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ABSTRACT. This article examines local and global approximation meth-
ods which have been used and have potential future value in economic and
econometric analysis. We first review the foundations of regular and singular
perturbation analysis, and asymptotic evaluation of integrals. We then discuss
their applications to dynamic economic models and finite-sample econometrics.
We also compare the perturbation methods used in public finance with linear-
quadratic models and the ad hoc procedures used by macroeconomists. We
next discuss global approximation methods, including orthogonal polynomials,
interpolation theory, shape-preserving splines, and neural networks, and the
related projection method for solving operator equations. We illustrate their
application to dynamic economic analysis and equilibrium with asymmetric in-
formation. Finally, we discuss how the hybrid perturbation-Galerkin method
combines the complementary strengths of local approximation procedures and
the projection method.
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1. INTRODUCTION
In many economic analyses, the key technical problem is the determination of some
unknown function, such as policy functions in dynamic models, equilibrium strate-
gies in games, and inference rules in asymmetric information problems. The usual
approach is to make functional form assumptions on the structural elements which
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lead to closed-form solutions. This, unfortunately, restricts the analysis to a few spe-
cial cases. While these special cases may suffice for some purposes, they are generally
inadequate for a robust analysis of most problems.

The alternative is to use approximation ideas to compute functions which are
“close” to the true solution. In this paper, we will review two basic approaches to
the approximation of functions and the approximate solution of operator equations,
representing two different kinds of data and objectives. Local epprorimations take as
data the value of f and its derivatives at a point z¢ and constructs a function which
matches those properties at xy. These constructions rely on various versions of Tay-
lor’s theorem and the implicit function theorem, and lead to the construction of Taylor
or Padé series. These methods are called perturbation, or asymptotic, methods. The
basic idea of asymptotic methods is to formulate a general problem, find a particular
case which has a known solution, and then use that particular case and its solution as
a starting point for computing approximate solutions to “nearby” problems. These
methods are widely used in mathematical physics, particularly in quantumn mechan-
ics and general relativity theory, with much success. While economists have often
used special versions of perturbation techniques, such as linearizing around a steady
state and computing asymptotic distributions, they often proceed in an ad hoc and
potentially invalid fashion, and have generally not exploited the full range and power
of asymptotic techniques. We will discuss the differences between the mathematical
literature and the economics literature, and indicate directions where perturbation
analysis can advance economic analysis.

L? Approzimation takes a given function f and finds a “nice” function g which is
“close to” f in the sense of some LP norm. To compute an L? approximation of f,
one ideally needs the entire function, whereas we generally have information about
f at only a finite number of values. Interpolation is any procedure which finds a
“nice” function which exactly fits a finite set of prescribed conditions. Regression
lies between L” approximation and interpolation in that it uses a finite collection
of data, but produces an approximation which “nearly” satisfies the data. These
approximation methods form the basis for projection methods for solving functional
equations. Projection methods have been used to solve various economic problems,
ranging from dynamic growth models, dynamic games, and asset market equilibria
with incomplete information.

The perturbation and projection methods of solution differ substantially in their
focus and procedures. However, their strengths and weaknesses are complementary,
and a combined method, called the hybrid perturbation-Galerkin procedure is one
which holds out much promise for solving complex economic models.

These methods are important because of the increasing importance of compu-
tation in economic analysis. Many economists eschew sophisticated approximation
techniques, believing that a supercomputer will solve any problem they might have.
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This is not the attitude taken in other computationally intensive fields; in fact, ad-
vances in numerical software have made as much a contribution to algorithm speed
as hardware advances. One reason for this improvement has been the application of
basic approximation ideas, many of which we present below. It is clear from exami-
nation of the mathematical and economic literature that even a modest application
of modern approximation techniques can substantially improve the efficiency of most
computational methods in economics.

In this paper we shall outline asymptotic approximation techniques, L? approx-
imation procedures, the projection method and the hybrid perturbation-Galerkin
approach, and their application to some simple growth models. While the focus on
dynamic models parallels the usual applications in economics of these methods, the
reader should keep in mind that these methods are potentially useful for any problem
which reduces to a functional equation. The objective is to discuss basic approxima-
tion methods in an integrated fashion and give examples of their use. We will discuss
both examples in the existing literature of the use of approximation methods, and
also methods and applications which are potentially useful®.

2. THE MATHEMATICAL FOUNDATIONS OF LOCAL APPROXIMATION METHODS
Local approximation methods are based on a few basic theorems. They include the
well-known Taylor’s theorem and the implicit function theorem for E™ as well as
the Bifurcation theorem and extensions to operators on infinite-dimensional spaces.
Closely related is the notion of an asymptotic series, particularly the asymptotic
evaluation of integrals. We will first state the basic theorems in this section, and give
examples of their use in the next section.

2.1. Taylor Series Approximation. The most basic local approximation is de-
scribed by Taylor’s Theorem:

Theorem 1. (Taylor’s Theorem) If f € C™*|a, b] and x, zo € [a, b], then

fle) = flzo)+ (x — mo) f'(xo) + E=2 () "
oo =200 1) (gg) 4 Ry (2)

where
Rop(z) = # ;”a (z —t)" fnt1) {t)dt

z—£0)("*1)  p(n
= L(‘?i]ﬁ‘_ f( + (f) )

LA note to the reviewer: This draft focusses on the substantive issues which I want to cover
and illustrative examples. It is slim on citations to economic applications of these techniques. Future
versions will be more complete in terms of these citations.



Approximation Methods and Projection Methods in Economic Analysis 4

for some £ between z and xzo.

The Taylor series approximation of f(z) based at z° (1), uses derivative informa-
tion at 2% to construct a polynomial approximation. If f is analytic on [a, b] then this
approximation converges to f on [a, b] as n increases. Generally, this approximation
is good only near z° and decays rapidly away from z°.

2.2. Rational Approximation. Padé approrimation uses the same derivative

information as does a Taylor series approximation, but instead constructs a rational

function to approximate f. The (m,n) Padé approximant of f at o is a rational
function (z)
plz

riz) = —=< (2

(=) ¢(z) )

where p(x) and g{z) are polynornials of degree m and n, and

dk
a;};(p"fq)(mﬂ): k=03"',m+n (3)

The m + n+ 1 derivative conditions in (3) suffice since ¢(z%) can be normalized to be
1. The problem of computing the coeflicients of p and ¢ is a (generally nonsingular)
linear problem.

The experience is that Padé approximants are better global approximants than
Taylor series approximations, that is, the error grows less rapidly as we move away
from zg. There are strong theorems confirming this for analytic functions; see Petru-
shev and Popov.

2.3. Implicit Function Theorem. The nextimportant tool is the Implicit Func-
tion Theorem.

Theorem 2. (Implicit Function Theorem) If H(z,y) : R* x RM — R™ is C! and
Hy(zo,yo) is not singular, then there is a unique function C® function k : R* — R™
such that for (z,y) near (z¢,yo)

H{z,h(z)) = 0.

Furthermore, if H is C™ then h is C*~! and its derivatives can be computed by implicit
differentiation of the identity H{z, h{z)) = 0.

The Implicit Function Theorem states that A can be uniquely defined for z near
zero by a relation of the form H{z, h(z)) = 0, whenever H, (0, h(0)) is not singular.
This allows us to implicitly compute the derivatives of A with respect to z as a func-
tions of z. When we combine Taylor’s theorem and the Implicit Function theorem,
we have a way to compute a locally valid polynomial approximation of the implicit
function A(z).
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2.4. Bifurcation Methods. Sometimes we will want to compute an approxima-
tion to an implicitly defined function at a point where the conditions of the Implicit
Function theorem do not hold, in particular when H,(zo,y0) is singular. In some
cases, there is additional structure which can be exploited by bifurcation methods, to
which we now turn.

Suppose that H(z,¢) is C2. One way to view the equation H(z,¢) = 0 is that
for each € it defines a collection of z which solves the equation. We say that ¢ is a
bifurcation point if the number of solutions to H(z, €¢) = 0 changes as € passes through
€g. Two situations are summarized in the following theorem.

Theorem 3. (Bifurcation Theorem) Suppose H{x,0) = 0 for all . Furthermore,
suppose that
HI(IL'Q,O) = 0 = HE(:E[),O), er(l‘o,O) 7‘5 0

for some (xg,0). Then, if H..(zq,0) # 0, there is an open neighborhood N of (zo,0)
and a function h(e), h(e) # 0 for € # 0, such that

H(h(e),e)=0 on N

and locally H(x,¢) is diffeomorphic to e(e — &) or (e + z). Otherwise, if H.(20,0) =
0 # H.(z0,0), then there is an open neighborhood N of (z0,0) and a function
h(€), h(c) # 0 for € # 0, such that

H(h(e),e)=0 on N

and H{z,€) is locally diffeomorphic to € — e or € + ze. In both cases, (x,0) is a
bifurcation point.

Figure 1 shows that ¢2—z¢€ and ¢*— ze have bifurcations at (x, ¢) = (0,0). That is,
as € passes through 0, the number of & which satisfy ¢ — ze (€3 — z¢) changes. In the
cases specified in the Bifurcation Theorem, we can still examine the nondegenerate
branch and, as long as there are enough derivatives, use implicit differentiation to
compute a polynomial approximation for the implicit function.

2.5. Generalizations to Function Spaces. To solve dynamic economic prob-
lems, we need generalizations of these theorems to functional spaces. It is necessary,
therefore, to first introduce some terminology from nonlinear functional analysis. We
will state a generalization which is quite similar to the implicit function for R", and
implies a straightforward computational implementation. Suppose that X and Y are
Banach spaces, i.e., normed complete vector spaces. A map M : X* — Y is k-linear
if it is linear in each of its k arguments. It is a power map if it is symmetric and
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k-linear, in which case it is denoted by Mz* = M(z,z,...,z). The norm of M is
constructed from the norms on X and Y, and is defined by

IMll=  sup M (21,22, .., 23]l

llzill=1, i=1,2,...k

For any fixed 2p in X, consider the infinite sum in Y

Te = ZM);(I—'.’L'O)k

k=1

where each of the M}, is a k-linear power map from X to Y. When the infinite series
converges, T is a map from X to Y. It will be convenient to associate a real valued
series, called its majorant series, with T

$ 11l — ol

k=0

The important connection between the power series for T' and its majorant series is
that T will converge whenever its majorant series does.

Definition 4. T is analytic at xo if and only if it is defined for some neighborhood
of ¢ and its majorant series converges for some neighborhood of x,.

With these definitions, we can now state the analytic operator version of the
Implicit Function Theorem.

Theorem 5. (Implicit Function Theorem for Analytic Operators) Suppose that

oo

Fle,z)= ), €Mya* (4)

n,k=0

defines an analytic operator, F : U C X — 'Y, where U is a neighborhood of (0,0) in
R x X. Furthermore, assume that F(0,0) = 0 and that the operator My : X - Y,
representing the Frechet cross-partial derivative at (0,0), is invertible. Consider the
equation

Fle,2(e)) = 0 (5)

implicitly defining a function x(¢) : R — X. The following are true:

1. There is a neighborhood of 0 € R, V, and a number, r > 0, such that (5) has
a unique solution z(¢) with ||z(¢)]| < r for eache € V.
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2. The solution, z(e), of (5) is analytic at € = 0, and, for some sequence of z, in
X, can be expressed as
o0
z(e) = . zu € (6)
n=1
where the coefficients z, can be determined by substituting (6) into (5) and
equating coefficients of like powers of .

3. The radius of convergence of the power series representation in (6) is no less
than that of the analytic map, z(¢) : R — R, defined implicitly for some
neighborhood of 0 by

0= 3 & [Mutl| 2(0) (7)
n, k=0
Furthermore, for some sequence z, of real numbers,

z(e) = i € z,

n=>0

represents the solution to (7) and |z,| > |lz.||.

Proof: See Zeidler {(1986).

The mathematics of applying this method turns out to be elementary since the task
is reduced to recursive computation of z, terms, in term-by-term approach described
above. The only requirement is to set up the problem so that it is expressed as an
analytic operator with a nondegenerate radius of convergence.

There are weaker infinite-dimensional generalizations of the implicit function the-
orem; see Zeidler. The basic idea continues to hold: find a point where {5) holds,
and implicitly differentiate the implicit function at that point to compute a local ap-
proximation. The Bunch Theorem (see Zeidler) generalizes the Bifurcation Theorem
to Banach spaces. Space limitations prevent our discussing it here, but below we will
see that economic applications are obvious.

2.6. Gauge Functions. The methods described above, commonly referred to as
regular perturbations, compute expansions of the form 2, a;¢'. There are many cases
where we will want to compute different expansions. In general, a system of gauge

unctions is a sequence of functions, {6,(¢)}%2,, such that
n=1

6ﬂ+1(€) =0

N

An asymptotic ezpansion of f(z) near z = 0 is denoted

[(@) ~ F0) + Y a: ()

=1
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where, for each n,
fim 102) = (O + Tk, aib2)) _

z—0 611(37)

In regular perturbations, the sequence of gauge functions is §(¢) = €* . Another
example of a gauge system is 6;(€) = ¢*/2. In many problems, part of the problem is
in determining the correct gauge system. The next sections present examples of this
more general problem.

2.7. Asymptotic Expansions of Integrals. Ineconomicand econometric prob-
lems, integrals frequently take the form

/De')‘g(") f(z) da (8)

where ) is a large parameter. Simply differentiating (8) with respect to A will not work
here. Laplace’s method provides a useful way to approximation (8). The basic idea
is that the major contribution of the integrand is at the minimum of g(z). Suppose
g(z) is minimized at z = a. For large A, if z # a then e~*9(2) « e=*(2}. As long as
f(z) does not offset this for [x — a| > 0, the integral (8) is determined largely by the
behavior of the integrand, e~ f(z), for = near a.

