
PARALLEL COMPUTATION*

Anna Nagurney

School of Management

University of Massachusetts

Amherst, Massachusetts 01003

December, 1993

* Chapter Intended for Handbook of Computational Economics,

Hans Amman, David Kendrick, and John Rust, editors

Not to be quoted without permission of the author.

e

1. Introduction

The emergence of computation as a basic scientific methodology in economics has given

access to solutions of fundamental problems that pure analysis, observation, or experimen-

tation could not have achieved. Virtually every area of economics from econometrics to

microeconomics and macroeconomics has been influenced by advances in computational

methodologies. Indeed, one cannot envision the solution of large-scale estimation problems

and general economic equilibrium problems without the essential tool of computing.

The ascent of economics to a computational science discipline has been fairly recent,

preceded by the earlier arrivals of physics, chemistry, engineering, and biology. Economics,

as the other computational disciplines, stands on. the foundations established by computer

science, numerical analysis, and mathematical programming; unlike the aforementioned

computational disciplines, it is grounded in human behavior. As to be expected, it brings

along unique computational challenges, which have stimulated research into numerical

methods.

For example, many algorithms for the solution of optimization problems, equilibrium

problems, including game theory problems, and dynamical systems, among other problem-

types, can trace the requirement of the solution of a prototypical economic problem as

the motivation for their discovery and subsequent development. Indeed, one has only to

recall the early contributions to computational economics of Koopmans (1951), Dantzig

(1951), Arrow, Hurwicz, and Uzawa (1958), Dorfman, Samuelson, and Solow (1958), and

Kantorovich (1959) in the form of the formulation and solution of linear programming

problems derived from resource allocation and pricing problems.

Subsequently, the need to formulate and solve portfolio optimization problems in

financial economics, where the objective function is no longer linear and represents risk

to be minimized, helped to stimulate the area of quadratic programming (cf. Markowitz

(1952, 1959) and Sharpe (1970)). Quadratic programming is also used for the computation

of certain spatial price equilibrium problems in agricultural and energy economics (cf.

Takayama and Judge (1964, 1971)). The special structure of these problems, as those

encountered in portfolio optimization, has further given rise to the development of special-

purpose algorithms for their computation (cf. Dafermos and Nagurney (1989)). Quadratic

programming has, in addition, provided a powerful tool in econometrics in the case of

1

certain problems such as the estimation of input/output tables, social accounting matrices,

and financial flow of funds tables (cf. Bacharach (1970), Nagurney and Eydeland (1992),

Hughes and Nagurney (1992), and the references therein). In such problems, the different

values of the quadratic form depict different distributions. Econometrics has also made use

of the techniques of global optimization, which is appealed to in the case that the function

to be minimized is no longer convex (cf. Pardalos and Rosen (1987), Goffe, Ferrier, and

Rogers (1993))).

Nonlinear programming, which contains quadratic programming as a special case, has

found wide application in the neoclassical theory of firms and households in microeco-

nomics. In such problems the firms or households seek to maximize a certain objective

function subject to constraints (see, e.g., Intriligator (1971), Takayama (1974), and Dixon,

Bowles, and Kendrick (1980)).

Recently, there has been an increasing emphasis on the development and application

of methodologies for problems which optimization approaches alone cannot address. For

example, fixed point algorithms pioneered by Scarf (1964, 1973), complementarity algo-

rithms (cf. Lemke (1980)), homotopy methods, along with the global Newton method

and its many variants (cf. Smale (1976), Garcia and Zangwill (1981), and the references

therein), and variational inequality algorithms (cf. Dafermos (1983) and Nagurney (1993))

have yielded solutions to a variety of equilibrium problems in which many agents compete

and each one seeks to solve his/her own optimization problem. Such classical examples

as imperfectly competitive oligopolistic market equilibrium problems, in which firms are

involved in the production of a homogeneous commodity, and seek to determine their

profit-maximizing production patterns, until no firm can improve upon its profits by uni-

lateral action, and Walrasian price equilibrium problems in which agents, given their initial

endowments of goods, seek to maximize their utilities, by buying and selling goods, thereby

yielding the equilibrium prices and quantities, fall into this framework.

The drive to extend economic models to dynamic dimensions, as well as the desire to

better understand the underlying behavior that may lead to an equilibrium state, led to

the introduction of classical dynamical systems methodology (cf. Coddington and Levin-

son (1955), Hartman (1964), Varian (1981)). Recently, it has been shown in Dupuis and

Nagurney (1993) that the set of stationary solutions of a particular dynamical system cor-

2

responds to the set of solutions of a variational inequality problem. The dynamical system

has its own application-specific constraints, and is non-classical in that its right-hand side

is discontinuous. Such a dynamical system, for example, could guarantee that prices are

always nonnegative as well as the commodity shipments. Moreover, this dynamical system

can be solved by a general iterative scheme. This scheme contains such classical methods

as the Euler method, the Heun method, and the Runge-Kutta method as special cases.

