focus on problems without cross products between states
and controls. '

(25)

Eliminating discounting

Consider the following discounted optimal linear regulator problem: choose
a contingency plan for {u,} to maximize

EY " '{2iQec + u{Ru},0< < 1 (26)
t=0
subject to
ty41 = Aze + Bug + Céiqa, (27)

where {£41} is a martingale difference sequence with F{£:£]} = Q;. Con-
sider the transformed variables

~ 1

= B ay

o (28)
Ut :ﬁ'z Uy

In terms of the transformed variables, Eqs. (26) and (27) can be rewritten as

E) (2/Q& + it, Riy) (29)
1=0
Fip = ﬁft + éﬁt + Cﬁ%—lft-l-l (30)
where _ .
A=p834
i=p (31)
B=p875,

and E(BF &0 (85 641) = B'+!104;. The transformed optimal linear
regulator problem is to choose a contingency plan for {#;} to maximize (29)
subject to (30). The optimal control law for #; is given by

where o o
F={(B'PB+R)"'B'P4, (32)
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where P is the limit point of iterations on an appropriate version of the
matrix Riccati difference equation Eq. (17). The limit point P thus satisfies

P=Q+APA-APB(R+ BPB)-1BBA. (33)

This is a version of the algebraic matrix Riccati equation. The optimal closed
loop system 1n terms of transformed variables is

Fra1 = (A - BRYE, + 88 CEipn. (34)
Multiplying both sides of this equation by ,@‘“(#) gives
Teyr = (A~ BF)z + Cisr. (35)

Under standard assumptions on the undiscounted problem (29) — (30),°
the eigenvalues of (A — BF) are less than unity in modulus. Since A -
BF = g~% (ﬁ - BF), it follows that under these same assumptions about
the wndiscounted problem, the eigenvalues of 4 — BF are less than :713: in

modulus.

Vauﬁhan’s Eigenvector Method
for Solving the Algebraic Matrix Riccati Equation

Vaughan [1970] described a fast algorithm for computing the limit point of
the matrix Riccati equation {33). The multipliersin a Lagrangtan formulation
of the linear regulator problem can be represented in terms of derivatives of
the value function. Vaughan’s method works with the Lagrangian formulation
of the problem and proceeds by deriving the linear restrictions that stability
imposes across the multipliers and the state vector. Those restrictions can
be used to compute the matrix P that solves the algebraic matrix Riccati
equation.

Consider the following version of the optimal linear regulator problem:
choase {us}{L;, to maximize

ty—~1

Z {r3Qze + ug Ry } + £, Py, (36)

t=tig
subject to
L1 = A$1 + Bu:. (37)
Let {p:}iL, 41 be a sequence of matrices of Lagrange multipliers. Form the
Lagrangian

11'—1
J = Z{-’E;Qﬂft + u;Rut + 2yi+1[14.271 + But - I‘f,+1]} + T{;!Pt]xh (38)

t=tg

% Again, see Sargent [1981].
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First order necessary conditions for the maximization of J with respect to
-1 ty -1
{uw 115, and {zm}il;, are

U ! QRus + 28 w1 =0, t=do,..., 011 (39)
Iy e = Qe+ Alpeyq, t=to+1,...,t1 -1 {(40)
gy = Pt)ﬂ?t, t =11. (41)

Solve Eq. (39) for u; and substitute into Eq. (37) to obtain
g1 = A:L‘, - BR—IB’;.H_H. (42)

Stack Egs. (39) and (40) to obtain

Ti41 | _ A —BRulB' Ty 4
[ H ] B [Q Al Heqt (43)
For the finite horizon problem, equation (43) is to be solved subject to the
two boundary conditions, z,, given and p;, = Py, zy, .

To solve the infinite horizon problem that emerges when we set ¢; = oo,

Vaughan proceeded as follows, Assume that A is nonsingular. Then represent
Eq. (43) as

| | A7! AT'BRT1B Li41 (44)
p] T @AY QAT'BRT'B 4+ A | punr

[;EI] :M[xt"f‘l]. (45)
Ht Hi+1
The matrix M is symplectic, which implies that its eigenvalues come in re-

ciprocal pairs.® Assume that the eigenvalues of M are distinct, so that M
has the representation

or

M=WDW"! (46)

where ) is a diagonal matrix of the eigenvalues of M, W is a matrix com-
posed of the corresponding eigenvectors of M, and where D can be repre-

sented as
A 0
D= (0 A‘l) , (47)

where A is a diagonal matrix composed entirely of eigenvalues whose modulus
exceeds unity. Because the eigenvalues appear in reciprocal pairs, we know
that a representation of the form (46) ~ (47) exists for M.

Multiply both sides of (45) by M =1 to obtain

Tig1 b Ahl 0 I/:11171 + V12.ut
[ﬂt+1} "W[ 0 A] [ert + Voape |- (48)

6 See Anderson and Moore [1979, p. 160] for a treatment of the key properties of sym-
plectic matrices.
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Vin Wiz
Vor Vo

Zepi | _ A7 0 Ve + Vigp

[M-ﬂ'] =W [ 0 1\3} leI: + sz#t] ! (49)
where recall that the eigenvalues, the diagonal elements of A all exceed unity
in modulus,

We want to solve Eq. (49) under conditions that imply that it is optimal to
drive z; — 0 as t — oo, starting from any initial ry,. Since each component
of A exceeds unity, the way to assure that 2y — (0 as ¢t — oo is to insist that
the components of the solution Eq. (49) multiplying A’ De set to zero. This
is accomplished by setting the shadow prices u; to satisfy

where W™1 = [ ] . Tterating on Eq. (48) j times gives

Vory + Voo =0

or pi=— V2§1V211‘t- (50)
Equation (50) states that p, is a particular time invariant linear function of
zy, call it py = Pay, where P = —V{él Vay . Under restriction (50), (49)
becomes .
[$a+j] _ [WMA*’.(VHW + V12#:)] (51)
i | T { W A™I (Ve + Vi)

However, we know that g, = Px;. Therefore, EqV16 implies that

Paiyi | _ PWii A= (Virze + Viaue)
e WaA™? (Vire, + Viap)

which implies that PWy, = Wy or
P=WaWs'. (52)

Equation (52) is Vaughan’s equation for the solution of the algebraic matrix
Riccati equation.