The one-dimensional case is easy to state. Assume that ¢ and f satisfy the asymp-
totic series

o(e) ~ g(a) + Yo aia — @), (@) ~ 3 bl - a) ot

=0 =0

Under modest assumptions (see Wong) if the integral I(A) = f? f(x)e=*¢(*) dz con-
verges absolutely for sufficiently large A, and if g is minimized on (a, b] at a, then

o eM@Iop(ita)_a
I(A) ~e ;}F( i ))\(e+a)/p (9)

where I'(A) = J5° e #z*~! dz, and the ¢; depend on the ¢; and b;. In particular

bo ¢ = (h B (o + ey bo) aa(a+1)/p
#ag/#’ © #2aq

Cp =

To compute these coefficients and others one essentially expands the integrand in
terms of A and matches like powers. Note that the gauge functions of A in (9} depend
on the asymptotic expansions of f and g.
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One important application of Laplace’s method is Stirling’s formula for n!. Recall
that n! = I'(n + 1). We would like to approximate I'(n) for large n. To use Laplace’s
method, let z = yA; then

o0
r() = A f e N9y -1 g
0

The minimum of y — Iny is at y = 1. Break the integral into two integrals over [0, 1]
and [1, oc), and add the two one-sided approximations to get

~ - L)
T()) ~ v3r Mte (Hm

Stirling’s formula is just the one-term expansion n! & v/2x(n + 1)*+}e=(n+1), While
the operating assumption is that ) is a large parameter, these expansions do very well
even when J is not small; Stirling’s approximation for 1! is .9595 and the two-term
expansion yields .9995.

There is a multidimensional extension of Laplace’s method. Suppose D C R*,
f,g € C* D). Suppose the minimum of g{z) for z € D is achieved at z¢ which is in
the interior of [). Then the leading term of the expansion is

e-Aa(s) 97\ 2
A)ZW— (T) f(zq)

where H = (g;s,;) is the Hessian of g. Higher order terms can be computed; while
such an expansion would be very tedious to construct, symbolic languages such as
Mathematica, Maple, and Macsyma, are ideally suited to do this.

2.8. Singular Perturbations. Regular perturbations and the related bifurcation
procedures are relatively simple procedures, relying on standard implicit function the-
orems. More difficult are singular perturbations. Singular perturbations are problems
where the fundamental nature of the problem changes as € moves away from zero.

A simple example of this is the second-order differential equation

et +ar+r=0 (10}
with boundary conditions
z(0)=0, =z(l)=1

Note that if e = 0 then (10) reduces to a first-order differential equation with the
solution C'e™?, but there is no constant C' which will satisfy both boundary conditions.

Therefore, there is no € = 0 case around which we can apply the regular perturbation
method.
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There are special methods for solving such problems. They revolve around us-
ing specially devised gauge families. In the case of this problem, one postulates an
approximation of the form

Zn: ait)e + i b.-(-z-)e‘ + i:lc,-(

=0 i=1

1—+¢
€

) (11)

and computes the coefficient functions a;, b, and ¢; essentially by substituting (11)
into (10), collecting terms of like powers, and solving the resulting linear ordinary
differential equations. The result is a solution which approximates the true solution
to of€®).

There is no general theory for singular perturbation methods. Their application
tends to be much more problem specific than regular perturbations. Fortunately,
some of the problems which have been studied include optimal control problems.
Bensoussan is an excellent source for this material.

2.9. The Meaning of “Approximation”. We often use the phrase “f(z) ap-
proximates g{z) for = near zy”, but the meaning of this phrase is seldom made clear.
One trivial sense of the term is that f(zo) = g(zo}. While this is certainly a nec-
essary condition, it is generally too weak to be a useful concept. Approximation
usually means at least that f(zo) = g'(%o) as well. In this case, we say that “f is a
first-order {or linear) approximation to g at = = zo”. In general, “f is an n’th order
approximation of ¢ at z = zo” if and only if

i @) —g@ N

r=za  |{x—xo

While this seems rather obvious, these definitions are not always used in the economics
literature, as we will see below.

3. APPLICATIONS OF LoCcAL METHODS TO ECONOMICS
There have been many uses of local approximations in economics, implicit and ex-
plicit. We will review some basic applications which have appeared and give examples
of some possible future uses.
Since it will be frequently used below, we will now describe a simple continuous-
time? model of economic growth. Let k be the capital stock, ¢ the rate of consumption,
and f(k) the rate of output. Assume that the intertemporal utility function of the

2The examples will focus on continuous-time models. Because it is obvious that all of these
methods can be applied in the same way to discrete-time models, there is no substantive distinction
between the discrete-time and continuous-time literatures, and I will discuss continuous-tirne and
discrete-time papers together. The continuous-time choice is made here since the notation is cleaner.
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representative agent is [{° e #u(e(t))dt, and that the capital stock evolves according

to k= f(k) — ¢. The optimal growth problem is

V{k) = max.y fo° e " u(c)dt

_ (12)
k= flk)—c

where V(k) is the value function. Qur examples will study the solution to the optimal
growth problem as well as equilibrium growth under taxation in this model.

3.1. Perturbing Dynamic Growth Equilibria. We can apply this procedure
to study the effects of policy changes in a dynamic model of equilibrium. Turnovsky
and Brock (1980) shows that equilibrium with taxation in the simple growth model
described above solves the system

¢ = celp—f(K)(1-7)

k= fk)—c—yg

where v(c) is the rate of intertemporal substitution in consumption, 7(t) is the tax
on capital income at time t, and ¢{t) is government expenditure (on goods which do
not affect utility) at ¢. The tax rates are exogenous, and ¢ and k are the unknowns to
be determined. The boundary conditions are an initial condition on the capital stock

k(0) = ko (14)

(13)

and a stability condition on consumption
0 <| Jim e(t) < oo (15)

Judd (1985) showed how to analyze various policy “shocks” in this model. The
conceptual experiment is as follows. We assume that the “old” tax policy was con-
stant, 7(¢) = 7, and that it has been in place so long that, at ¢ = 0, the economy is at
the steady state corresponding to 7. Note that this also assumes that for £ < 0, agents
assurned that 7(t) = 7 for all t, even t > 0. Hence, at t = 0, k(Q) = £°**. Suppose,
however, that at ¢ = 0, agents are told that future tax policy will be different. Say
that they find out that the new tax rates are 7 + 7(t), t > 0, that is 7(¢) will be the
change in the tax rate at time ¢. Similarly, they are told that the new expenditure
policy is §+ ¢(t). The new system is

¢ = ve)ye(p— F(k) (F+7(2))

ko= f(k) —c—(7+4(1))
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together with k(0) = ko and (13). We will use perturbation methods to approximate
the effects of the new policies  and g.

We need to parameterize the new policy so that it fits the perturbation approach.
We do this by defining

T(tye) =T +er(t), g{t,€) =F+eg(t)
and the corresponding continuum of BVP’s
a(t,e) = (c(t,€)) c(t,€) (p— f/(k(t, €))(1 — 7(t,€)))
ki(t,e) = flk(t,€)) —clt,e)

where we explicitly indicate the dependence of ¢ and k on both € and ¢.

We differentiate (16) with respect to €, evaluate the resulting differential equation
at € = 0, and arrive at a linear differential equation. We then solve for c(¢,0)
and k(¢,0), the linear approximation of the response to ¢ and k to the shock, after
imposing the boundary conditions on the initial capital stock and the asyrmptotic
consumption level. The result will give a linear approximation for ¢(¢,1) and k(,1),
the consumption and capital paths under the tax and spending changes.

The resulting solutions can be very informative. For example, in this model (see
Judd (1985)) the initial shock to net investment (denoted by the derivative of I =
f (k) — c with respect to e at t = 0} is

(16)

10) = — T2 T(u) + uG(s) - 9(0) (17)

- P 47(1_7_-)9L9c
T (1+\/1+———09;(—)

is the positive eigenvalue of the linearized system, 8 is capital’s share of income, 8,
is labor’s share, and 8, is the steady state share of output which goes to consumption.
G(s) and T'(s) are the Laplace transforms® of g(t) and 7(¢).

Perturbation methods yield algebraic formulas for quantities of interest. For ex-
ample, the formula (17) tells us many things. First, future tax increases reduce
investment. Second, government spending has an ambiguous impact on investment
~ current government spending depresses investment and future spending increases
investment. Third, since investment and output are related, we also know the initial
impact of this policy shock on output; that is, if current investment falls, output in

where

3If f(t} : R* — R", then the Laplace transform of f(f) is L{f} : R* — R, where L{f}(s) =
0o L —st
o e st f(t)dt..



Approximation Methods and Projection Methods in Economic Analysis 13

the future will also fall. Note that the shock could be nonconstant, allowing us to
consider partially anticipated shocks. These simple calculations address basic issues
in macroeconomics; in particular, they contrast with Barro’s???

While this example is quite simple, the robustness is obvious. One can add labor
supply, and other tax instruments. In tax theory, Judd (1985, 1987} calculated the
marginal efficiency cost of various tax innovations and related impulse responses for
important macroeconomic variables. In monetary models, Wilson and Obstfeld have
also applied these methods in monetary models. Laitner also applied this to tax
problems,

We can also use this method to approximate solutions to the optimal growth
model. If taxes and government spending is zero, then the problem reduces to the
social planner’s problem. We can use the same approach to compute the effect of
changes in the initial capital stock on consumption; more precisely, we make kp in
(14) a parameter and differentiate (13) with respect to ko near a steady state. This
procedure yields the local linear approximation to the optimal policy function for con-
sumption. Similarly, such a perturbation can also yield a local linear approximation
to the equilibrium policy function with taxation. It is clear that other distortions,
such as externalities and imperfect competition can also be modeled in this fashion.
This method can be extended to several state variables, as Laitner has done. This
simple example is just the simplest application of this method.

3.2. Perturbing Dynamic Functional Equations. A large variety of economic
problems can be reduced to various kinds of functional equations, some more complex
than the simple differential equations we saw above. In this section we shall take a
more functional approach to a simple growth model to illustrate the general appli-
cability of perturbation methods to those functional problems arising from dypamic
programming and recursive equilibrium.

Stationary, Deterministic Growth. We will first look at a single-sector, sin-
gle good, continuous-time optimal growth problem, (12). The Bellman equation
defining V (k) is

PV (k) = max u(c) + V/(R)(F(k) — o). (18)

By the concavity of v and f, at each &k there is a unique optimal choice of ¢, which
satisfies the first order condition u/(c) = V'(k). We will let C(k), the policy function,
denote that choice. (18) implies a differential equation for C(k):

u"(C(k)) C'(R)(f = C(k)) + ' (C(k))(f'(k) — p) = O (19)

At the steady state, k**, f(k**) = C(k**), which, when substituted into (19) implies
the condition p = f'(,*) which determines k**.
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Our goal is to compute the Taylor series expansion of the policy function around
the steady state. Specifically, we want to compute the coeflicients of

Ok) = C(k™) + C'(k*)(k — k**) + C"(k**)(k — k*)2/2 + ... (20)

We have so far computed k%, C(k**), and f'(k**). We next move to C'(k**). At this
point we must assume that C(k) is C*. This assumption is clearly excessive, but
not unrealistic. if we also assume that u(c) and f(k) are also C*°. In fact, Santos
and Vila {56] shows that if u and f are C* then the policy function is C*~2 near any
stable steady state.

Differentiating (19) with respect to k yields*

0 — u”lClC!(f . c) + uHC"(f _ C) + u"cl(fl —- Cl) + ulf(ff - p) + u!f” (21)
which holds at each k and at the steady state, &**, reduces to
0 = __uﬂ(cﬂ)‘z + un'cffl + u'f” (22)

Hence C'(k°*) must solve (22), implying

u!ffl + \/(uﬂff)? + 4uﬂulflf

2’-‘.1.”

C!

(23)

where all derivatives are evaluated at the steady-state levels for the capital stock and
consumption. Since u and f are increasing and concave, {23) has two real solutions
of opposite signs. Since €’ > 0 is known, we choose the positive root.

To demonstrate the ease with which higher-order terms can be calculated, we
next C"(k**). Differentiating (21) with respect to ¥ and imposing the steady state
conditions yields an equation linear in the unknown C”(k**). Therefore, solving for
C"(k**) is easier than solving for C’'(k**). In fact, the solution for C"(k*) is

2(P —_ C’)U’HC’C’ + 3uHCifH + u!ff"
u”(3C" - 2p)

C”(kas) _

where all functions are evaluated at k**. Note that the solution for C*(k**) involves
C'(k*). The critical simplifying feature is that once we have solved the quadratic
equation for C'(k**), we have a linear equation for C"(k*). Similarly, continued
differentiation of (19) shows that every other derivative of C can be defined linearly
in terms of the steady-state derivatives of u, f, and lower order derivatives as long
as there are sufficient derivatives of u and f.

4We drop arguments when they can be understood from context.
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Judd [38] shows that the 100 degree polynomial approximation to C is easily
computed via a recursive forniula, and shows that it is quite accurate even for capital
stocks far away from the steady state. Judd and Guu [34] present Mathematica
programs which compute arbitrary order Taylor and Padé expansions based on the
derivatives of C at the steady state. The Padé expansions were found to do better than
the Taylor expansions at capital stocks far away from the steady state, consistent with
the standard experience for Padé approximations. They also demonstrate that high-
order Taylor and Padé expansions do a very good job in approximating C(k), and that
the additional terms sufficiently increase the range over which the approximations are
good.

Single-Sector, Stochastic Growth. We next take the deterministic model
above, add uncertainty, and show how to use the approximation to the determinis-
tic policy function around &** in the deterministic case to compute an approximate
policy function in the model with a small amount of uncertainty. While the assump-
tion of small shocks may seem limiting, it is sensible in many applications, such as
macroeconomic and related financial analysis.

The stochastic problem is

V(k) = sup E{f;° e " u(c)dt}
(24)
dk = (f(k) —c)+ }/o kdz

The Bellman equation becomes
0 = max[~pV/(k) +u(c) + Ve(k) (S(K) — €) + 5o K? Via(K)]
It is straightforward to show that C(k) solves
0 = a(k)u"(C(k)) + ¢(k) " (C(K)) + (k) w/(C(K)) (25)

where

o(k) = ok? [C"(k)]/2
(k) = [f(k) + & k — (k)] C'(k) + ok? C"(k)/2
v(k) = f(k)—p

Formally, we are again looking for the terms of the Taylor expansions of ,

Clk,0) = C(k*,0)+ Cp(k*,0)(k — k*) + C,(k*,0)c
FCi(k**,0)(k — k*)2/2 + Cox(k**,0)0(k — k**) (26)

+Co0(k*,0)02/2 + ...
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Before proceeding as before, we should note that the validity of these simple meth-
ods in this case is surprising. Note that (25) is a second order differential equation
when o # 0, but that it degenerates to a first-order differential equation when o = 0.
Changing o from zero to a nonzero value is said to induce a singular perturbation in
the prablem because of this change of order. Normally much more subtle and sophis-
ticated techniques must be used to use the o = 0 case as a basis of approximation for
nonzero o. The remarkable feature of stochastic control problems, proved by Fleming
(1971), is that this is not the case, that perturbations of ¢, the instantaneous variance
can be analyzed as a regular perturbation in o.

With Fleming’s analysis in hand, we will now proceed. We assume that we know
all the k derivatives of C at k = k** and o = 0. This is what the previous section on
deterministic problems produced. We now move to computing C, by differentiating
(25) with respect to . When we impose the deterministic steady state conditions
f(k**)y = C (k**), f'(k**) = p, and 0 = 0, we arrive at a linear equation which implies
that

umcg + Okk
U”Ck
where all the derivatives of C' are evaluated at & = k** and o = 0. Note that the
solution for C, is a function not only of the deterministic steady state value of u,
u’, and u”, it also depends on v, and Cy, which in turn depends on f"”. If u were
quadratic and f linear, then (27) shows that C, = 0, as we expect {rom the certainty
equivalence results for linear-quadratic control. Again, continued differentiation of
(25) with respect to ¢ and k leads to solutions for Cuy, Cok, Cise, etc. Judd and
Guu (1992) present Mathematica programs for computing these coefficients. They

also show that the approximations are valid over a substantial range of values for o
and k.

C, = (27)

Term Structure of Interest Rates. We next examine a less standard appli-
cation of the ideas of regular perturbation, the term structure of interest rates. This
will be an example of perturbing a partial differential equation. It will also serve as an
example of where third-order terms in u affect the first-order analysis of an quantity
of direct economic importance, the interest rate, and be valuable in our discussion
below of alternative ad hoc procedures.

Define R(k,s,o) to be the value today of a contract which promises the deliv-
ery of one dollar s periods in the future in the competitive (hence, Pareto optimal)
equilibrium of the model (24); we include the parameter ¢ in the arguments of R to
make explicit the dependence on that parameter. Application of Ito’s Lemma and
the martingale properties of asset prices implies that R(k,s,o) satisfies the linear
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parabolic partial differential equation (see Judd [38) for the details)
1
R,=Re(f-C)=R(f' + A(C)Crok + A(C)Ecrkzc'kk) (28)

where A(c) = u”(c}/u'(c) is the coefficient of absolute risk aversion. The boundary
condition is implied by the fact that a dollar delivered today is worth a dollar at any
capital stock and vanance.

R(k,0,0) =1

At the deterministic steady state, R(k**,s,0) = e~**, the familiar equation for
the price of a forward dollar when the interest rate is constant. Differentiating (28)
with respect to k and ¢ will lead to linear differential equations for %’-:—(k”,s,()),
j—f(k”, $,0), and higher derivatives. The solutions are

fu( kw) ek _
Ru(k* 0) = x(k*.0)s __ a8
k( ’S’ ) Gk(k*,ﬁ) _'P (6 € )
Since Ci(k**,0) > p, Rx(k*,s,0) > 0, reflecting the intuition that an increase in the
capital stock reduces the marginal product of capital and, in a deterministic model,
the interest rate, which then increases the present value of a forward dollar.

The dependence of R on ¢ is a much more complex quantity, and is locally given
by

R,(k*,5,0) = —C, [} ¢~%) Ri(k*,7,0)dr
(29)
~(ACkok + ACyi0) J§ e”" R(k*, 7,0)dr

The first term represents the effect of the shift in C(k,o) due to the uncertainty.
If C, # 0, the capital stock no longer tends to drift towards k%, but some other
level; hence, the interest rate is altered to refiect the changed marginal product, R;.
The second term represents a pure risk effect since it remains if €, = 0. Since
o >0 > A, if Ci is not too negative, this term increases R, implying a higher
bond price and lower interest rate. When viewed as a function of 3, R + oR, is
the first-order approximation of the term structure of bond prices, showing that (29)
allows us {o isolate the importance of uncertainty and various parameters for bond
prices. Similarly, one can compute first-order approximations for other asset prices,
risk premia, their cyclical behavior, and any other feature of asset prices in this model.

Adjustment Cost Models. The problems above were based essentially on
first-order conditions. We can apply perturbation methods to other problems which
are not as simple, Dixit 77 studied the dynamics of models where a controller incurs
linear adjustment costs whenever he adjusts the state. This leads to (S, s) rules.
Dixit used perturbation methods to study the dependence of S and s on structural
parameters when the linear cost is small.
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Multidimensional Dynamics. The methods used above can be extended to
the case of several state variables by applying basic linear algebra and differential
equation theory. The basic idea just follows from the stable manifold theorem. Sup-
pose we have a dynamic system

¢ =g(z)
where z = (z,y), z a vector of predetermined variables with initial conditions z(0) =
Zg, and ¥ a vector of variables whose initial values are chosen to keep 2 bounded. This
is a common situation in dynamic growth models, with and without distortions. The
predetermined variables are the state variables, such the distribution of the capital
stock across sectors, or the distribution of wealth. The free variables are the decision
variables and prices which are endogenous at each moment. Suppose that there is a
stationary point at z**. Then the local behavior of the system is linearly approximated

by the linear system
z2=Az

where A = g,(z**). The solution is z(t) = et (2o,ys), where y, is chosen to keep
z bounded. This is done by computing the eigenvalues and eigenvectors of A and
choosing yo so as to kill any unstable eigenvalues of A. In economic models, the
dependence of yg on xy generates much valuable information, such as the dependence
of prices and decisions variables on the state variables. As in the one-dimensional
case, these methods can be used to compute equilibrium policy functions.

Bensoussan [4] presents the mathematical foundations for these methods in the
finite-horizon case. This procedure for cornputing a linear approximation is presented
in detail in Chapter 6 of Stokey and Lucas{59]. Judd [38] extends the procedure to
higher-order terms, extending the Einstein notation to make the techniques more
tractable. These linear approximations have been used in the public finance litera-
ture, such as Laitner’s examination of taxation in OLG models. Judd [38], following
Fleming (1971), further extends the multidimensional case to include uncertainty.
These procedures have not been exploited much, but can be obviously applied to
problems in the real business cycle, finance, public finance, and dynamic general
equilibrium literatures.

The Macroeconomic “Linear—-Quadratic Approximation”. The pertur-
bation methods described have been used to approximate a wide variety of optimal
control and economic equilibrium problems, and can be used much more extensively.
While macroeconomists have also studied stochastic growth models, they have es-
chewed the procedures above and instead either assume linear—quadratic models, as
advocated in Hansen and Sargent [25], or use ad hoc procedures which replace nonlin-
ear growth models with linear-quadratic models. Since the latter strategy bears some
similarity to perturbation methods and often uses the same terminology — “linear
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approximation” — we will next describe it and discuss the many differences between
it and perturbation methods.

As discussed in Kydland and Prescott (1982), the basic idea to replace a stochastic
nonlinear control problem with a “similar” linear-quadratic control problem which
“approximates” the nonlinear model, and then apply linear-quadratic methods to
solve the model. While there are some minor differences among different writers,
they generally follow the procedure described precisely in McGrattan (1992). She
takes the nonlinear stochastic optimal control problem

V(zo) = maxy, {208 7(u,7)}
(30)

Tig1 = 9’(3’3t, iy, ft)

where z is a vector of state variables, u is a vector of controls, and 7 is concave. She
solves for the steady state of the deterministic version of (30), and replaces (30) with
the linear regulator problem

Vize) = maxy, E{LR2, 0 (2iQz; + v} Ru, + 22iWu,)}
(31)
Zi41 = Az + Bu + Cey

where both #/Qz + «'Ru + 22'Wu is the second-order Taylor expansion of 7, and
Az + Bu is the first-order Taylor expansion of g, both taken at the deterministic
steady state.

The linear-quadratic procedure outlined in McGrattan differs from the perturba-
tion method in its approach, objective, and results. Despite using the term “linear
approximation,” the objective is not to compute a locally valid Taylor series for the
equilibrium rules. In fact, this procedure may produce an “approximation” which
differs substantially from the Taylor series produced by perturbation methods. This
is immediately seen by applying it to (24): f(k**) appears in the solution to C'(k**)
in (23), but appears nowhere in (31) after we apply McGrattan’s procedure to u and
f in {24); therefore, the linear decision rule computed by McGrattan would not be
the linear approximation, (20), of the true decision rule even in the deterministic
model®. In fact, those who use this procedure generally make no claim that they are
computing the the linear approximation of the true decision rule.

*1f one were to use investment insiead of consumption as the decision variable in {24) then the
result from McGratton’s procedure and the perturbation method is the same in some cases. This
does not say that McGratton’s procedure is saved. Instead it points out an undesirable sensitivity
to inessential details. In fact, the perturbation method is not sensitive to such changes. Many who
apply the linear-quadratic procedure {as in McGratton and Christiano) do choose the variables so
that g is linear in u; however, that may not always be easy to do.
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Even if the McGrattan procedure were to compute the correct linear approxima-
tion for consumption near the steady state for the deterministic model, it does not
always provide a correct linear approximation for the stochastic model, which is the
focus of the Real Business Cycle literature. The key fact is that the linear regulator
problem is certainty equivalent, that is, the variances of disturbances do not affect
decision rules. Another way to interpret the McGratton procedure is to compute the
decision rules in a tractable deterministic problem and use them to study a nonlinear
stochastic problem. In contrast, the consumption rule in (24) generically depends on
the variance, implying that C, # 0 the first-order portion of (26), implying that any
linear-quadratic procedure is first-order valid only if the model is actually a linear-
quadratic model to a high order. This is important for many questions; for example,
we saw above that bond prices depend locally on third-order properties of utility
which are absent in any linear-quadratic models. Therefore, when we replace the
nonlinear control models with “similar” linear-quadratic models, some aspects of the
nonlinear model are not going to be approximated reliably.

This intuitive way of approaching the problem has lead to some conceptual prob-
lems in thinking about approximations. For example, it suggests that the way todo a
third-order approximation would be to take a third-order polynomial approximation
around the deterministic steady state and solving exactly that control problem. Of
course, there is no exact solution for third-order problems, making it appear difficult
to compute a third-order approximation.

In contrast, the perturbation methods described above show that the higher-order
terms are in fact easy to compute. This is a point of some controversy in the liter-
ature. Marcet [45], in his discussion of higher-order expansions, states that “pertur-
bation methods of order higher than one are considerably more complicated than the
traditional linear-quadratic case; the reason is that in linear-quadratic case we can
apply certainty equivalence, and the problem is nearly a deterministic one in terms of
computational costs, while the same is not true with higher order Taylor approxima-
tions”. Marcet [45] gives no reason why he believes that the linear problems which
produce the higher-order terms of a Taylor series approximation are “considerably
more complicated” than the matrix Ricatti equations which must be solved in the
linear-quadratic approximations; most numerical analysts consider linear equations
simpler to solve than Ricatti equations.

Dotsey et al.[15], Christiano[10], and McGrattan(46] have documented the quality
of some implementations of the macroeconomic linear-quadratic approach. The re-
sults follow what one would expect from the perturbation analysis. This method does
fairly well when it comes to modeling movements of quantities, but not as well with
asset prices. The approximation also breaks down as the variance of the productivity
shocks increases. This is not surprising since the linear-quadratic approach ignores
the effects of the variance on the decision rules. Furthermore, as we saw above, the
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moverments of quantities only involve first and second derivatives of the critical func-
tions whereas first-order accurate approximations of asset prices involve higher order
derivatives which are fixed at zero in linear-quadratic models.

Perturbation methods have also been overlooked when it comes to the analysis of
linear-quadratic models. Many equilibrium problems do not reduce to optimal con-
trol problems, such as dynamic equilibria with taxation or money. Macroeconomists
have devised complex iterative schemes for solving such problems even after imposing
a linear-quadratic structure (see, for example, Cooley and Hansen(12]. These proce-
dures are offered without any rigorous justification, and offer no reason why they are
used instead of standard linearization methods. As pointed out above, the standard
perturbation methods used in Laitner {1984, 1990), Judd {1982, 1985, 1987), and
described in Lucas and Stokey (1989) will compute first-order valid linear approxima-
tions in nonlinear equilibrium models, and do so in a fast, nonrecursive fashion. As
a special case, they will also yield first-order linear approximations in linear models
where, as long as the equilibrium is globally linear, the approximations are also glob-
ally valid. McGrattan (1993) outlines a nonrecursive procedure for linear-quadratic
equilibrium models with linear equilibrium rules, but gives no discussion as why it is a
different or superior nonrecursive procedure than the standard perturbation approach.

Dynamic Games. Perturbationtechniques can also be used to analyze dynamic
games. Because of the notational burden of a formal treatment, I will here just give
the basic idea behind the perturbation approach. Suffice it to say here that we are
discussing dynamic game equilibrium concepts which can be written as solutions
to ordinary or partial differential equations, or some similar system of functional
equations.