An Algorithm for Distorted Systems

Vaughan’s method can be adapied to compute equilibria of models whose
allocations do not solve a dynamic programming problem. Consider the prob-
lem: choose {u, L7} to maximize

=in

i —~1 ¢ £
max {[g:] [gi g;g] [g:] + u} Ruy } (53)

{u‘} i=1y

subject to
Y1 = Ayt + Az 1y + Byus. (54)
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We have used the tricks described earlier to convert our original problem to
one without discounting or cross-products between states and controls. In
equilibrium, we assume that the following conditions must also be satisfied:

z; = Oy + Yy, (55)

First order necessary conditions with respect to {ut}:’;,ol and {y 1) in

this case are given by

U : 2Ru; + QB;ﬂt+1 =0, t=1g,..., 11~ 1 (56)
Y : pe=Quy + Q:zt + Ayprgr, t=to+1,... 011 (57)
e = P[4, 2, t=1t. (58)

where {1} are Lagrange multipliers associated with the constraint in Eq. (54).
Solve Eq. (56) for wi and substitute it and Eq. (55) into Eqs. (54) and (57)
to obtain

Yre1 = (Ay + A4:O)y — (By + Az‘I’)R_lB;.#tH: (59)
#e = (Qy + Q:0)y + (A ~ QUR™ B} )py1. (60)

Note that this system is similar to that of (43) in the undistarted case. To
solve the infinite horizon problem that emerges when we set #; = oo, proceed
as follows. Assume that the matrix A,+A, © is nonsingular.” Then represent
Eqgs. (59) and (60) as

[yf]: AT ATBRTE |y (61)
He QA™Y QAT'BRTIB, + A' | [t

] =m[un], ®

where A = Ay + 4:0, @ = Qy +Q.0, B= By + 4,%, and 4 = 4, -
ByR~'W' Q. Notice that if we replace A and 4 with 4, B and B, with
B, and Q with @, then we have the same system as in (44). The differences
between the systems occur because of the side conditions in Eq. (55) that
must be satisfied. Notice also that in the case with distortions, A is not
necessarily symplectic. We assume, however, that M has a representation

or

M= WDW! (63)

T See McGrattan {1994} for details of the finite horizon case and cases in which A is
gingular.
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where [} is a diagonal matrix of the eigenvalues of M, W is a matrix com-
posed of the corresponding eigenvectors of M, and where D can be repre-

sented as
_fA 0 ‘
o= 2) (64)

where A; is a diagonal matrix composed entirely of eigenvalues whose mod-
ulus exceeds unity, A, is a diagonal matrix composed entirely of eigenvalues
whose modulus is below unity, and the dimensions of A; and As are equal.
We assume that A; and Az have equal numbers of eigenvalues, a condition
for there to exist a unique bounded solution. In practice, we would check this
condition during the calculations.
From this point on, we can follow the same procedure as in the previous
section. Partition W, i.e.
_ | Wi Wi
W= [Wm W:)z] (65)
into four subpartitions of equal dimension. Set u, = ngWl‘llyt so that
¥ — 0 as i — oo. Substitute this expression for y; into Eq. (59) to get peq1
in terms of ¥, i.e,,

pi41 = (P™' + BR™'By)" Ay, (66)

where P = W W7'. Therefore, the solution to the problem in Eq. (53) is
given by

u = —R'By(P~'+ BR'B,)  Ay. (67)
Note that if © = 0 and ¥ = 0, then Eq. (67) is identical to the optimal

decision rule for the social planner of an undistorted economy linear—quadratic
economy.

A Doubling Algorithm

To compute asset prices and to solve a Riccati equation using the ‘parti-
tioning’ methods described below, we have cause to compute infinite sums of
the form

[£.9]
V=Y GDH,
3j=0
where the eigenvalues of G and H are bounded in modulus strictly below
unity. This sum can be evaluated by recognizing that it is the solution of

a discrete Lyapunov equation, and using an algorithm to solve that kind of
equation. Alternatively, it could be computed by iterating to convergence on

‘VJ'+1 = D+G"/JH
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instead of using one of these methods, we often use a simple doubling algo-
rithm, which we implement by computing the following objects recursively;

Gj = Gj-1G;-1
Hj = Hj-1Hj (68)
Vi = Vic1 + GjuVimi i

where we set Vo = I, Gy = (7, Hy = H. By repeated substitution it can be

shown that
27-1

Vi =Y. G'DH' (69)
i=0
Each iteration doubles the number of terms in the sum.
The idea of accelerating convergence by ‘skipping steps’ via doubling can
be used to solve a Riccati equation.

Another Doubling Algorithm

The algebraic matrix Riccati equation can be solved by using a doubling
algorithm.® The algorithm is related to Vaughan’s method in the prominent
role it assigns to the matrix M in equation Eq. (45).

We consider the same version of the optimal linear regulator focused on in
Vaughan’s method, namely, an undiscounted, nonstochastic problem without
cross-products between states and controls. The problem is to choose a plan
for {u;}ik7) to maximize

-1

Z{T;Q.‘Et + uiRUg}-{-:!:;lthh (70)

i=ln

subject to
Lyl = A.’L‘i + Bu:. (71)

Let the value function for the tail of the problem starting from initial condition
x, at time ¢t be rjPur;, for t =&y, tp+ 1, ...,¢; — 1. The matrix Riccati
difference equation is

Pi=Q+ AP A- AP B(R+ B'PB) 1B’ P A (72)

The first step in deriving the doubling algorithm is to use some facts from
linear algebra to show that Eq. (72) implies the following difference equation
for Py:

Pf, = {QA—I + [A’ + QAnlBR_quPt+1}

73
x {A7'+ A"'BR'B'P, )Y (73)

% This section is based on Anderson and Moore [1979, pp. 158-160].
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Equation (73) is of the form

H:{C-{-DIDH.I}X {E+FPt+1}-1: (74)
where
C=QA™!
D=A +QA™'BR'H
9 (75)
E=A4"!

F=A'BR1B.

We can represent the evolution of Eq. (75) via the equivalent system
Xi| _|E F|| X
el =1E B] [ g
where Py = Y}+1X{+"1 and P = Y,X,._'l. Notice that

(17)

E F|_[ 4! ATIBROVE
C DIT1QA™Y A +QA'BR | E

The matrix on the right hand of Eq. (77) is the matrix M on the right side of
Eq. (44) or (45). The solution of Eq. (76) can be computed rapidly by using
the fact that the matrix M on the right side, is a symplectic matriz, and by
exploiting the properties of symplectic matrices.

A symplectic matrix Z can be represented in the form

a—! -1
Z= [.m-l a’fq«aﬁ’lﬁ] (78)

Notice how the matrix in (77} is in such a form, where we set « = 4, v = @,
8=BRB.
Represent Eq. (76) in the form

Xe| e [ X
[Y}]—M[Yt-ﬂ]' (79)
Take the eigenvector decomposition of M given in (46), namely,

(A0 et
wew(} L)

where the A is a diagonal matrix consisting of the eigenvalues of M that
exceed unity in modulus. Represent M in the partitioned form

M= (W Wil [A 0 Vit Va2
Wa Wa| [0 A7 | Var Vao|?
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where {Vj;] is the partition of W~1. Iterating on the partitioned form of
Eq. (79) % times and noting that the elements of A exceed unity in modulus,
it follows that

kl_i_ﬂgo Picker = klir&?}_k+1Xtilk+l = WaWp!, (80)

which is a version of Vaughan’s formula (51) for computing the solution of
the algebraic matrix Riccati equation. In Eq. (80), we have established that
for any terminal matrices X;y1,Y:+1 that satisfy Py = Y}HX,',:U the
limit of Ppyi—p = }'}_;_l_kX;ll_k is the solution P, which determines the
value function for the infinite horizon version of the optimal linear regulaior
problem.