As with any perturbation method, we begin with a “point” {possibly in a function
space) where we know the solution. In game theory, such cases do arise. For example,
suppose that we have two players who each influence the state variable, but that the
payofl functions and the laws of motion are such that neither player is affected by the
actions of the other. This would be the case of two differentiated duopolists where the
cross-elasticity of demand is zero, and the state variable of the game is the vector of
the firm’s capital stocks. Then the equilibrium of such a “game” is trivial, reducing to
an optimal control problem for each player. Those problems will possibly have stable
steady states. Using the techniques above, we can compute local approximations for
each player’s strategy around such steady states in the degenerate game.

Now suppose that the payoffs and/or laws of motion are slightly perturbed so that
each player now cares about the other’s actions. By differentiating the functional
equations which define equilibrium with respect to the perturbation parameter and
imposing the implicit function theorem and Taylor’s theorem, we will be able to
compute how equilibrium is affected by the alteration.
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There have been few applications of perturbation methods to game analyses thus
far, but they do indicate the potential of the method. Srikant and Basar(1992)
develops regular perturbation methods to various dynamic games. Their methods
presume existence of equilibrium. Judd (1985) applied the Analytic Implicit Functions
theorem to patent races by beginning with a patent race with a zero prize; he proves
local existence as well as constructs local approximations. Budd et al. (1992) used
singular perturbation methods to study a dynamic stochastic duopoly game, which
reduced to a systemn similar to (10) above. Given the general applicability of these
methods and the difficulties of game theory computation, one suspects that these
procedures will become increasingly popular.

3.3. Portfolio Choices for Small Risks: A Bifurcation Application. A
simple example of a bifurcation is the basic portfolio problem. Suppose that an
investor has W in wealth to invest in two assets. The safe asset yields R per dollar
invested and the risky asset yields Z per dollar invested. If a proportion w of his
wealth is invested in the risky asset, final wealth is ¥ = W{{1 — w)R + wZ). We
assume that he chooses w to maximize E{u(Y)} for some concave utility function

One way in which economists have gained insight into this problem is to approx-
imate u with a quadratic function and solve the resulting quadratic optimization
problem. It is argued that this is valid for small risks. The bifurcation approach al-
lows us to examine this rigorously. We first create a continuum of portfolio problems
by assurning

Z=R+ei+én

At € = 0, 7 is degenerate and equal to R. If 7 > 0, we model the intuitive case
of risky assets paying a premium. Note that we multiply Z by € and 7 by €2. Since
the variance of €z is €® 02, this models the observation that risk premia are the same
order as the variance.

The first-order condition for w is

0 = E{u/(R+ w(ez + 1)) (2 + 7))} = G(w, ¢) (32)

We want to analyze this problem for small ¢. We cannot apply the implicit function
theorem since 0 = G{(w,0) for all w implying that w is indeterminate at € = 0. Since
we want to solve for w as a function of € near 0, we first need to compute which of
these w values is the “correct” solution to the € = 00 case; specifically, we want to
compute

wo = £i_r+1(1)w(e)
Implicit differentiation of (32) implies

0=G,« +G. (33)
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Differentiating G we find
G, = E{u"(Y) (wz + 2wer) (z + ex) + u'(¥)7}

G, = E{u"(Y)(z + er)?€}

At e = 0,G, = 0. «'(0) can be well-defined in (33) only if G(w, 0) = 0 also.
Therefore, we look for a bifurcation point, wy, defined by 0 = G {wy, 0). At e =0,
this reduces to 0 = w"(R)wyo? + v/ R)x, which implies

u(R) #

u’(R) o?

This is the simple portfolio rule indicating that w is the product of risk tolerance and
the risk premium per unit variance. If wy is well-defined, then this must be its value.
Since the conditions of the Bifurcation Theorem are satisfied at (wg,0), there is a
function w(e) which goes satisfies (32) and goes through (wo, 0).

This is not an approximation to the portfolio choice at any particular variance.
Instead, wp is the limiting portfolio share as the variance vanishes. If we want the
linear approximation (recall our discussion of what “approximation” means) of w(e)
at (wo, 0), we must go one more step since the linear approximation is

w(e) = w(0}) + € '(0).

To calculate w'(0) we need to do one more round of implicit differentiation. Differen-
tiating (33) with respect to € yields

0 = Guoww' + 2G4+ Guw”" + G,
At (wg,o) y

Gcr: = U’”(R)wg E{zs}r qu = O, Gwe = U”(R) E{zz}

Therefore,
_1u(R) E{Z} ,
2 w"(R) E{2?} “o -

This formula tells us how the share of wealth invested in the risky asset changes as
the riskiness increases, highlighting the importance of the third and second derivatives
of utility and the ratio of skewness to variance. While this is a sirnple application of
the ideas of bifurcation approximations, it is clear that it can be quite useful. For
example, one could assume two types of investors and compute the equilibrium risk
premium and asset allocation as a function of ¢ and initial endowment of the risky

W'(0) =
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asset. The result will show how asset prices depend in tastes, returns, and wealth
distribution.

The possible uses of bifurcation methods are numerous. Another application
demonstrated in Judd([38] examined the adverse selection model of Rothschild-Stiglitz-
Wilson. Nor is this approach limited to relatively simple, static problems. The Bunch
Theorem (see Zeidler) which generalizes the Bifurcation Theorem could presumably
be used to analyze similar problems in dynamic contexts.

3.4. Econometric Applications of Local Approximations. Laplace’s method
focuses on computing integrals of the form (8) where the parameter A is taken to be
large. One area where this method is used is the study of finite-sample properties
of estimators. In this case, the integral is the moment generating function and the
parameter A is the sample size. Phillips [51] used Laplace’s method to approximate
small sample marginal densities of instrumental variables estimators. Ghysels and
Lieberman [20] use Laplace’s method to compute small sample biases which arise
from using filtered data in dynamic regressions. Laplace’s method has been more
popular among statisticians; see the citations in [20). Padé approximation methods
have also been used to develop finite-sample theory. Phillips [50] describes various
extensions of the simple Padé approximation scheme described above and their ap-
plications to econometrics.

4. THE MATHEMATICS OF L? APPROXIMATIONS

We will often want to approximate functions over a broad range of values with rela-
tively uniform accuracy. In this case, we turn to LP approximations. L? approzima-
tions finds a “nice” function ¢ which is “close to” a given function f in the sense of
a L? norm. To compute an LP approximation of f, one ideally needs the entire func-
tion, an informational requirement which is generally infeasible. Interpolation is any
procedure which finds a “nice” function which goes through a collection of prescribed
points. Regression lies between L? approximation and interpolation in that it uses
a finite collection of data, but produces an approximation which only goes near the
prescribed points and has many degrees of freedom. In all cases, we need to formalize
the notions of “nice” and “close to.” We now examine all three basic approaches.

4.1. Orthogonal Polynomials. We will next use basic vector space ideas to con-
struct representations of functions which will lead to good approximations. Since the
space of continuous functions is spanned by the polynomials, *, it is natural to think
of the ordinary polynomials as a basis for the space of continuous functions. However,
recall that good bases for vector spaces possess useful orthogonality properties. We
will develop those orthogonality ideas to construct orthogonal polynomials.
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Definition 6. A weighting function, w(z), on [a, b] is any function which is positive
and has a finite integralon [a, b]. Given a weighting function w(z), we define an inner
product on integrable functions over [a, b):

<fr9>= [ e)g(e)uie)ds

The family of polynomials {¢,.(z)} are mutually orthogonal with respect to the
weighting function w(z) if and only if

<@nypm >=0, n#Em

There are several examples of orthogonal families of polynomials, each defined by
a different weighting function and interval. Some common ones used in economics
are Legendre, Chebyshev, Laguerre, and Hermite polynomials. Legendre Polynomuials
assume w{z) = 1 on the interval [~1, 1}; the n’th Legendre polynomial is
(- 4

Tl dgn ()]

The Chebyshev polynomials arise from w{z) = (1 —2%)~% on [—1, 1}; the n’th Cheby-
shev polynomial is
T.(z) = cos(ncos™ z)

The Chebyshev and Legendre polynomials are useful in solving problems which live
on compact sets. The Laguerre polynomials correspond to w(z) = €™ on [0, 00); the
n'th member is

et d* —
L.(z)= 3 Tom (z"e™7)

Laguerre polynomials are used when one needs to approximate time paths of variables
in a deterministic analysis. Hermite polynomials arise from w(z) = e=*" on (—o0, o0);
the n’th member is &
Hoz) = (-1 — (%
2y = (1) 2 ()
Hermite polynomials are used to approximate functions of normal random variables.

4.2. Least-Squares Orthogonal Polynomial Approximation. Given f(x)
defined on [a, b], one approximation concept is least-squares with respect to the
weighting function w(z). That is, given f(z), the least-squares polynomial approxi-
mation of f with respect to weighting function w(z) is the degree n polynomial which
solves

min [ (1(z) - p(z))? wlz) da.

deg {p)<n
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In this problem, the weighting function w(z) indicates how we care about approxi-
mation errors as a function of z. For example, if one has no preference over where
the approximation is good (in a squared-error sense) then we take w(z) = 1. If one
cared more about the error around ¢ = 0 we should choose a w(z) which is larger
near Q.

The connections between orthogonal polynomials and least-squares approximation
are immediately apparent in solving for the coefficients of p(z) in the least-squares
approximation problem. If {¢,}3, is an orthogonal sequence with respect to w(z),
and we define < f, ¢ >= J® f(z) g(z) w(z) dz the induced metricis || f ||=< f, f >,
the least-squares solution minimizes || f — p ||, and can be expressed

n
o)=Y =L o)
k=0 WPk, Yk =
Note the similarity between least-squares approximation and regression. The for-

mula for p is essentially the same as regressing the function f on n + 1 orthogonal
regressors ; the coefficient of the k’th regressor equals the covariance between f
and the k’th regressor divided by the variance of the k’th regressor. This is no ac-
cident since regression is a least-squares approximation. The difference in practice
is that regression is limited to those regressors which real data gives the analyst,
whereas in approximation the analyst can choose the basis functions upon which the
approximation is built.

Fourier Approximation. A particularly important form of least-squares ap-
proximation is Fourier approximation. By Fourier Approximation theorems, if f is
continuous on [0, 27] and f(0) = f(2x), then

J(0) =3 Ancos(nd) + 3 By sin(n0) (34)

n=0 n=0

where | gor
A, = — 8) £(0) d6
j(; cos(nd) f(9)

T
Bo=2 [ sin(nt) f(0)ds
w== [T sin(n0) £(0)
and convergence in (34) is uniform.

Chebyshev Approximation. We will next describe some of the features of
Chebyshev approximation since they play an important role in many applications.

Theorem 7. (Chebyshev Approximation Theorem} Assume f € C7 [~1, 1]. Let

Culz) = % o+ Y ¢Tix)

i=1
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where | () Ti(e) de
PV e

Then there is a b such that, for alin > 2

2
o= =
T r

il

blnn

“f"cn“oos

n'l'

Hence C, — [ uniformly as n — co. Furthermore, there is a constant ¢ such that
lc.'il < c/jr$ 121

This theorem will help us assess the quality of an approximation since both the
error and the coefficients eventually drop off rapidly for smooth functions. Note that
the convergence is uniform, a stronger form of convergence that the L? sense which ini-
tially motivated the Chebyshev approximation. Therefore, Chebyshev approximation
also works for us when we want to approximate f uniformly well with polynomials.

4.3. Interpolation. Interpolationis any method which takes a finite set of point-
wise restrictions and finds a function f : R — R™ satisfying those restrictions.

Lagrange Interpolation. Lagrange interpolation takes a collection of n points
in B%, (zi, yi), ¢ =1, ---, n, where the z; are distinct, and finds a degree n — 1 poly-
nomial, p{z), such that y; = p(z;), ¢ = 1, ---, n. The Lagrange formula demonstrates
that there is such interpolating polynomial. Define

f,(m) = H

i

r—T;

.75,'-273'

Note that £;(z) is unity at ¢ = «; and zero at ¢ = z; for ¢ # j. This property implies
that the polynomial

=
—
8
N
i
)2
=
S
—
8
S

i=1
interpolates the data, that is, y; = p(z:),¢ = 1, ---, n. Furthermore, this is the
unique solution.

Hermite Interpolation. We may want to find a polynomial p which fits slope
as well as level requirements. Suppose we have data

plz)) =i, plz)=vyl,i=1,--,n

where the z; are distinct. Since we have 2n conditions, we are looking for at least a
degree 2n — 1 polynomial which satisfies the conditions above.
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We will construct the unique solution, p{x). First define the functions
hi(e) = (2 — 2:) ()
hi(z) = (1 - 26 (z) (z — ) i ()’

The critical facts are that h; is a function which is zero at all z; nodes except at z;,
where it is unity, and its derivative is zero at all z;, and the reverse is true for hi{z).
The unique solution to the Hermite interpolation problem is

plz) = Z yi hi(z) + Z vi hi(z)

=1

4.4. Approximation Through Interpolation. Interpolation isextremely pow-
erful since it uses a minimal amount of information to construct an approximation.
However, we want the approximation to be valid generally, not just at the interpola-
tion nodes Consider the function f(z) = 7 over the interval [-5,5]. Let p,(z) be
the n’th degree polynomial which agrees w1th f at the n + 1 uniformly spaced (in-
cluding the endpoints) nodes. Not only does p,, not converge to f, but for |z| > 3.64,
limsup,_,, |f(z)— pu(2z)| = co . Therefore, for a seemingly well-behaved C*> func-
tion, interpolation at the uniformly spaced nodes does not improve as we use more
points.

Interpolation Error. The last example may discourage one from approximat-
ing a function through interpolation. While the example does indicate that caution
is necessary, there are some facts which reduce the likelihood of perverse behavior
by interpolants. Recall that we defined ¢;(z) = l'[ﬁé‘ f}‘;’:, and that the Lagrange

polynomial interpolating f at points z; is pu(z) = X0, f(2:i)€i(z). Define

n

(x5 21, ,Za) = [[ (2 — z4).

k=1

The following theorem uses smoothness conditions to compute a bound on the inter-
polation error of the Lagrange interpolation polynomial.

Theorem 8. Assumea=29< 2, < ++ < &n = b Then

sup | f(z) = pa(2) [ SN SO floo (n)7' sup U(z21,000,20)  (35)
zela,b) z€la,b)
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Chebyshev Interpolation. We will next determine a good collection of inter-
polation nodes. Note that our choice of {z;}%, affects only the maximum value of
¥(z), which in turn does not depend on f. So if we want to choose interpolation
points so as to minimize their contribution (35), the problem is

min ~ max IIZ; (¢ —z)

Tl Tn
The solution to this problem on [—1,1] is

k—
mk=cos(2 lar),k-—-l,---,n
2n

which are the zeros of T),. Therefore, the interpolation nodes which minimize the
error bound computed above are the zeros of a Chebyshev polynomial adapted to the
interval.

This shows that the Chebyshev interpolant is the best in terms of minimizing the
worst-case error. Furthermore, it also keeps the maximum error, || f — pn |loo, small.

Theorem 9. (Chebyshev Interpolation Theorem) Suppose f € C*{a, b]. If I is the
degree n Chebyshev interpolant, then there is some dy such that for all n

1 =1 oo (2 toglm+1) +2) 2oy 5@ ).

This theorem says that the Chebyshev interpolant converges to f rapidly as we
use more Chebyshev zeros. Convergence may seem to be an unremarkable property,
but interpolation at uniformly spaced points does not necessarily converge as we use
more points. Given these properties, Chebyshev methods are valuable whenever the
approximated function is smooth.

4.5. Piecewise Polynomial Interpolation. Lagrange interpolation computes a
C* function to interpolate the given data. An alternative is to construct a function
which is only piecewise smooth. Two common schemes are Hermite polynomials and
splines.

Step Function Approximation. One common approximation strategy in eco-
nomics is to use step functions. Step function approximations on [a, b] are generated
by a basis of step functions, {¢; :¢ =1,---,n} where h = ¢% and

0, a<z<a+{(i-1)
pi{z) =41, a+(i-Dh<z<a+ih
0, a+:h<z<b

If the interpolation data are (z;, ;) and ¢(z;) = 1, then the step function ¥°; yiwi(z)
interpolates the data. To get better approximations, one increases n.
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Piecewise Linear Approximation. Piecewise linear approximations take a
sequence of data, (x;,¥:), and creates a pilecewise linear function which interpolates
the data. If the z;are uniformly distributed, then they are generated by a basis of
tent functions, that is, functions of the form, for¢t =0,---,n,

0, e<z<a+(i—1)h
() = (z = (a+ (i —1)A))/h, a+(i-1)h<z<a+ih
pilz) = 1—(z—(a+(i—1)R)/k, a+ih<z<a+(i+1)k
0, e+(i+1h<z<h

These are called tent functions since p;(z) is zero to the right of a + (¢ — 1)A, rises
linearly to a peak at a + ih, and then falls back to zero at a + (¢ + 1)k, and remains
zero. While both step function and piecewise linear approximations fit into our general
linear approach, they differ in that the basis elements are zero over most of the domain,
and at each point in the domain most basis functions are zero. This is the defining
feature of finite element approaches to approximation. While the resulting bases are
not strictly orthogonal, they are close to being so since the inner product between
most basis elements is zero.

Hermite Interpolation Polynomials. Next, suppose that we have this level
and slope information at x,,- -, z,. Within each [z;, zi;] interval, we construct the
Hermite interpolation polynomial given the level and slope information at z; and z;,1.
The collection of interval-specific interpolations constitute our piecewise polynomial
approximation. The resulting function is a cubic polynomial almost everywhere.
However, at the interpolation nodes, it is only C!. This lack of smoothness is often
undesirable and is addressed by splines.

Splines. Another piecewise smooth scheme is to construct a spline. A spline is
any smooth function which is piecewise polynomial but also very smooth where the
polynomial pieces connect. Formally, a function s(z) on [a, 8] is a spline of order n if s
is C™~% on [a, b}, and there is a grid of points (callednodes) a = 2o < z; < - < 24 = b
such that s is a polynomial of degree at most n — 1 on each subinterval [z;, z;41),
t = 0,...,n — 1. Note that order 2 splines are just the common piecewise linear
functions.

The cubic spline (that is, of order 4) is popular. Suppose that we have Lagrange
interpolation data {(z;, ;) | ¢ =0, ---, n}. The z; will be the nodes of the spline,
and we want to construct a spline, s(z), such that s{(z;) = y;,£ =0, -+, n. On each
interval [z, T;141], s(z) will be a cubic a; + bz + ¢; 2? + d; z3. We, therefore, have n
intervals and 4n unknown coeflicients. The interpolating conditions plus continuity
at nodes implies 2n conditions on the coeflicients:

y,-:a,-+b.-$.-+6£1¢?+d-‘$? ,i=0,-,n
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yi:ai—l+b'—1mi+ci—lm?+d:‘—lm?:i=11 e, n—1

We next force the function to be C? at the interior nodes of the interpolation, implying
2n — 2 more conditions:

b,+26,$,+3d,1!'2 = b,'_] +2C{_1I;+3d§_1 .’12;-2, 1= 1,2,“',7?.--1.

This exhausts the interpolation and smoothuness conditions, leaving 2 degrees of
freedom. Various splines are differentiated by the two additional conditions imposed.
One way to fix the spline is to pin down s'(z¢} and s'(z,,). For example, the natural
spline imposes s'(zq) = 0 = §'(z,). Other splines make other choices, such as setting
s'(zg) and $'(z,) equal to the slope of the secant lines over {zo,z1] and [Tn-1,Zn].
One’s choice depends on the properties desired for the spline.

Splines are excellent for approximations for two general reasons. First, evaluation
is cheap since splines are locally cubic. To evaluate a spline at £ you must first find
which interval [z;, #;14] contains z, then find the coefficients for the particular cubic
polynomial used over [z;, x;41], and evaluate that cubic at x. The second reason for
using splines is that good fits are possible even for functions which are not highly
differentiable, or are C* but have regions where the curvature is high.

Which Method to Use?. While all of these interpolation schemes will asymp-
totically approximate any C? function, each has its advantages. Chebyshev interpola-
tion is asymptotically superior to piecewise linear and piecewise constant approxima-
tions for f € C3[a,b]. While these asymptotic results are strong, real-life computing
also needs to watch the proportionality constants. Geometrically, if the curvature of
f changes rapidly and one can use only a few basis elements, a piecewise linear or
more general spline approximation will do better than Chebyshev interpolation.

These considerations motivate the following rule: if high-order derivatives are not
large and f is smooth, use Chebyshev polynomial basis; otherwise, use a piecewise
polynomial approach.

4.6. Shape-Preserving Interpolation. Above we have focussed on the point-
wise convergence properties of various approximation schemes. Sometimes we will
want to both interpolate data and preserve some shape in the data. For example,
if the interpolation data indicates an increasing function, we may want to compute
an approximation which is increasing everywhere, not only node-to-node but also be-
tween the interpolation nodes. We will discuss one simple example of shape-preserving
interpolation.

Schumaker [1983] presents a particularly simple way to construct shape-preserving
quadratic splines. Suppose that we have z; < 23,31 > 3; and want to find a piecewise
quadratic function s € C'[ty,1,] such that

S(tl) = Z, S'(t,') = 8y, 1= 1,2
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and, furthermore, we want s to be concave, as the data indicates is possible. Schu-
maker shows how to do this by adding one interpolation node in [t;,¢;,1]. By piecing
together these functions, he shows how to preserve shape globally. The shape prop-
erties which can be preserved are nonnegativity, monotonicity, and curvature. If one
does not have slope information, one need only to choose the slope parameters so as
to be consistent with the shape of the data.

4.7. Multidimensional Approximation. Most economic problems involve sev-
eral dimensions — physical and human capital, capital stocks of competitors, wealth
distribution, etc. When we attempt to approximate functions of several variables,
many difficulties present themselves, We will discuss multidimensional interpolation
and approximation methods, first by generalizing the one-dimensional methods via
product formulations, and then by constructing inherently multidimensional schemes.

Tensor Product Bases. Tensor preduct methods build multidimensional basis
functions up from simple one-dimensional basis functions. If {©;(z)}2, is a basis
for functions of one real variable, then the set of pairwise products, {¢i{z)w;(y)}5-,
is the tensor product basis for functions of two variables. To handle n dimensional
problems in general, one can take all the n-wise products, and create the n-fold
tensor product of a one-dimensional basis. The tensor approach can extend orthogonal
polynomials and spline approximation methods to several dimensions. One advantage
of the tensor product approach is that if the one-dimensional basis is orthogonal in
a norm, the tensor product is orthogonal in the product norm. The disadvantage is
that the number of elements increases exponentially in the dimension.

Complete Polynomtals. There are many ways to form multidimensional bases
and avoid the “curse of dimensionality.” One way is to use complete polynomialbases,
which grow only polynomially as the dimension increases. To motivate the complete
polynomials, recall Taylor’s theorem for R™:

Theorem 10. (Taylor’s Theorem): Suppose f : R* — R!, and is C**!. Then for
e’ e R®

flz) = f(=9)+ Tk 2 (2°) (zi— <))
n n 2
+% Tim1 L=t ﬁf‘ia‘% (2°) (=i — 20) (z; — :1:?)
: ) .
+f}r’ :'1121 T Zik=1 -3_1:._'16_%:;_‘,: (mﬂ) (1'3'1 - ‘1"?1) Tt (m"k - I?k)

+O () z = 2% |I+)
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Notice the terms used in the k'th degree Taylor series expansion. For k = 1,
Taylor’s theorem uses the linear functions Py = {1, 21,22, +,Z.}. For k = 2, Taylor’s
theorem uses

Pe=PiU {x},. 22,3122, 21%3,** , Tn1Tn }-

‘P, contains some cross-product terms, but not all; for example, z;z,x3 is not in P,.
In general, the k’th degree expansion uses functions in

n
Pe={af -z | D, ie <k, 0<dy, -+ ia}
=1

The set Py is the complete set of polynomials of total degree k.

Complete sets of polynomials are often superior to tensor products for multivariate
approximation. The n-fold tensor product of {1,z,---,z*} contains (k+1)" elements,
far more than Py. For example, P, contains 1 + n + n(n + 1)/2 elements compared
to 3" for the tensor product. Taylor’s Theorem tells us that many of the tensor
product elements add little to the approximation, saying that the elements of Py will
yield a k’th order approximation near z° and but that the n-fold tensor product of
{1,z,-+-,z¥} can do no better than k’th order convergence since it does not contain
all degree k + 1 terms. This suggests that the a complete family of polynomials will
give us nearly as good an approximation as the tensor product of the same order, but
with far fewer elements.

Finite Element Approaches. Finite element methods use bases whose ele-
ments have small support. One simple example is bilinear interpolation. Suppose we
have the values of f(z,y) at {z,y) = (£1, £1). Then, the following 4 functions form
a cardinal interpolation basis:

(,01(2’3,3;) = 1‘ (1 - m) (1 - y): 902(3:73/) = 4l (1 +.’I}) (1 - y) (36)
es(zy) =g (L+2)(1+y), walzy)=5(1-2)(1+y)
and the bilinear approximation to f on the square [—1,1]x[-1, 1], which is an example
of an element, is

f(—I: "—I)QSI(UJ,?J) + f(l: “1)¢2($1 y) + f(l: 1)¢'3($sy) + f('_l? 1)¢4($’ y)'

The approximation is linear at each edge, but generally has a saddlepoint curvature on
the interior. To interpolate data on a two-dimensional lattice, we create the hilinear
approximation on each square.

Finite element methods consist of partitioning a domain into several elements,
and patching together the local approximations on the elements, but this is not easy.
Since we generally want the result to be a continuous function, care must be taken
that resulting approximation is continuous across element boundaries. With bilinear
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interpolation, this will hold since any two approximations overlap only at the edges
of rectangles, and on those edges the approximation is the linear interpolant between
the common vertices.

An alternative approach is to use triangular elements. Let P, P, P5 be the canonical
linear triangular element, P, = (0,0), P, = (0,1}, and P; = (1,0). We are looking for
linear functions, ¢i(z,y), such that ¢;(P) =1 and p;(F;)=0fori# 3, 1,7 =1,2,3.
The functions

eilzy)=1-z~y, @lr,y)=y, eslz,y)=2
satisfy the cardinal interpolation conditions. The resulting function is linear in (z, y).
The global approximation is obtained by triangulating the space and constructing
this approximation on each triangle. One advantage of this piecewise planar ap-
proximation approach is that the result does preserve shape, both monotonicity and
concavity, whereas bilinear interpolation will not preserve concavity.

If we know that we are approximating a smooth function, then the kinks at the
edges of the elements may make both bilinear and piecewise planar approximation
unappealing. Assuring smoothness at element boundaries is an increasingly difficult
problem as we increase the desired degree of differentiability and the dimension. There
is a large literature on finite element approximations of multidimensional functions
(see Burnett[8]). Because the finite element method is largely aimed at engineers,
it is most highly developed for two- and three-dimensional problems. For higher
dimensions, economists will have to adapt existing methods, but the basic ideas will
still hold: divide the space into elements, and construct low-order approximations
within elements which satisfy the desired smoothness conditions across the boundaries
of elements.

Neural Networks. The previous approximation procedures are based on linear
combinations of polynomial and trigonometric functions. Neural networks provide us
with an alternative and inherently nonlinear functional form for approximation. A
single-layer neural network is a function of the form

F{z; 8) = Zﬁ, (2:)) (37

=1

where z € R™ is the vector of inputs and % and g are scalar functions. A common
form chooses g(z) = z, reducing (37) to the form h(7z). A single hidden-layer
feedforward network is the form

F(z;8,7) = Z% Eﬁdm (38)

J=1 i=1
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The data for a neural network consists of (y, ) pairs such that y is supposed to be
the output of a neural network if z is the input. This requirement imposes conditions
on the parameters § in (37) and B and 7 in (38). One fits single-layer neural networks

by finding 8 to solve
rrunz F(z; B))?

and the objective of a single hldden-layer feedforward network is to solve
min 3 (v ~ F(«'; 8,7))*
"5

which are just instances of nonlinear least squares fitting.