To compute limg—oo Pi-g41 We can proceed by computing higher and
higher powers of M. Rather than computing the sequence M, M?, M?,

., the doubling elgorithm proceeds by skipping steps and only computing
the sequence M, M* M* M3 ... Define ¢(1) = M and define ¢(2) =

= ¢(1)%. Then define
#(2") = o(2*71)? (81)
for £ =2,3.... Evidently, we have that
(25 = M k=1,2,3,....

Thus, we recurswely compute the sequence M, M2, M*, M3, ... Mzk,.
by simply squaring the preceding element of the sequence. We represent the
solution of (79} in the form

Xt—2*+1 _ a2k | K
] =[] "

We can compute Py_g.y g =Y;_ gk+1X— ok
Equation (82) is the key to the doubhng algorithm. The algorithm is
completed with the following two details. First, one computes the squares of

the matrices M2" by using the following algorithm for squaring symplectic
matrices:
ax41 = ap( + Brvi) Lo

Biogr = B + o (I + Bome) " Brel, (83)
Test = T + ok + Beve) e
where we set ag = A, 70 =@, fo = BR™'B’'. With this algorithm, we have
that 1 s
M27( - [ (l‘k_l , (233 ﬁli] ]. (84)
Tre T af + ke Ok

Second, with A7%" given by Eq. (84) in Eq. (82), and setting X340 = I,
Yi+1 = 0, we obtain

}}t—2k+1Xt—_12k+1 =7%. (85)
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Equality (85) implies that we can compute the solution P of the algebraic
matrix Riccati equation from

P = lim v, (86)
koo

where 7 18 computed via Eq. (83).

Even though it was assumed that 47! exists in deriving the doubling al-
gorithm, notice that in (83) there is no call to invert 4. Indeed, the algorithm
seems to work well even when A~! does not exist.

It is worth noting that while 95 converges as & — co, neither @y, nor 5
converges. On the contrary, both ap and B diverge at a rate determined
by the eigenvalue in A that is largest in absolute value. The matrix A2"
diverges as k — oo; what converges is the “ratio” Yt__szt‘__lzk .

The doubling algorithm is much faster than iterating on the Riccati equa-
tion because it skips so many steps.

Adding Speed by Partitioning the State Vector

After application of the two transformations described above to remove
discounting and cross-products between states and contrals, often our control
problem occurs in a controllobility canonical form: choose {1;} to maximize

N @ Q z
ool |8 B [g]+nu @
t=0
Asubject to
g | _ | A Az | | ru B
=1 dnllm] e (%] &

with [z],, x5}’ given. The patiern of zeros in the partitioned versions of
A and B in Eq. (88) reflect that z4 is an “uncontrollable process” from
the viewpoint of a social planner.® Two things distinguish a controllability
canonical form: (1) the pattern of zeros in the pair (4, #) and (2) a require-
ment that (A1, B1) be a controllable pair, by which is meant that the matrix
[B1 AuiB1 A3 By --'Arfl'lBl] have rank equal to the dimension of Ay;. A
controllability canonical form adopts a description of the state vector that
separates it into a part rp that cannot be affected by the controls, and a
part zy; that can be controlled in the sense that there exists a sequence of
controls {u;} that sends x; to any arbitrarily specified point within the space
in which z, lives.

An advantage in working with a system in controllability canonical form
is that computing the optimal controls can be simplified by organizing the
calculations in a recursive way, first focusing on the controllable point of the
system.

? See Kwakernaak and Sivan [1972] or Sargent [1981],
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Define an operator T associated with Bellman’s equation:

T(P)=Q+APA—-A'PB(R+ B PB)"'B'PA (89)

Partition P and T{P) conformably with the partition [f_;z} The {1,1)
and (1,2) components of T(P) satisfy

Ti1(P11) = Qi + AL PriAn — AL PuBi(B+ B PuB1) 1B Py A (90)

and
Ti2(Pi1,P12) = Qra + AL Py

— AL PuBy(R+ BiPuB ) 1B Pl A, (91)
+[A], — AL PuBi(R + B Py B1) ' B PiaAs,

Notice from Eq. {80) that 17, depends only on Py, , and not on other elements
of the partition of P. From Eq. (91), Ti» depends on P;; and Pj3, but not
on FPqy. Because T' maps symmetric matrices into synimetric matrices, the
(2,1) block of T is just the transpose of the {1,2) block. Finally, the (2,2)
block of T' depends on Pjq, P13, and Pas.

Partition the optimal control state feedback matrix F = [Fy F3], where
the partition is conformable with that of z;. The optimal control is

Uy = -—{Fl Fg] [:;::[ .

Let Pff1 be the fixed point of Eq. (90) and let P1f2 be the fixed point of
Tyo(P{,, Piz). Then Fy and F, are given by

Fy = (R+ B P/ B) ' B P{ Arq (92)
Fy = (R+ B P{, B)) (B P}, A1z + B, P{, 437) (93)

Equation (92) shows that F; depends only on Plfl, while Fy depends on P’lfI
and P/, but not on PJ;, the fixed point of Ty,.

We can compute the fixed points of 77, and 712 as follows. First, note
that the 77; operator identified by (90) is formally equivalent with the T
operator of (89), except that (1,1) subscripts appear on A and @, and a
(1) subscript appears on B. Thus, the 77, operator is simply the operator
whose iterations define the matrix Riccati difference equation for the small
optimal regulator problem determined by the matrixes (411, B, R, Q11).
We can compute P]"'1 by using any of the algorithms described above for this
smaller problem.

Second, given a fixed point Plf1 of T11, we apply our simple doubling
algorithm to compute the fixed point of Tu(Plfl, .}. From (68), this mapping
has the form

TPy, Pi2) = D+ G' P, H, (94)
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where

D = Quo+ A4y P A1a — 44 P{\Bi(R+ BIP{, B B P Ay
G = [Ay - By(R+ B, P B1)" B, P{ A11]
H=Ay

Notice that G = Ay, — B1F1, where Fy is computed from (92). When 2o,
is set to zero for all ¢, the law of motion for z;; under the optimal control is
thus given by

e1:41 = Geys.

We have assumed regularity conditions that are sufficient to imply that the
eigenvalues of G have absolute values strictly less than unity. The eigenvalues
of H also are strictly less than unity by assumption. That the eigenvalues of
(G and H are both less than unity assures the existence of a limit point to
iterations on Eq. (94). The limit point of iterations on T15( P/, P14} starting
from Py =0 can be represented

oo
PL=>G'DH. (95)
7=0

We compute Plf2 by using the doubling algorithm described above.

Innovations Representations

Constructing an inrcvations represeniation is a key step in deducing the
implications of a model for vector antoregressions, and for evaluating a Gaus-
sian likelihood function.!® An innovations representation is a state-space
representation in which the vector white noise driving the system is of the
correct dimension (equal to that of the vector of abservables) and lives in the
proper space (the space spanned by current and lagged values of the observ-
ables).

Suppose that our theorizing and data collection lead us to a system of the
form

Ty = Aoy + Cwygy
=G+ vy (96)
vy = Dveoy +

where D is a matrix whose eigenvalues are bounded in modulus by unity and
ne 18 a martingale difference sequence that satisfies

Emn; =R
Fwipm, =0 forall ¢t and s.

19 The calculations in this section are versions of ones described by Anderson and Moore
[ro79).

IS
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In Eq. {96), v; is a serially correlated measurement error process that is
orthogonal to the z; process.
We define the quasi-differenced process

%y = zp4y ~ Dz (97)
From Eq. (96) and the definition (97) it follows that
i =(GA, - DGYey 4+ GCwip1 + i
Then (z;, %) is governed by the state space system

Zip1 = Agzs + Cwigg

_ 98
7 = Gzy + GCWi41 + Ty (%8)

where G = GA,~ DG . This system has nonzero covariance between the state
noise C'wyq1 and the “measurement noise” (GCwiq4a+ mey1). Let [Ky, i be
the ‘Kalman gain’ and ‘state covarlance matrix’ associated with the Kalman
filter, namely,

K, = (CC'G’ + A,2,GN0; (99)
Q= GG+ R+ GCC'G (100}
i1 = AT A +CC = (CC'G + A5G Y G A/ +GCC’). (101)

Then an iunovations representation for system (98) is

Erpr = AoZ + Kpuy

- 102
Zt = GE 4w (102)
where .
ig = E[It l Et_l,fg_g, .. .,2[],.’2'(]]
Uy =y~ E[ft | Zem1, .. -, Zo, £

O = Fuu, = GG + R.

Initial conditions for the system are #¢ and Xg. Using definition (97), it

follows that [z441, 21, .. ., 20, &o] and [Z;, -1, - .., %o, &p] span the same space,
so that )

&= Efee | 2, 200,00, 20, 8]

U = zq1 — Efzer ) 2, .-, 20, 0)-

So uy is said to be an innovation in 241 .

Equation (101) is a matrix Riccati difference equation. The Kalman filter
has a steady-state solution if there exists a time-invariant matrix ¥ which
satisfies Eq. (101), i.e., one that satisfies the algebraic matrix Riccati equation.
In this case, the saie computational procedures used for the optimal linear
regulator problem apply. This is a benefit of the *duality’ of filtering and
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control referred to earlier. The steady-state Kalman gain, K, is given by
Eq. (99) with Z; = £ and @, = GEG' 4+ R+ GCC'G".

The innovations representation is equivalent with a Wold representation
or veclor guforegression. Estimates of these representations are recovered
in empirical work using the vector autoregressive techniques promoted by
Sims (1980) and Doan, Litterman, and Sims (1984). 1t is convenient to have
a quick way of deducing the vector autoregression implied by a particular
theoretical structure. To get a Wold representation for 2z, substitute Eq. (97)
into Eq. (102) to obtain

ﬁt-i-l = Aoét -+ KT,H

- 103
41 — DZ; = G.’E‘f, + u;. ( )

A Wold representation for z is
zpy = [I— DL HI 4+ G(I — A,LY 'K L}, (104)

where again L is the lag operator. From Eq. (103) a recursive ‘whitening
filter’ for obtaining {u;} from {z} is given by

W = 244 = Dz — Gy (105)
Epp1 = Agidy + Ky

Vector auioregressive representofion

Hansen and Sargent show that an autoregressive representation for z; is
zig1 ={D+ (I = DL)YGI — (A, = KG)L) 'K L} 2 + uy. (106)

or

2 =[0+ GK]zt + Z[G(AO - K’é)jK
=1 (]‘07)

- DG(A, = KGY 'Kz + .

This equation expresses z;4; as the sum of the one-step ahead linear least
squares forecast and the one-step prediction error.

The Likelihood Function

We start with a ‘raw’ time series {y;} that determines an adjusted series
z¢ according to

Z = f(yhe)a

where © is the vector containing the free parameters of the model, including
parameters determining particular detrending procedures. For example, if
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our raw series has a geometric growth trend equal to u' which is ta be re-
moved before estitnation, then the adjusted series is z = y;/p*. We assume
that the staie space model of the form (98) and the associated innovations
representation (102) pertains to the adjusted data {z;}. We can use the in-
novations representation (102) recursively to compute the innovation series,
then calculate the log-likelihood function

T-1
1(©) = Y (log] + trace( 7 ) ~log LIV} (aog)
t=0

and find estimates, © = argming L(©) where Q; = Eu,u} is the covariance
matrix of the innovations. To find the minimizer @, we can use a standard
optimization program. In practice, it is best if we can calculate both the log-
likelihood function and its derivatives analytically. First, the computational
burden is much lower with analytical derivatives. Consider, for example, the
model of McGrattan, Rogerson, and Wright (1993), which has 84 elements
in &. For each step of a quasi-Newton optimization routine, L and %% are
computed. To obtain % numerically for the McGrattan, Rogerson, Wright
(1993) example, the log-likelihood function must be evaluated 168 times if
ceniral differences are used in computing an approximation for %, eg.,

OL  L(O +ee)— L(O—ee)
EZ 2¢ ’

where e is a vector of zeros except for a 1 in the element corresponding to
#, and ¢ is some positive number. Usually, the costs of computing L a large
number of times far outweigh the costs of computing -?,% once. If L and g‘;‘
are to be computed many times, which is typically the case, then the costs
of computing numerical derivatives can be quite large. A second advantage
to analytical derivatives is numerical accuracy. If the log-likelihood function
ts not very smooth for the eniire parameter space, there may be problems
with the accuracy of approximations such as Eq. (109). With inaccurate
derivatives, it is difficult to determine the curvature of the function, and
hence, to find a minimum.

For L(©) in Eq. (108), the derivatives 9%%912 are easy to derive. We derive
them in Appendix A and distinguish formulas that are steps in the derivation
from those that would be put into a computer code. Note that although the
final expression for 4 33 derived in the Appendix is complicated, we can use
numerical approximations such as Eq. (109) to uncover coding errors.

Once we have the log-likelihood function and its derivatives, we can apply
standard optimization methods to the problem of finding the maximum likeli-
hood estimates. In practice, we will have a constrained optimization problem
since the equilibrium is not typically computable for all possible parameteriza-
tions. For example, we may have simple constraints such as £ < ©® < u where
£ and u are the lower and upper bounds for the parameter vector. In this
case, we either use a constrained optimization package or penalty functions
(ref. Fletcher (1987)).

(109)
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After computing the maximum likelihood estimates, we need to compute
their standard errors,

5.{0) = diag [z gi)‘ %g‘ - ) (110)

where L;(@) is the logarithm of the density function of the date ¢ innovation,
ie.,

) a ,8
L(©) = log |Q] + uQ  u, — Iogli(g;t—lf (111)

The formula for %%L is also given in Appendix A.