The approximating power of neural network approximation is indicated by the-
orems of Horni, Stinchcombe and White (see White [62]). Let G be a continuous
function, G : B — R, such that [% G(z)dz is finite and nonzero and G is L? for
1 <p<oo. Let

MG ={g: " > R| glz) =T, BiG(w -z +bj), b;, B € R,

w ERwW #£0, m=1,2,--+}

be the set of all possible single-hidden layer feedforward neural networks using G as
the hidden layer activation function.

Theorem 11. Let f : R* — R be continuous. Then for all ¢ > 0 probability measure
i, and compact sets K C R", there is a ¢ € £*(QG) such that

sup |f(z) —g(z)l <e
zeK

and
[ @) - g@)idu <e

This also holds when G is a squashing functions, i.e., G : R — [0,1], G is nondecreas-
ing, imy_, G(z) =1, andlim,_,_,, G(z) =0

Note that any squashing function is a cumulative distribution function and vice-
versa. A comrmnon choice for & is the sigmoid function

1
l1+e=
These are universal approximation results which justifies the use of neural network
approximation, and helps explain its success. Note the simplicity of the functional
forms; this simplicity makes neural network approximations easy to evaluate. The
theoretical development of neural networks is proceeding, but is inherently difficult
because of the nonlinearity of this approach.

G(z) =
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5. APPLICATIONS OF APPROXIMATION TO DYNAMIC PROGRAMMING
Appriximation methods are a key part of most numerical procedures. They are par-
ticularly important in discrete-time dynamic programming problems. These prob-
lems are among the most useful and basic of dynamic economic problems, with well-
understood theoretical properties (see Bertsekas {1976), and Bertsekas and Shreve
(1978)). We will briefly discuss them and the approximation aspects of numerical
dynamic programming.

Let m{u, z) be profit flow if the state is z and the control is u. Suppose the law
of motion is
Tpp1 = g(Tr, Ue)

Then the value function, V(x), solves
V(z) = max x(u, )+ BV(s(z, w) = (TV)(z) (39)

The standard theoretical procedure is to iterate on the basic functional equation.
If we could handle arbitrary functions, we would start with a guess, V4, and then
compute the sequence {V,,} generated by

Vo =TVay (40)

This procedure converges when viewed as a mapping in the space of value functions.
On the computer, however, one cannot store arbitrary functions. There are several
details which need to be decided to compute approximations to {40).

Since we cannot deal directly with the space of continuous functions, we focus on
a finite-dimensional subspace. We will approximate V{(z) as a finite linear sum of
basis functions.

N
V(z) = Z: aipi(z) = V(z, &) (41)

Numerical procedures construct a V(z) which approximately satisfies the Bellman
equation, (39). More specifically, the objective is to find a vector, @ € R™, such that
V solves (39) as closely as possible.

The basic task is to replace TI', an operator mapping continuous functions to
continuous functions, with a finite-dimensional approximation, 7', which, since we are
focusing on approximations to V of the form (41), maps R", the space of coefficients,
into itself. We construct that map in two steps. First, we choose a finite number
of points z € X, and evaluate (T'V)(z) at £ € X. We will refer to this as the
maximization step. The resulting values are points on the function TV. Since we are
approximating a continuous value function, we use that information to choose a value
function of form (41) which “best” summarizes the information generated concerning
TV. This is the critical approximation step, and we denote the result TV. In essence,
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T takes a function of form (41), V, and maps it to another function of the same form,
and is therefore a mapping in the space of coefficients, and the objective is to find a
fixed point for T in the space of coefficients.

The details of the approximation aspects of this procedure — choosing a basis for
the expression of V, choosing points X to evalnate TV, and fitting the data - are
important. We next discuss some basic approaches.

5.1. Discretization Methods. The simplest approximation procedure is to dis-
cretize the state space, that is, they replace the problem on a continuous state space
with one with a finite number of points. This has the advantage of reducing the
problem to one of finite matrices. The other advantage is that the resulting analysis
does exactly solve for the solution to some similar economic problem.

While the discretization method does not obviously fit the description above, it
is generally equivalent to approximating the value function with a step function®.
However, step functions are highly inefficient ways to approximate a smooth value
function. Because of this, the discretized state space method is unlikely to be of much
value in economic analysis outside of some simple cases, such as those discussed in
Imrohoraglu[27], Christiano[10], and Rust[55]. The impracticality of discretization is
indicated by the fact that supercomputers are often used. Multidimensional problems
are practically impossible, even for supercomputers, since the “curse of dimensional-
ity” is particularly vexing for this method; if N points are used for a one-dimensional
problem, then N? points will be used for a d-dimensional problem.

5.2. Multilinear Approximation. While the discretization approach has been
popular in macroeconomics, many OR researchers and economists have moved instead
to continuous approximations of the value function. The simplest example of this is
the DYGAM package discussed in Dantzig, et al. which used multilinear interpolation
on hypercube elements when computing V;; from the information generated by T V.
In economics, Zeldes has used piecewise linear approximations.

This procedure has several advantages. Far fewer nodes are needed compared
to a discretization method since the continuity of V is being exploited. There are
some difficulties. First, the kinks make the optimization step more difficult, and
are unrepresentative of V if V is C?. Second, multilinear approximation generates
curvature properties which may cause multiple local optima in the optimization step.

5.3. Polynomial Approximations. If a little continuity is good, then more
should be better if V is sufficiently continuous. In this spirit, Bellman and Drey-

6 After computing the solution to (40), many users then use linear interpolation to estimate the
value function at points not part of the discretized state space. Since this linear interpolation is done
only after the value iteration is completed, it does not affect these comments and it’s contribution
to improving the algorithm’s accuracy is limited.
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fus (1962) and Bellman et al. (1963) proposed the use of polynomials, and Daniel
(1976) discussed the use of splines. Kotlikoff used polynomials in his study of sav-
ing and bequests. Judd presents and example of using a tensor-product basis of
Chebyshev polynomials to solve a three-dimensional optimal growth problem. The
advantages of polynomial approximations are that fewer points are evaluated and
increased smoothness makes the optimization step more rapid.

There are, however, some problems which may arise with polynomial approxima-
tion which don’t arise with discretization or multilinear approximation. The difficulty
is that many interpolation schemes do not preserve shape. Even if we use the best
possible interpolation scheme, the resulting approximation may not be good in be-
tween the nodes in X, and can lead to instabilities in the value iteration algorithm.
To deal with this, Judd (1994) proposes the use of shape-preserving polynomials to
construct value function approximations, and computed upper bounds on the error
which are superior to those from the discretization approach. In fact, for problems
with a concave (or convex) value function, polynomial approximations are clearly
superior to discretization methods and multilinear approximations.

6. PROJECTION METHODS

The approximation ideas discussed naturally leads to algorithms for solving the kind
of operator equations which arise in economics. They are called projection methods.
We will describe the general projection approach for solving problems, and show that
most of the techniques currently used by economists are also projection methods when
viewed from the general perspective. With this common framework, we can discuss
and compare many numerical methods, In particular, numerical analytic ideas will
show why some methods outperform others and how to devise efficient algorithms.

The basic idea of projection techniquesis to first express equilibrium as a zero of an
operator, N : B, — B,, where B; and B, are function spaces. That operator can be
an ordinary differential equation, as in optimal control problems, a partial differential
equation, as in continuous-time dynamic programming, or a more general functional
equation, as in Euler equations expressing necessary conditions for recursive equilibria
(as formulated in Prescott and Mehra[26]). Of course, space and time limitations
make it impossible for computers to store and evaluate all possible elements of B;.
To make the problem tractable, projection methods focus on a finite-dimensional
subspace of candidates in B; which can be easily represented on a computer and is
likely to contain elements “close” to the true solution. The selection of this finite-
dimensional space naturally exploits approximation methods. It may be difficult for
the computer to compute A, in which case we find a computable operator, N , Which
is “similar” to A. Within the space of candidates solutions, we then find an element
which is “almost” a zero of V.

While the basic idea is natural, there are many details. The key details are speci-
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fying the subspace within which we look for an approximate solution and its computer
representation, defining what “close” and “almost” mean, and finding the approxi-
mate solution. By studying these details, we will see how to implement these ideas
efficiently to solve numerically interesting dynamic nonlinear economic problems.

6.1. General Projection Algorithm. We next describe the projection method
in a general context. One begins with an operator equation representation of the
problem, that is, one reduces the economic problem to finding an operator A and a
function f such that equilibrium is represented by the solution to

N(f)=0

where f: D C RN — RM N : By — B,, and the B; are function spaces. Typically
N is a composition of algebraic operations, differential and integral operators, and
functional compositions, and is frequently nonlinear.

We shall show how to implement the canonical projection technique in a step-by-
step fashion. We first give an overview of the approach, then highlight the critical
issues for each step, and discuss how the steps interact.

The first step is to decide how to represent approximate solutions. One general
way is to assume that our approximation, f, is built up as a linear combination
of simple functions. We will also need a concept of when two functions are close.
Therefore, the first step is to choose a basis and an appropriate concept of distance:

Step 1) Choose bases, ®; = {¢;}2,, and inner products, < -, - >;, over Bj,
i=12

The basis over By should be flexible, capable of yielding a good approximation for
the solution, and the inner products should induce useful norms on the spaces.

Next, we decide how many basis elements to use and how to implement N:

Step 2) Choose a degree of approximation n for f, a computable approximation
N of N, and a collection of n functions from By, p; : D = RM i =1,--- n.

The approximate solution will be f = E%, a;@i(x). The convention is that the
¢; increase in “complexity” and “nonlinearity” as ¢ increases, and that the first n
elements are used. The best choice of n cannot be determined a priori. Generally,
the only “correct” choiceis n = oo, Larger n should yield better approximations, but
one is most interested in the smallest n which yields an acceptable approximation.
One initially begins with small » and increases n until some diagnostic indicates little
is gained by continuing. Similar issues arise in choosing N. Sometimes, as in section
2, we can take A’ = A", The p; will be the projection directions used to determine 4.

Step 1 lays down the topological structure of our approximation and Step 2 fixes
the degrees of freedom of the approximation. Once we have made these basic deci-
sions, we begin our search for an approximate solution to the problem. Since the true
solution f satisfies M (f) = 0, we will choose as our approximation some f which
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makes A ( f } “nearly” equal to the zero function. Since f is parameterized by &, the
problem reduces to finding a @ which makes A (f) nearly zero. This search for @ is
the focus of Steps 3-5.

Step 3) For a guess d, compute the approximation, f = ©7, a;pi(z), and the

residual function, .
R(z; @) = (N(f)) (2).

The first guess of & should reflect some initial knowledge about the solution. After
the initial guess, further guesses are generated in Steps 4 and 5, where we see how we
use the inner product, < -, - >2, to define what “near” means.

Step 4} For each guess of @, compute the n projections,

Pz() =< R(a &)Spi(.) >2$i = 1!"'5”"

Step 5) By iterating over steps 3 and 4, find 4@ which sets the n projections equal
to zero.

This general algorithm breaks the numerical problem into several distinct steps.
It points out the many distinct techniques of numerical analysis which are important.
First, in Steps 1 and 2 we choose the finite-dimensional space wherein we look for
approximate solutions, hoping that within this set there is something “close” to the
real solution. These steps require us to think seriously about approximation theory
methods. Second, Step 4 will involve numerical integration if we cannot explicitly
compute the integrals which define the projections. Third, Step 5 is a distinct numer-
ical problem, involving the solution of a nonlinear set of simultaneous equations or the
solution of a minimization problem. We shall now consider each of these numerical
problems in isolation.

Choice of Basis and Inner Product. There are many criteria which the basis
and inner product should satisfy. The full basis ®, for the space of candidate solutions
should be “rich™; in particular, it should be complete in B;. We will generally use
inner products of the form

< f(@), 9(2) >= [ fla)g(e)ulz)dz

for some weighting function w(z) > 0.

Computational considerations also play a role in choosing a basis. The ; should
be simple to compute. They should be similar in size to avoid scaling problems.
While asymptotic results such as the Chebyshev Interpolation Theorem may lull one
into accepting polynomial approximations, practical success requires a basis where
only a few elements will do the job. This requires that the basis elements should
“look something like” the solution. In particular, our discussion of approximation
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methods above shows that we should use smooth functions to approximate smooth
functions. We will also see that the use of orthogonal bases will enhance efficiency and
accuracy. Because of its special properties, a generally useful choice is the Chebyshev
polynomial family. If, on the other hand, one has a basis which is known to effi-
ciently approximate the solution, one should use that instead or combine it with the
Chebyshev polynomials. A good choice of basis can substantially improve algorithmic
performance.

Choice and Evaluation of Projection Conditions. Projection techniques
include a variety of special methods. Generally we use < -, - > to measure the “size”
of the residual function, R. The general strategy is to find an @ which makes R small.
There are several ways to proceed.

First, we have the least-squares approach which chooses & so as to minimize the
“weighted sum of squared residuals”:

rngn < R{z; @), R(=z; @) > .

This replaces an infinite-dimensional operator equation with a nornlinear minimization
problem in R". The standard difficulties may arise; for example, there may be local
minima which are not global minima. However, there is no reason for these problems
to arise more often here than in any other context, such as maximum likelihood
estimation, where extremal problems are solved numerically.

While the least-squares method is a direct approach to making the error of the
approximation small, most projection techniques find approximations by fixing n pro-
jections and making the projection of the residual function in each of those n directions
zero. Formally, these methods find @ such that < R, p; >2= 0 for some specified col-
lection of functions, p;. Different choices of the p; defines different implementations
of the projection method.

One such technique is the Galerkin method. In the Galerkin method we use the
first n elements of the basis for the projection directions. Therefore, & is chosen to
solve the equations:

P,(C-l') =< Rz; 5), (Pi(m) >= 0, t=1,--,n

Notice that here we have reduced the problem of solving a functional equation to solv-
ing a set of nonlinear equations. In some cases the Galerkin projection equations are
the first-order conditions to some minimization problem, in which case the Galerkin
method is also called the Rayleigh-Ritz method. This is not as likely to happen in
economics problems because of their inherent nonlinearities.

There are obviously many ways to implement the projection idea. A collocation
method takes n points from the domain D, {z;}%,, and chooses & to solve

R(z;; d) =0, i=1,---,n
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This is a special case of the projection approach since R(z; ;&) equals the projection
of R(z;d) against the Dirac delta function at z;, < R(z; d), 6(z — ;) >;. Orthogonal
collocation chooses the collocation points in a special way. The chosen z; are the zeros
of the n'th basis element, where the basis elements are orthogonal with respect to the
inner product. The Chebyshev Interpolation Theorem suggests its power. Suppose
we have found an @ such that R(z; @) =0, i =1, ---, n, where the 2! are the n zeros
of T,.. As long as R(z;&) is smooth in z, the Chebyshev Interpolation Theorem says
that these zero conditions force R(z;a@) to be close to zero for all z, and that these
are the best possible points to use if we are to force R(z; &) to be close to zero. Even
after absorbing these considerations, it is not certain that even orthogonal collocation
is a reliable method; fortunately, its performance turns out to be surprisingly good.
Choosing the projection conditions is a critical decision since the major computa-
tional task is the computation of those projections. The collocation method is fastest
in this regard since it only uses the value of R at n points. More generally, the pro-
jections will involve integration. In some cases one may be able to explicitly perform
the integration. This is generally possible for linear problems, and possible for special
nonlinear problems. However, our experience is that this will generally be impossi-
ble for nonlinear economic problems. We instead need to use numerical quadrature
techniques to compute the integrals associated with evaluating < -, - >. A typical
quadrature formula approximates [ f(x) g(z) dz with a finite sum T2, w; f(z;) where
the z; are the quadrature nodes and the w; are the weights. Since these formulas also
evaluate R at just a finite number of points, quadrature-based projection techniques
are essentially weighted collocation methods. The advantage of quadrature formulas
over collocation is that information at more points is used to compute the approxi-
mation, hopefully yielding a more accurate approximation of the projections.

Finding the Solution. Step 5, which determines @ by solving the projection
conditions computed in Step 4, uses either a minimization algorithm (in the least-
squares approach) or a nonlinear equation solver to solve the system P(d) = 0.
Many alternatives exist, including successive approximation, Newton’s method, and
homotopy methods, all of which have been used in the economics applications of the
projection method. We won’t discuss these details here since much of that material
is covered in Chapter [the CGE chapter].

Coordination among Steps 1-5: The Importance of Conditioning. We
now see what is needed for efficiency. We need basis functions which are easy to
evaluate since they will be frequently evaluated. The integration in Step 4 must be
accurate but fast. This can be helped by using quadrature formulas which work well
with the basis. Finally, the nonlinear equation solver in Step 5 needs to be efficient
and should be able to use all the information arising from Step 4 calculations. Step
5 will typically use gradient information about the integrals of Step 4. It is therefore
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important to do those gradient calculations quickly, doing them analytically when
possible,

A particularly important interaction is that between the formulation of A/, the
choice of a basis and inner product, and the technique for solving the projection
conditions. Newton-style methods for solving the system P(@) = 0 will invert its
Jacobian, Pz(&). This inversion makes the method sensitive to conditioning problems.
The spectral condition number, defined to be the ratio of the largest and smallest (in
magnitude) eigenvalues of a matrix, is a commonly used index of being nearly singular
and indicates how sensitive matrix inversion is to error. If a Jacobian is nearly singular
near the solution, the accuracy of the inversion will be poor due to round-off error and
convergence will be slow. In particular, a condition number of 10* tells you that an
error of ¢ in specifying an inversion can yield an error of up to 10¥¢ in the computed
inverse; in particular, you can lose up to k significant digits when you solve for @ in
a Newton step.

We now see why an orthogonal basis is going to be important. If a basis is nearly
collinear, then the rows of P;(a) will likely be nearly collinear, Py(@) will likely have
a large condition number, and large errors will likely arise in computing its inverse.
Bases with just the first six ordinary polynomials can easily generate Jacobians with
condition numbers on the order of 10, in which case one has possibly lost almost
all significant digits on, say, a 13-digit machine, that is a machine where the machine
round-off error € is 10713, By choosing a basis which is orthogonal with respect to the
inner product used in defining P(d), one reduces the chances of poor conditioning in
the Jacobian of P.

- The form chosen for A will also have a dramatic influence on conditioning, accu-
racy and speed. If V is linear then P(d) = 0 is a linear equation in @, and Newton’s
method converges in just one step. In our economic problems, there are typically
several economically equivalent operators which represent equilibrium, typically dif-
fering by nonlinear transformations. The more linear we can make A, the better
Newton’s method will perform. This “linearization” idea helps us find a good form
for our problems.

7. APPLICATIONS OF PROJECTION METHODS TO RATIONAL EXPECTATIONS
MODELS
Most methods used in numerical analysis of economic models fall within the general
description above. We will see this below when we compare how various methods
attack growth problems. The key fact is that the methods differ in their choices of
basis, fitting criterion, and quadrature techniques. With the general method laid out,
we will now report on a particularly important application to show its usefulness.
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7.1. Discrete-Time Deterministic Optimal Growth. We examine optimal
growth problems in discrete time and show how projection techniques can be adapted
to calculate solutions. The stochastic case is one which has been studied by many
others with various numerical techniques. In fact, one point we make below is that
most of these procedures are really projection methods. By recognizing the common
projection approach underlying these procedures, we can better understand their
differences, particularly in accuracy and speed. We conjecture that the comparative
performances of these various implementations of projection ideas in the discrete-time
stochastic optimal growth problem is indicative of their relative value in other future
problems.

We first examine a deterministic growth problem. We want to choose consump-
tion, ¢;, to maximize

Z B ulc)
t=0
and where capital obeys the law of motion

kt-{-l = f(kt) -

To calculate the optimal consumption policy, A(k), it is enough to focus on the Euler
equation,

= u'(h(k)) — Bu'(R(f(k) — R(K))) f(£(k) — h(R)) = (N(R))(k)  (42)

We shall now describe the details of a projection approach to the problem. The
domain D of our approximation will be [k, kar]. kn and kps are chosen so that
the solution will have k confined to [km, kar]. In particular, [km, kam] must contain
the steady state, a point which we can determine before calculations begin. Qur
approximation to & is parametrically given by

n
hk; 3) = 3 anblk)
i=1
where n is the number of terms used. We could choose the Chebyshev polynomials
(k) = T,-_l(Qﬁ-‘:"?; — 1), or the tent functions.

In this problem, A is a simple operator using only arithmetic operations and
composition. Therefore, we can take A/ = A, Since k is continuous, we define A to
have domain and range in C%k,,, ka). Hence, By = By = COk,,, k], the continuity
of N in the L® norm following from the u, f, and & being C; in all their arguments.
Given the Euler equation, (42), the residual function becomes

R(k;@) = v'(h(k; @) — Bu'(h(f(k) ~ h(k;@); @) f'(f(k) — h(k; &) = N(h)
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To compute @, we can do one of several things. First, we consider orthogonal
collocation. We choose n values of k, denoted by k;, ¢ = 1,...,n. We then choose d so
that R(k;;d) = 0 for each :. Orthogonal collocation chooses the k; to be the n zeros
of 1. The Chebyshev Interpolation Theorem strongly argues for using Chebyshev
polynomials in this case. If R(k;;d@) = 0 for each k;, then we would like to conclude
that R(k;:;&) is the zero function on the domain D. The Chebyshev Interpolation
Theorem says that this is most justified if the k; were the Chebyshev zeros, and that
if we use Chebyshev zeros, we are very likely to R(k; ;@) to be nearly zero.

The tent function approach was used in Bizer and Judd. There the interpolation
nodes were chosen to be uniformly distributed in D). The advantage of this approach is
that the resulting interpolation is shape-preserving. This may be useful since we also
know that A is monotone increasing. The policy functions computed in Judd(1992)
using Chebyshev polynomials were increasing, and using tent functions reduced the
algorithm’s efficiency.

We could also implement the Galerkin method. If we use Chebyshev polynomials
as a basis, then we use projections with the inner product

< (k) 90 >= [ FR)a (ko ()dk

where L
w(k) = (1 - (2 —2-

With this choice of inner product, the basis is orthogonal. The Galerkin method
computes the n projections

-1)7%,

P(@) = ]k:“‘ R(k; @) i(k)w(k)dk, i=1,...,n

and chooses @ so that P(@) = 0. Here the difficulty is that each F;(@) is an integral
which needs to be computed numerically. The form of w(k) implies the use of Gauss-
Chebyshev quadrature. That is, we approximate P;(d} = 0 conditions with

m

>~ Rk;; @) vhik;)

i=1

for some m > n, with the k; being the m zeros of 4.

When we have calculated our estimate of @, we would like to check if this procedure
yields reliable approximations. Several diagnostics can be used to see if the proposed
solution is acceptable. First, the a; coefficients decline rapidly in k, as predicted by
the Chebyshev approximation theorem. Second, the low-order coefficients should be
insensitive to the choice of n. While these facts do not prove that the approximation
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is good, we would be uncomfortable if the high-order coefficients were not small, or if
the coefficient estimates were not stable as we increase n. We also want to examine
test cases to see if the results from the projection method agree with the answer from
another method known to be accurate. Judd (1992) performs these tests on a variety
of empirically interesting cases, finding that the projection method applied to this
model is very accurate and very fast.

7.2. Stochastic Optimal Growth. Wenext turn to a stochastic optimal growth
model. This example will show us how to handle multidimensional problems and
the conditional expectations which arise in stochastic dynamic problems. We will
also be able to describe the parameterized expectations method of solving rational
expectations models.

More specifically, we examine the problem

max E {32, 8" u(é:)}
kt+1 = Btf(kt) —Ct

where 8, is a stationary AR(1) multiplicative productivity parameter. We will assume
that the productivity shock obeys In8;,; = pln 0; + €4, and that the ¢, ~ N(0,0%)
are independent. The multiplicative specification of the shock is clearly not essential.

In this problem, both the beginning-of-period capital stock and the current value
of § are needed for a sufficient description of the state. Hence, the Euler equation is

o' (h(k,9)) = BE {v'(h(Of (k) — h(k,0),6)) 6765 (k) — h(k,0)) | 8} (43)

At this point, we will rewrite the Euler equation to make it more linear. We know
that projection algorithms work well for linear problems. Perhaps our algorithm will
do better if we make it more like a linear problem. To that end, rewrite (43) as

0 = h(k,0) — (u') (B E {w(h(8S (k) — h(k,8),0)) 85" (8f(k) — h(k,0)) | 0}) (44)

Note that (44) has two terms, one linear in h(k,§), and the other is similar to a CRTS
function of next period’s potential consumption values.

The procedure for finding A is similar to the deterministic case. First of all,
we need to approximate the policy function. Judd{1992) and Coleman(1991) use
approximations of the form

Ty 7Y

bk, 0;2) =33 ainpi;(k, 6)

i=1 j=1

where the ¢;; functions are Chebyshev functions of & and € in Judd(1992), and tent
functions of Ink and log# in Coleman(1991). Judd(1992) also considered complete
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polynomials. Comparisons followed the considerations outlined above. Since the
policy function is smooth, the smooth approximation procedures did better with the
complete polynomial approach doing best, that is, the greatest accuracy per unit of
computer time. Coleman’s choice of a finite element approach used far more basis
elements and cannot switch to a complete polynomial approach.

In their approach to the stochastic growth model, den Haan and Marcet ([24])
parameterized the policy function to be

h(k,0) = (%20% )/ = (exp{6; + 6;Ink + 651n6})7

that is, they assume that log consumption is a linear function of Ink and logé.
However, this basis is not orthogonal. When they tried to improve the approximation
to a quadratic form in Ink and log8, the lack of orthogonality lead to difficulties
which prevented them from improving on the linear approximation. They even argue
that the collinearity of their basis elements is “a fortunate situation.” and justifies
their focus on the linear case. In contrast, the use of orthogonal bases in Judd (1992)
and the use of a finite element approach in Coleman(1991} leads to no difficulties
in finding substantially better approximations beyond the linear case. Therefore, the
lack of orthogonality is just an example of a bad basis, not as den Haan-Marcet argues,
a justification for looking at a smaller basis.

7.3. Applications to Distorted Economies. The Euler Equation approach is
useful also because it can handle equilibrium problems which are not solutions to
dynamic optimization problems. There are many such examples. In the rest of this
chapter we shall explore several of them. First, there are taxes. Bizer-Judd shows
that if a tax of r is imposed on net output, f/(k) — 1, and the revenues are lump-sum
rebated to agents, then equilibrium is the solution to

u'(h(k)) = Bu'(R(f(k) — h(u))) - (f'(f(k) — R(K))(1 — T} —7)
Note that this is mathematically of the same form as the Euler equation for the opti-
mal growth policy. Actually we can get much more complicated by having investment
tax credits, random taxes, and noneconomic depreciation.
Another example is that of externalities. Suppose

y = f(k}g(K)

where k is the capital-labor ratio at a firm, y is output per unit labor, and K 1s the
social average capital-labor ratio. Then optimality and the condition £ = K would
imply that the socially optimal plan would satisfy the condition

w'(h(k)) = Bu'(R(E™)) (f' (K*)g(k¥) + f(kT)g'(KT))
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k* = f(k)g(k) - (k)

On the other hand, competitive equilibrium wherein individuals would ignore the
effect their private capital has on others’ productivity, would imply the condition

u'(h(k)) = Bu'(h(KT)) f'(K*)g(k¥)
the difference arising from the fact that individual agents would not take into ac-

count the marginal externality of investment, f(k*)¢’(k*). Pete Klenow ([39]) used
projection methods to analyze this problem.