Conclusion

We have comsigned perhaps the most useful parts of this paper to the
appendixes, which contain formulas for computing 2% ae . Resort to these for-
muias can be avoided by using nurmerical derivatives, as was done for example
by Selahattin Imrohoroplu (1993). However, for problems with sizable num-
bers of parameters, these formulas are very valuable In terms of consequence
for speed of the computations, the decision whether or not to use these for-
mulas as against numerical derivatives will dwarf the choice of a particular
equilibrium computation algorithm.

Appendix A: Computing 2L and 2L for a state space model

Differentiating the log-likelihood function with respect to the free parame-
ters of the economic model can be broken into two steps: first, differentiating
the log-likelihood function with respect to matrices appesring in the state
space model (102); and second, differentiating the parameters of the state
space model (98} with respect to the free parameters of the underlying eco-
nomic model. In this appendix, we derive %ﬁé in terms of the derivatives of
Ao, C, G, D, R, &y, Ty, and {z,f = 0,...T}. We ignore the Jacobian
in Eq. (108) since it differs for each problem. In Appendix B, we show how
to compute derivatives of A, and C for the linear-quadratic and nonlinear
economies with and without distortions.

The formula for &%

For the first step, we take as given A,, C, G, D, R, &y, Ty, and
{z:,t = 0,...7}, and their derivatives with respect to the deeper economic
parameters. We shall show that the derivative of the log-likelihood function
is
T-1

0A, . =
= 2 [2 trace{-—(a—;-E;G’MtG - &l Q7G4 2 trace{%—gC'G’MtG}

ai
a9
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-+ 2 trace{ (AOEtG’Mg EiGﬂMtD -+ GC’GIMt — Ao:ﬁtuiﬂt’l
-+ fguig— D)}

-2 tme{——GEtG'Mt - 7w Q7 + GE Q7))

+ trace{—-—Mt} + trace{~—G’MtG} -2 trace{%luiﬂfl(_}'}

+ 2 trace{ H'l AT 2trace{ ut QDY (112)

where

N 0%, 04, 0C ., , ,9C"
3 = g Dot Aoy Ay + AT + T+ O
oc ., 80", G 0Ay . =,

—(—SECG + 0% G+ GO + =2 EG

@_c_;_ 80,
59 50
8G.. ., 8% 84,
A(BQE:A + G A+ CE

aG daC ac’ )

o%
4 Ayt G ATy

]
a6 o

)Kt + Ki—5o

ECG +G5‘90 +G069

%141 35:1 04, 0K . 0C. 0K,
a0 e Mge )’:”L 50

62’1.{.1 aZt

+ Ry~ Dg)-
The expressions in (113) and (114) follow from the definitions of X, in
Eq. (101) and &; in Eq. (102). The initial conditions, &, and Xo, and their
derivatives are assumed to be given.

If £, is given by the steady state solution of the Riccati equation, then
the computation can be simplified. The formula for the derivative of the
log-likelihood function is given by

oL _
oo

(113)

(114)

(EG’MG Q7 G Tl ~ KG)

- EG’Q“FU,\(I ~KG)— TA I, Q7'G
+ ZAI(I - KG))}

+ 2T trace{—a—C-C' (G’M‘G - G’Q_II"W\(I - KG)
—(I-GKNM,Q7 G+ (I -G KNI — KG))}

+27 trace{—aE(AoEG"M -EG'MD4+CC'G'M
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- Aol“.éug--]L + F:E:ug—lD +A0F£J\I{
— T KD -CC'(I-GKH,Q7!
+ CC'G'AIT K — A,RA T, Q7!
+ ZATLL QI D+ A EGQTIT WK
—EGFQIMGMED — ALA K + SA KD
- CC'IIK + CC'G'K'IK)}

=20 trace{ (GEG’M + (o — Gl 07!

+ GTga K — [ K - GERALT Q7!
+GEG QIR ~ GEALTR)}

+ 2T trace{ ( M+ QT LK + 21\ 0K}
62’14.1 (?zt ; 1
+2 trace{z —-Dag) UAYERY:
62’; 62’; 1yys
-2 trace{z - DMK} -2 trace{-—-)\ } (115)

where I is the asymptotic state covariance matrix found by iterating on
Eq. (101) and G, K, Q, u, and #; are defined in Egs. (98), (99), {100), and
(102}, and

At - (Ao*' [{G)IAH.I +G’Q—1Ut, t :0,...,T*2
Ar—1 = G'Q N up_,y

T-1
Cyu = = Uy
7
1 T=1
F.i:u = f Z -i'tui
=0
1 Tr-1
T',, = T Z ztui
t=0
1 T-1
Tur = & hIRIIEY (116)
t=1
1 T-1
Uiy = 1.1 A} (117)
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1 T-1
o= Z Py (118)
M=Q" I—Q-ler-l
Ao = A, - KG

O=A A4, + G'MG ~ G'QU Ty A, — AT, Q716G

In the remainder of this appendix, we derive the formulas in Eq. (112) and
Eq. {115). Readers who are not interested in this derivation can skip the rest
of this appendix.

Derivation of the formula

The derivative of the log-likelihood function with respect to any element
¢ of the parameter vector is given by

uj, 4
Zt Mt} +Ztrace{( 50 —uy + U= 5 et} (119)

:Sl +SB

where M; = Q7' = Q7 1wl Q;! and @ = Eugul. We start with the first
term in the expression for the derivative of the log-likelihood function, $;.
For this, we need the derivative of the covariance matrix, ©;, which satisfies

o0 _ aG . 0%, 6G aG .
oc ., ., ac’ ,aG’
+G(’390G +GC'-5~9-G + GCC ¥

oG g4, 9D aa . 8&
—('("3'?)-‘4°+G69 6€G Dae)E‘G +G38

1 r ! )
4 Omua 06, 24 8D 8G

et 22
58 T ¢ %% ~m P
R  0G ., ., ac ac’ aG'
-— C'G+GC—= G +GC "———1
+89+BGCCG +G69 + 50 GCC'—(120)
The second equality follows from the definition of G. If we post-multiply the
derivative of §; by M; and take the trace of the result, we have the first term
of the derivative of the log-likelihood function in Eq. (119):

ES 8c
S$1=3_1 (G M,G) +2 trace( 5= C'G/ M,G)
1=0

+2 trace(%—g{AoE;(—}"Mt - S/G'MD+ CC'G' M, })

-2 trace(%?GEté’Mt) + trace(%?—

p I -
+ trace(%g—tG’M,G)]. (121)

Mt)
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Note that the formula for 5'1 depends on derivatives %ﬂ s —f— 'aﬁ _162 , and
?

a? , which are known, and 22t aa , which is yet to be derived.

We now turn to the second term of the log-likelihood function derivative,
Sy = trace(Buul/00Q; ). Let Tyu(t) = wuf. By definition, [yu(t) =
(Z — G#;)(% — G,)' and, therefore, its derivative is given by

8I‘w(t) _ % 3G 6$g 82; 8G N C):E:

o8 =g " g gt ulzy gt Cgp)
=(a—;%i—%§z —D%%~%§Aoﬁ‘ma%h
S
’G’%? +“§%§,D’ ?39 G'). (122)

If we post-multiply this derivative by Q7 !, take the trace of the resulting
matrix, and sum over t, then we have the second term of the derivative of
the log-likelihood function, i.e.,

T-1
Sy =— Z[Q trace{ :z:tut 1G}+2 trace{a (G RTAY 1 — Q7 D)}

=0
+2t.ra.ce{ (ztut Géyu}) '} — 2trace{2 ZH'I w7}

1

+2 trace{z FQ‘H‘Q—ID} +2 trace{z i) W IGY. (123)

Sum the expressions in Eqgs. {121) and (123) to get the expression for the
derivative of the log-likelihood function in (112).

For the time-invariant case, several more steps are needed. First, we derive
the last term in Eq. (123) in terms of the derivatives that are taken as inputs.
To simplify notation, we first define the sequences {d;} and {A;} as follows

_ 8A, 8K .0G._  OK_ 0% ,
(66 EE'G K ag)lg-l- 69 Zt+k 69, t-[),...,T—l
--(AD—KG)IA{+1+G$ _1ut, t=0,...,T—2
1= G’Q_lu'p_l. (124)

Notice that the time subscripts have been dropped from & and Q since the
time-invariant case assumes that ¥, = ¥ for all t. Let 4, = A, — KG.
Notice that since #44 = A& + K7, its derivative is given by

0241 o Ofy
R (125)
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Write out the last term in Eq. (123) and substitute in &, = A% + Z:;E A-ld,_,.
Then group terms involving &g and dy, t = 0,...7 — 2. These steps lead to

T-1

2 61‘: f 1 2 ’
-?ttace( 89 W 1G) = ——?trace( o+ Z di-1A})
2 Az |, K - . 0G
_—?trace(—)\ —«5@—(}'——[& 6‘9A0
. 04, oD BG 0K
_IGBG +KBHG+}-\D89);&A+%F5)\
1, &0z 9D az
K AL YA e K i
Tt Lot DZ

==19 trace{%l‘g,\([a KG)}
+ 2 tra,ce{g—(;(Aa[‘,;.;‘K - P_f_-),ffD}

-2 tra.ce{%?—(GFmK - T K}

2 dz; th 1y
-7 trace{K Z —M—-KD Z

- é:_,— trace(a—/\’) -2 tra.ce{ 36‘ u,\} (126)
where [yx, I'za, and [';x are the sums defined in Eqs. (116) through Eq. (118)
and Tz = EI=_11 Zi—1 M /T . The second equality follows from the definitions
of di—; and G and some algebraic manipulation. The last term in Eg. (126)
uses the fact that w; = 7 — (GZ;. With the exception of %fg , the expression in

Eq. (126} is a function of known derivatives. The expression for 3K follows
from the definition in Eq. (99) and is given by,

0K _[9C iy 4 0%C" o1, 0 2C" , 0o 6%
7 = |55 CC 0T G e + 5 +465G
! f ’ !
+ A, EAZ,%? +Aaz‘9;° G — A, EG’aD _4 z%f pla-t
—~(CC'G' + A, G~ c?—(EA EG’+G oG - -—GEG’
50 5
8G ., 0% ., 66" BAO’ ,
DEEEC + G5 G + Gudy =
_engP _nC y  OR 6Gc:'c'G'

ae ae ot
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ac ., ac’ _, ,BG
+GBBCG +GC'-—-—G +GCOC ET (127)
Note that we have written ﬁ in terms of %g . %‘%‘1, and 22 . Substituting

%—K into the expression in Eq {126) and rearranging terms we have

trace(z 6t u QTG =

-2 trace{a—Go(I‘f,,\(I - KG)+ EG'Q7 Tl — KG)
+ZATL,Q76)
80 I3 fey—1 - / -1
-2 trace{—a—é—c (G'Q ' Tun(I - KG)+ (I - 'K, Q71 G}
aG - - / et ! -1
+2 trace{%(}io[‘ﬂft - TsaKD - CC(I -G RHI,,\0

+ CCGQ T K — A,ZA N Q  + 24 Q7D
+ A ZCQTIT WK — £G'Q T K D)}

-2 trace{ (G[‘,,AR I K —GEAT,,Q ' +GEG'Q T K)}

+2trace{—ﬂ P K}

2 52’: 32: 1y
-7 trace{B 2 —)\' KD E
2 ' -1p 7
-7 trace{ )\ 0} —2 trace{ ( GO~ do)} (128)

Therefore, the expression for the second term of the log-likelihood function
derivative, Sa, is given by

94,
So=—2 trace{ (Fm,Q "G +Tea(l — KG)+ EGFQ Ty (I - KG)
+EA{,I‘{,AQ"1G}
oC ., -1 1
~2 tra,ce{%-c (GAT' (I - KGO+ (I - GK,071GY)
G -1 - . .
-2 trace{%-(AoI‘i.uQ — T D= A0 K+ Tsn KD

+CC(I - G'KND,Q7 - CC'G'Q ' DK
+ A,ZADL Q7 XA, Q7D
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— AZGQTIT WK + 26 Q7T K D)}

-2 tra,ce{%—J:;)z((l‘,zu = GT3,)Q7 ! + GTsa K — T K — GZAL I 0!
+ GEG'Q™IT,, K)}

+ 2 trace{ G—RQ'lI‘u,\ K}

2 trace{z 62,.,.1 wQ 1} - 2 tra.ce{?ri:1 %u'Q’lD}
*T T — 09"

T-1
2 3 1 821 19
~-7 trace{]& - KD E

2 6210
-7 traceq W%}

¥ B
-2 trace{g—gG’Q‘lPuhAo}. (129)

84,

Our expressions for Sy in Bq. (121) and S in Eq. (129) depend on £82,
%, %_c;’, %, %, which are known, and ‘gf, which we will now derive.
Using the expression in Eq. (113) w1th g1 = Z; = Z, we get

o% 6‘2 , .
25 =Yg — AL+ W+ W (130)
where
_ 04, ;o _, ac’ _, cr ,3G'
W = 90 ° %C’ 390611 —CEGI CC’a
_ 94, » , 0G7 A" .o,
—ATA
gg DO K~ AN r K = AgE=s G'K
D’ 8G' OR
e / UL -
+AEG69A+A269DI + I(agl
BG 94, oD
—ALEG'K’ ’—h——— TG'K!
89 G'K 50 YK G
-K D%—gEG’K’ + KZECC'G’R + AGaCC"G'R (131)
The terms W and W’ in Eq. (130) include all derivatives but %%. To get
the expression in Eq. (131), we substituted the expressions for % and %

into Eq. (130). Let IT be a symmetric matrix that satisfies

H:A;nﬁo+%(H+H'), (132)



32 Mechanics of Forming and Estimuating

where L B _
H=G'MG-2G'Q7 A, (133)
Then,
trace(%gh’) = trace {3 ;(H+ HN}

= tra.ce{———— - A A,)}

_trace{a I} — trace{4, g?