7.4. Equilibrium Growth in Continuous Time. Projection methods have
been used to solve Euler equations for dynamic models. This includes both opti-
mal growth and equilibrium growth with distortions. One simple example is the
canonical continuous-time optimal growth problem described above in (19), which
reduced to solving the differential equation:

0= C'(k) (f(k) ~ C(})) - 5},‘(%((—’;%@ ~f(K) = £ (& C)

Judd (1990) used a basis of Chebyshev polynomials to approximate C(k), C’(k,a) =

24 a; Ti(k), on an interval of capital stocks bounded below by capital stock equal
to a quarter of the steady state and above by capital stock equal to twice the steady
state. He then used a collocation method to solve for @ in the system of equations
E(ki ; C(ki,a)) = 0 where the k; are the n zeros of the n’th degree Chebyshev poly-
nomial adapted to the interval of capital stocks examined. Again, the performance
of the algorithm was very good, independent of the details of the implementation.
In fact, it easily outperformed the more commonly used shooting approach to the
problem. Judd also extended this model to allow for taxation and uncertainty in

continuous time. In all cases, accurate results were obtained quickly.

7.5. Information and Asset Markets. All of the examples discussed above
reduced to applying the projection method to standard mathematical problems -
ordinary and partial differential equations and integral equations. To demonstrate the
flexibility of the projection method, we next examine a very different kind of problem-
asset market equilibrium with imperfect information. In fact, this problem does not
reduce to any of the standard operator problems discussed in applied mathematical
literature.

Asset market equilibrium with imperfect information have been rigorously stud-
ied in recent years. Grossman (1976) and Grossman and Stiglitz (1980) began a long
literature on the partial equilibrium analysis of security markets with asymmetric
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information. However, much of this literature makes very special and simple assump-
tions about the distribution of returns, the information asymmetries, investor tastes,
and asset structure. Furthermore, most analyses add a group of traders, called “noise”
or “liquidity” traders whose demand is insensitive to prices and their information con-
tent. Together, these restrictions substantially limit the generality of the results and
the range of questions which can be addressed. Recently, projection methods have
been used to analyze these models without special functional form assumptions.

Information and Asset Demand. A simple one-period investment problem
illustrates the method. Each investor may invest in two assets. The safe asset pays
out R dollars per dollar invested, and the basic risky asset (we will call it stock) pays
out Z dollars per share. We also assume that each investor of type has an initial
endowment of cash and shares, and that there are only two periods: a trading period
followed by consumption. Therefore, if an investor begins the first period with W
dollars in cash and wq shares of stock, and ends the first period with w shares of stock
which trade at a price of p dollars per share, his second period consumption will be

i=(W—(w—w)p) R+wZ.
The first-order condition for the choice of w will be
0= E{u'(¢)(Z - pR) | I} (45)

where I is the investor’s information set. This says that the excess return should
be uncorrelated with the marginal utility of consumption when conditioned on an
investor’s information set.

While this structure is rather simple, it is arbitrary in the number of investors,
the distribution of Z, and the information allocation of investors.

Computing Conditional Expectations. The conditional expectation in (45)
implies that our equilibrium concept involves a conditional expectation. Numerical
implementation of the conditional expectation conditions is the most challenging as-
pect of this problem. We use Gaussian quadrature methods combined with basic
projection ideas to implicitly compute conditional expectations.

To solve this problem, we use the following definition of conditional expectation:

Z(X) = E{Y | X}

if and only if
E{(Z(X) - Y)f(X)} =0

for all bounded measurable functions, f(X), of X. Intuitively, this says that the
prediction error of the conditional expectation, E{Y | X}, is uncorrelated with any
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measurable function of the conditioning information, X. This definition replaces
the conditional expectation with an infinite number of unconditional expectation
conditions.

Computing an Asymmetric Information Rational Expectations Equi-
librium. We will assume three types of investors, all with different information and
possibly different tastes. Type i investors observe y;. The uncertain second-period
consumption of a type ¢ investor is given by:

&=60,Z +(W; +p(8: - 6))R

where p is the share price of stock, 8; is the number of shares held by type ¢ agents
after trading, and 8; is the type i endowment of stock. A type i investor’s problem is
to solve

max E{U(&) |vi,7) (46)

where a type ¢ investor’s conditioning information at period 1 includes his private
signal, y;, and the price, p.

The state of the market includes all private signals, y = (y1,¥2,y3), but each
investor sees only the market-clearing price and his own information. Therefore,
a rational expectations equilibrium includes a price function p(y) and type-specific
demand policy functions, 8;(p,y:) for ¢ = 1,2, 3, such that given p(y), 8; solves (46)
for ¢ = 1,2,3, and T3, 0i(y:, p(y)) = 1 for all states y.

In their solution to one specification of this model”, Judd and Bernardo (1993)
approximate the price law with the polynornial

pynLynys) = 3. e () Hiyo) He(ys)
0<j+kTISN,

where H;(-) denotes the degree ¢ Hermite polynomial and N, represents the total de-
gree of the polynomial approximation. Similarly, they represented the stock demand
for a type ¢ investor by

8:(p(y), i) = 5 'EKN b Hi(p(y) He(y), 1=1,2,3 (47)
<IHRENg

To determine the unknown ¢z, and bj- . coeflicients, they impose projection con-
ditions on the investors’ first-order conditions. The first-order-condition for a type ¢
investor is given by

By z{U'(&)(Z — pR) | yi,p} =0, i=1,2,3. (48)

"The approach in Judd and Bernardo is similar to the theoretical analysis of Anderson and
Sonnenschein {1].
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Using the definition of conditional expectation given above they impose projection
conditions of the form

E,z{U'(&)(Z - p(y) RYH;(p(»)) Hr(y:)} = 0, . (49)

for various choices of j,k > 0. The condition in (49) states that the product of the
excess return and the marginal utility of consumption for a type i agent is uncorrelated
with H;(p(y))Hi(y:)- To impose market clearing, they imposed 83(p(y),ys) = 1 —
01(p(y), y1) — B2(p(y), y2)-

After imposing a sufficient number of such conditions, the result is a system of
projection conditions constituting a finite nonlinear system of algebraic equations,
thereby reducing an infinite dimensional functional problem to a finite-dimensional
algebraic problem. The projection conditions given in equations ((49) are only part of
the conditional expectation condition given in equation (48). The hope is that a small
number of projections can yield a useful approximation. Judd and Bernardo (1993)
document the accuracy for this approximation method for a variety of distributions.
Overall, their experience is that this method is fast and reliable.

At this point, we should also note the applicability of Laplace’s method to this
problem. The projections (49) are often of moderate dimension, making conventional
numerical integration rather costly. Since high accuracy is needed to compute the
unknown coefficients, sampling methods of integration will not suffice. One way to
economize on the numerical integration is to use Laplace’s method, which is natural
here since the projections are all expectations and the variance is often small. One can
use as a control variate the approximation for the integrand which Laplace’s method
implicitly constructs, and then use conventional quadrature procedures to estimate
the residual.

7.6. Convergence Properties and Accuracy of Projection Methods. When
using numerical procedures, it is desirable to know something concerning its errors.
An important focus of theoretical numerical analysis is the derivation of bounds on
errors. Two kinds of error results are desirable. First, it is desirable to derive an
upper bound on the error for a given level of approximation., Second, if such upper
bounds are not possible, it may still be valuable to know that the error goes to zero
asymptotically, that is, as one lets the degree of approximation become arbitrarily
large. The first kind of error information is rarely available. More typical in numeri-
cal algorithms for differential equations are asymptotic results. There has been little
work on proving that the algorithms used by economists are asymptotically valid.
When using numerical procedures, it is desirable to know something concerning
the error of the solution. An important focus of theoretical numerical analysis is the
derivation of bounds on errors. Two kinds of error results are desirable. First, it is
desirable to derive an upper bound on the error for a given level of approximation.
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Second, if such upper bounds are not possible, it may still be valuable to know that
the error goes to zero asymptotically, that is, as one lets the degree of approximation
become arbitrarily large. For most methods, the first kind of error information is
rarely available. More typical in numerical algorithms for differential equations are
asymptotic results. There has been little work on proving that the algorithms used
by economists are asymptotically valid. Miranda (1977) has made progress in this
direction with finite-element methods in some models.

Fortunately, there are general theorems concerning the consistency of the Galerkin
method. Recall that the Galerkin method takes projections of the residual function
against the basis elements, and the integrals are theoretically exact. Zeidler [36, 37]
proves consistency for the Galerkin method assuming that the nonlinear operator A
is monotone, coercive, and satisfies a growth condition. Galerkin methods are quite
natural for computational purposes since a common theoretical way to prove the exis-
tence of a solution to an operator is to prove the existence of a solution to an infinite
collection of projection conditions. In fact, Zeidler shows that if these conditions are
satisfied one simultaneously proves the existence of a (weak) solution and the con-
sistency of the Galerkin method. Similarly, using degree theory, Krasnosel’skii and
Zabreiko [20] demonstrate consistency for a more general set of projection methods
(possibly including Galerkin methods which use numerical quadrature).

It is unknown whether the operators used above satisfy the sufficient conditions
discussed in Zeidler, Krasnosel'skii and Zabreiko, and elsewhere. Even though it
remains to be seen whether these theorems do cover our problems, they do indicate
that projection methods are potentially valid for our economic problems. They also
point us in potential fruitful directions for proving both existence results for the
underlying operators, and consistency results for alternative solution methods.

8. HyBRID PERTURBATION-GALERKIN METHOD
We have discussed both perturbation and projection methods for solving economic
models. While they are different approaches to approximation problems, we will next
describe a method, the hybrid perturbation-Galerkin method which synergestically
exploits their differences and similarities.
Suppose that there are a continuum of problems indexed by a parameter € . Sup-
pose that the continuum of problems to be solved has the form

N (f(z,c);¢) =0

and that we can solve the ¢ = 0 instance. The result of applying perturbation methods
is the calculation of a series of the form

Fzr &) ~ 361 pile) (50)

=0
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where the p;(z) functions are computed by the perturbation calculations and the
b; (¢) are the (often prespecified) gauge functions. Similarly, the result of a projection
approach is an approximation of the form

fn

flz,€) =Y ai(e)pi(z) (51)

i=0

where the @;(z) functions are the (prespecified) basis elements of the approximation
system and the a;(¢) coefficients computed by the projection method. The strength
of perturbation methods is that the approximations are quite good for small ¢, but
the weakness is that the quality may not hold up globally. The projection approach
tries to be good for any e, but the difficulty is finding good bases which will allow the
series in (51) to be short. Therefore, the strengths and weaknesses of these methods
are complementary.

This observation turns out to be substantive. The idea of the hybrid perturbation-
Galerkin method is to use the ;(z) functions from perturbation calculations as the
basis functions to be used in a projection method. We know that these functions
constitute an optimal basis for small ¢, and that the optimal weight on ¢;(z) on is
8;(€) for small €. The conjecture is that the ¢; functions still form a good basis for
approximating f(z, €) but that the weight on ; should not be the prespecified &;(¢)
but rather should be computed by (51).

Our continuous-time growth model gives a simple example of this approach. Con-
sider the continuum of problems

0 =C'(k,€) (f(k, €} — C(k,€)) + 1C(k,€) (p— f'(k,¢€))

where 7 is the constant relative risk aversion parameter, and

f(k,€) = (1 = €)pk + ek*p/a

At € = 0, we have a linear production function with a marginal product of capital
equal to p, the pure rate of time preference; in this degenerate case, the solution
is C(k,€) = pk, that is, consumption equals output. At all other values for ¢, the
production function is concave and the unique steady state is £ = 1. Suppose that
the case we are really interested in is the € = 1 case, where f is the standard Cobb-
Douglas production function. The hybrid perturbation-Galerkin approach is to use
the perturbation results around ¢ = 0 to generate basis elements which can be used
in a projection method to solve the Cobb-Douglas case.
The first perturbation implies that

0=C{f(k,e) = C) + C'(fe = Cc) + vCe(k,€) (p = f'(k, €)) + vC(k, €) (—fi(k,€))
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which at € = 0 reduces to imply
Ce=kpla™ =) + (v~ p)k

Note that this function has a singularity at ¥ = 0, a feature which is probably also
true of the solution. This feature is absent in the orthogonal bases we discussed above.
We see here already that this procedure has produced a basis element which has some
advantages. Judd (1994) discusses further the usefulness of this approach to producing
bases. While this method may not be useful in simple one-dimensional problems, it
has substantial potential in multidimensional problems where economizing on the
basis size is important.

Continuing the perturbation approach will generate a series of functions which can
be used as a basis for a projection approach. These basis elements are possibly going
to be collinear. However, for any specified inner product, we can use a standard
Gram-Schmidt procedure to construct a basis which spans the same space and is
orthogonal. In this way, we can combine the conditioning advantages of orthogonal
bases with the desirable shape properties of the perturbation functions.

The hybrid perturbation-Galerkin method also points out the value of combining
methods. Since economics problems do not fit into standard mathematical classifi-
cations, it is likely that skillful combinations of various techniques will prove to be a
powerful technique.

9. CONCLUSIONS
We have shown that a general class of techniques from the numerical partial differen-
tial equations literature can be usefully applied and adapted to solve nonlinear eco-
nomic growth problems. Despite the specificity of the applications discussed here, the
general description makes clear the general usefulness of projection methods for eco-
nomics. The application of perturbation and projection methods and the underlying
approximation ideas have already substantially improved the efliciency of economic
computations. Further exploitation of these ideas will surely lead to further progress.
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