GL oL o,
= trace{(— 50 o%AO)H}
= trace{(W + W')IT}
= 2 trace{ WI}. (134)

A

If we post—multlply W by I and take 2 times the trace, then we have an
expression for trace(4Z H) in terms of known derivatives, i.e.,

trace(%—iﬂ') = 2 trace{ 94, n( - KG)}

o6
+ 2 trace{—C'(I -G KNI - KG)}

-~ 2 trace{még-(/i,,}:fif,ﬂﬁ' —TANKD +CC'(I-G'K)HIK}
+ 2 trace{%—?GZfl;HK} + trace{%—?h”ﬁff}. (135)

Sum S, which appears in Eq. (121) with ¥, = £ and 2, = Q, and
&, in (129) Substitute in the expression for trace(aEH) from Eq. (135).
The result is the derivative of the log-likelihood functlon which is given in
Eq. (115).

Standerd errors

After we have computed parameter estimnates, we want to compute their
standard errors as given in Iiq. (110). Tor this, we need to compute the
derivative of

Ly(@) = log || + Q] s

with respect to any element § of the parameter vector.1l This derivative is
given by

Ju,’ —y Oy O
%;Q ug + Q! 50 — Q!

o0
— -1 t
= trace(Q; 50 1+ 3

oL
a0

11 Note that we are again ignoring the Jacobian since the relationship between z and y
differs for each problem.
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- _ 1,00 By’ _16u
= trace{ (! ~ Q7 Tuul Q) 1)—551} +trace{—5-éi Q7 Yuy + w2 1“8_B£}
!
= trace{%M;} + trace{Q;! a(gtgut)} (136)

where M; = Q7' — Q7 w7, Above, we caleulated 2% and 2d)
These expressions are given in Eq. (120} and Eq. (122).



34 Mechanics of Forming and Estimaling

Appendix B: Differentiating the state-space model
with respect to Economic Parameters

In this appendix, we describe how to compute derivatives of A, and
with respect to the free parameters of an economic model. We do this for four
economies: a linear-quadratic economy without distortions; a nonlinear econ-
omy without distortions; a linear-quadratic economy with distortions; and a
nonlinear economy with distortions. Because we use linear approximations
for the nonlinear economies, most of the work is in deriving the formulas for
the linear-quadratic economies.

A linear-quadratic economy without distortions

The optimization problem is

l{naxZﬁ (€5Q2; + u\ Ru; + 22, W) (137)

subject to ¢4 = Azy + Bus + Cerqy,

where each element of €; is a random variable that is normally distributed
with mean 0 and variance equal to I. We assume that the matrices @, B, W,
A, B, and C depend on a vector of parameters, ©. Typically, the number of
elements in © is small relative to the combined number of elements in these
matrices. We also assume that the derivatives of the matrices in Eq. (137)
with respect to the elements of @ are known.

The optimal decision function is given by u; = —Fx; where

F=(R+pBB'PB)" BB'PA+ W) (138)
for P satisfying
P=Q+BAPA-(W+ A'PB)(R+pB'PB)"(B'PA+W'). (139)
The law of motion for « in equilibrium is
riy1 = Aoty + Ceq1, Ao =A- BF. (140)

Therefore, the derivative of A, with respect to an element of © is

0A, 064 0B ar
59 ~ a0 o0 Ta (141)
The derivatives %:;é— and 28 depend on the specification of the problem in

Eq. (137) and are assumed to be known. The derivative of F' is

F f
%—9- = —(R+ BB PB)” (‘aR +ﬁaB PB+ﬂB’6PB +,6’B’P%—§)F
6B’ 6P 8A aw’

+{(R+8B'PB) (B— PA+ ﬁB’ A+ BB P—= T 1142)

a6
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Notice that this formula depends on the derivative of P, with the remaining
derivatives provided by the modeler. The derivative & m— satlsﬁes the following
equation:

‘Z_{::%‘g ﬁ%‘;lfPA+ﬁA’aPA+ﬂA’ 63‘;1 (aarf+ﬁg—‘;,PB
+ﬁA’%—eB+,8A’ %9)F+ F’(Z?+ﬁg§’PB+ﬁB’ 50 5
+BB'P %?)F F(ﬁB—B’PA-FﬁB’ c,mA—HiB’ z’;‘+%—f’)
| R (R
_fja_";’ —F'aaf? F’%?F. (143)

Although this formula determines only an implicit function for %, the gra-
dient of P and can be represented explicitly in terms of things we know.
Define the gradient operator as follows: for any matrix A that depends on
the parameter 8, VoA = vec(34). Then,

=(I-PA, QAN VMQ+BAPRNVeA + B3I ® A,P) V%A
—BA'PR FYV B — B(F' @ ALP) B — (F' @ ) VW
~(I®F)YBW +(F'® F)VaR}, (144)

which is a function of the gradients of 4, B, @, R, and W. The gradient
of P can then be substituted into the following formula for Vi F'

VaF =B(IQ@RB P)VsA— J(F @RB' P)VsB + 8(A. P ®R) Vs B’
—(F@R)VsR+ (I®@R)VaW' + 8(A" @ RB') V, P, (145)

where R = (R + #B'PB)™!. Finally, we substitute this expression for VjF
into
Vedo= VGA—(F' @ I)VsB~(I® B)Vs F. (146)

Since € is chosen by the modeler, we assume that iis derivative with respect
to @ is known.

A nonlinear economy without distortions

The optimization problem that we start with is

max Ey y_ 8'r(z) (147)
fud i3

subject to Ti4] = Ail’:g + But <+ th+1

2= [, ]
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We solve a related problem, namely,

o0
max Eg Z,Bt #Mz (148)
{uet t=0

41 = Az + Buy 4+ Cwig,

where
LoorE . 1_,0%(E) .,
M =e(r(7) - B(E) P+ 5E 62('3 )z)e
1 ar(z)'  or(z) , B _,0%r(2) _ 0?r(2)_,  8%r(2)
T3l t e ¢ T e T 0 o ) (149)

and where e is a vector of zeros except for a 1 in the element corresponding
to the constant term in z;, # and & are the steady state values of z; and w,,
and Sz = [In,0n ] and Sy = [04 n, It] are selector matrices and umply 2z, =
Sgx: +Syur, where n is the dimension The latter problem yields the same
decision function as that of Eq. {137) (where @ = SEMS,, R = SIMS,,
and W= S,MS,).

In the nonlinear case, however, the derivatives are slightly more compli-
cated. To derive %ﬂ-, we need to calculate derivatives of the coefficient
matrices of the objective function. For this, we need the derivative of M
with respect to 8:

oM _ or(F) 8%r(z ) __or(z)or  10% dr(2) lu,83r(z)

o0 = Tog " ezon T 0z a6 206 6 T3 gman”

1_,6° 0°r(z) 82 L &*r(z)  8*r(%) . Q_E_‘:Bzr(f)

57 55 35" 5:00 ' 0zo0 - a0 9
L0%r(z) &r(z)_, O*r(z)0f - &3r(z)

— €z - ZEe

52260  07°08 572 30° T 3ma0 ) (150)

As this formula indicates, the modeler must provide first, second, and third-
order derivatives of the return functlon The derlvatlves of @, R, and W
follow immediately from aa‘tf‘r, e.g., 89 = .5';, M. S.. The remaining deriva-

tions are the same as in the linear-quadratic case.

A linear-quadratic economy with distortions

The optimization problem that we start with is given by
Z "9, Q:11[w a] W,
g Wz W i T W AN Y
Tt 4 a [ ] [ Q22] [fi] +utRut+2[Et] [Wz]ui} (181)

subject to

o1 = Ay + A5 + Byﬂt + CEeqa.
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To ease notation, we convert the problem to one without cross-products or
discounting. Let

w =82y
z = g%,
u = B1%%,
e = 7%,
R=R

Qy=Qy— W,R™'W,
Q.=Q,— W,R'W!
Qa2 = Qo2 — W, RT'W]
Ay = VB4, - ByR'W))
A, =/B(A, - B,R™'W))

By = \/Bég . B
O =(I+¥R™"W)) (O - TRW))
U= (I+VR™'WH~ e (152)

With these definitions, we can restate the optimization problem as follows
[=.n] y ! Q Q !
§ : t v z Yt i :
i { [Zt] [Q; Q22] [z:] + R} (153)

subject to
Vee1 = Ay + A2+ Byuy + Ceg g

Let A = 4, + 4,0, Q=Q,+Q.0, B=B,+A,¥,and A = 4, -
B, R™'¥'(Q’,. 'The decision function in this case is given by

F=(R+B,PB) B,PA (154)
where P satisfies
P=Q+APA-APB(R+B,PH)'BPA. . (155)
The decision function for the original problemn is given by
F=(R+W) Y (RF + W, + W!0), (156)
and the equilibrium law of motion for 3 is

Gre1 = Aol + Cerg1, A=Ay + A0~ L, VF - B,F = §73(A ~ BF).
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Therefore, the derivative of A, with respect to a parameter # is given by

A SBF B

DA, 04 or
T 50

o

W

=p5" (158)

To calculate Mﬂ- requires several steps. First, we need the derivatives of A,
B and F w1th respect to 4:

Z_g:%%!““?‘a%ie“‘“%% (159)
?9_?:%"'63% t 2?9_3 (160)
O« —(r+8,pB, + By PAY) " (2 DBulpp,

+B§Z§B +B’PQ(%— aaiy’PA\It

+B;%§A ¥+ B, 85; 1 PA, ‘z‘;’)

+(R+B,PB, + B,PA,¥) (%%IPA +BL%§Ay+B'p58*‘;

+ G Pao B0 P LB PAG)

= (R+ B,PB) ™" (- %?F-}.%’P(A )

+B;(;§(A BF)+B’P(6£ %p)

+B,P aA )+B'PA(?3§) Z—‘;F)). (161)

8By 84y pA, 8o BT
Note tha.t these derivatives are functions of of £ 86’ 35 Bi 0 Bets B8 Fao

and . The derivative of R is given since R = R. The derivatives for B,
Ay, 2, © and ¥ follow from their definitions above, e.g.

dB a8

W =V (162
DA,y 0Ay OBy = 1= m n g OR: o o o OW,
T Yo B 50~ ap B Wyt BRI RO - By RV Y(163)
0A: _ 704 OBy oy s, o o5 OR g, A

5o = VB gg ~ g RTWiH By R g R - B R =
3@ 1 7] 8‘17 - ! - aR -1 ]

5g =~ +YRTIW;)” (agR Wie - TR aeR w.e

ow,’ 86 oY

. 0
TR 55 T a0

—RIW! - wR~ %?R—lﬁf;
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- 0w,
-1 z 3
+UR™ — ) (165)
v - OV . - < OR o
— =—(I +YRT'W,)" (- RT'W,¥ = VR™' — R™'W/ ¥
S OW, 6T
-1
+WRT = ¥ 39)‘ (166)
The derivative for P is given by
oP G 84" -8B
—-on o+ P VBlos - PO pa,
89 ap
A 8B O0R
r F
+ A P[(% (%JF] FagF (167)
where F = (R+ B)PB)"'BP'A, A, = A~ B,F, and
aQ _0Qy | 0Q; ae
-5 T8Ot (168)
0A 04, 0B, _, ., )
=¥ _ Y s it eyt
5= 60 o VTBRT me re:
Q)
BR-a—q' —BRllI!’Q . (169)
ag
The last two derivatives needed are OT%‘L and —aqf:
0Qy _8Qy _ Wy niin v 51 OB 515y 51 OW
= - G =R W) — ¥
50 50 50 RTW, + W, 50 y — WyR 57 (170)
8Qz —- aQ; 8Wy — 17177/ T —_]@—_1 Trt T —_laﬁle
%6 = a9 50 R'W! 4+ W,R 69R W, -W,R 3 L(171)
We now have everything that we need to compute the derivatives of the
matrices in the decision rule and the taw of motion for the siate vector. To
avoid iterating on Eq. (167) for & —55‘, we instead take the gradient, e.g.
VP = (I - BA,@ AV Vi@ + (10 APV, A
+VBA P Q@I)VA —(F @ APV B
—VBALP ® F') Vs B + (F' ® F') V4R. (172)
Thus, the gradient of F' is given by
VeF = (I @ RByP) Vs Ay + ((© — ¥ )@ RB, P) Vs A,
~(F' @ RBy P) Vs By + VB(A,P' @ R) W% B,
+VB(A, ®RB,) Vs P — (F' @ R') V4R
+(UQRBPA,) VO ~ (F'@RByPA,)Vy¥, (173)
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where R = (R+ B;Pé‘)"l. In terms of the computer code, we start with
Eqs. (162)-(166) and Eqs. (170)-(171), which relate the derivatives of the
original problem to those of the problem without discounting or cross-product
terms. To compute the gradients of these objects in terms of our inputs, we
use the fact that vec(ABC) = (C' @ A)vec(B) for any matrices A, B, and
C' with the appropriate dimensions such that ABC exists. We next compute
the derivatives for A, B, @ and A which appear in Eqgs. {159), (160), (168),
and (169). Finally, we compute V3P in Eq. (172), V3 F in Eq. (173), and

Ved, = (VA — (FF @ VB - (I © B)VF).

A nonlinear economy with disioriions

The optimization problem that we start with is given by

o0
E tr(Z
g Fod P

subject to Yrp1 = ﬁy?t + Azft + Eyﬁ; -+ C€t+1
Z'l = [g;: E;: ﬁi]’

As in the case of the economy without distortions, we solve a related problem
that has the same form as the problem of Eq. {1561). The approximation
method is the same as in the model without distortions and, thus, all of the
required derivatives have already been computed.
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