Finally, the need to incorporate and evaluate the influence of alternative policies in

economic models in the form of dynamical systems has yielded innovations in stochastic

control and dynamic programming (cf. Kendrick (1973), Holbrook (1974), Chow (1975),

Norman (1976), Judd (1971)). In contrast to the focus in dynamical systems, where one

is interested in tracing the trajectory to a steady state solution, in control theory, the

focus is on the path from the present state to an improved state. Moreover, unlike the

aforementioned mathematical programming problems, where the feasible set is a subset of

a finite-dimensional space, the feasible set is now infinite-dimensional (see also Intriligator

(1971)).

Computational methodologies, hence, have greatly expanded the scope and complexity

of economic models that can now be not only formulated, but analyzed and solved. At

the same time, the increasing availability of data is pushing forward the demand for faster

computer processors and for greater computer storage, as well as for even more general

models with accompanying new algorithmic approaches. Faster computers also enable the

timely evaluation of alternative policy interventions, thereby, decreasing the time-scales

for analysis, and minimizing the potential costs of implementation. It is expected that

algorithmic innovations in conjunction with computer hardware innovations will further

push the frontiers of computational economics.

To date, the emphasis in economics has been on serial computation. In this compu-

tational framework an algorithm or simulation methodology is implemented on a serial

computer and all operations are performed in a definite, well-defined order. The empha-

sis on serial computation is due to several factors. First and foremost, serial computers

have been available much longer than, for example, parallel computers, and, hence, users

have not only a greater familiarity with them, but, also, more software has been devel-

oped for such architectures. Secondly, many computer languages are serial in nature and,

3

consequently, the use of such programming languages subsumes basically serial algorithms

and their subsequent implementation on serial architectures. Moreover, humans naturally

think sequentially although the brain also processes information in parallel. In addition,

the use of parallel architectures requires learning not only, perhaps, other programming

languages, but also new computer architectures. Finally, the development of entirely new

algorithms, which exploit the features of the architectures may be required.

Computation, however, is evolving along with the technological advances in hardware

and algorithms, with an increasing focus on the size of the computational problems that

can be handled within acceptable time and cost constraints. In particular, parallel com-

putation represents an approach to computation that can improve system performance

dramatically, as measured by the size of problem that can be handled. In contrast to serial

computation, with parallel computation, many operations are performed simultaneously.

Parallel processors may be relatively sophisticated and few in number or relatively simple

and in the thousands.

Parallel computation achieves its faster performance through the decomposition of a

problem into smaller subproblems, each of which is allocated and solved simultaneously

on a distinct processor. For example, in the case of a multinational or multiregional trade

problem, the level of decomposition may be "coarse," with the decomposition being on

the level of the number of nations or regions, or "fine," as on the level of the commodity

trade patterns themselves. In fact, for a given problem there may be several alternative

decompositions that may be possible, say on the level of the number of commodities, on

the number of markets, or on the number of market pairs.

The technology represented by massively parallel computation, in particular, suggests

that there is no obvious upper limit on the computational power of machines that can be

built. Two basic concepts emerge here – that of "data parallelism" and that of "scalability."

Data parallelism is a technique of coordinating parallel activities, with similar operations

being performed on many elements at the same time, and exploits parallelism in proportion

to the amount of data (cf. Hillis (1992)). Data level parallelism is to be contrasted

with one of the simplest and earliest techniques of coordinating parallel activities, known

as pipelining, which is analogous to an assembly line operation, where operations are

scheduled sequentially and balanced so as to take about the same amount of time. Vector

4

processors work according to this principle. Another technique of parallelism that can

be used along with pipelining is known as functional parallelism. An example of this in

a computer would occur when separate multiplication and addition units would operate

simultaneously. Although both of these techniques are useful, they are limited in the degree

of parallelism that they can achieve since they are not "scalable".

Scalability envisions building massively parallel computers out of the same components

used in, for example, desktop computers. Consequently, the user would be able to scale

up the number of processors as demanded by the particular application without a change

in the software environment.

Parallel computation represents the wave of the future. It is now considered to be

cheaper and faster than serial computing and the only approach to faster computation

currently foreseeable (cf. Deng, Glimm, and Sharp (1992)).

Parallel computation is appealing, hence, for the economies of scale that are possible,

for the potentially faster solution of large-scale problems, and also for the possibilities

that it presents for imitating adjustment or tatonnement processes. For example, serial

computation is naturally associated with centralization in an organization whereas parallel

(and the allied distributed) computation is associated with decentralization, in which units

work, for the most part independently, with their activities being monitored and, perhaps,

synchronized, periodically. Market structures associated with central planning are thus

more in congruence with serial and centralized computation, with competitive market

structures functioning more as parallel systems. Indeed, one can envision the simulation

of an economy on a massively parallel architecture with each competing agent functioning

as a distinct processor in the architecture, with price exchanges serving as messages or

signals to the other agents. The agents would then adjust their behavior accordingly.

To fix some ideas, we now mention several basic issues of parallel architectures, which

are discussed further in Section 2. The principal issues are: 1). the type of processing

involved, typically the combination of instruction and data parallelism, 2). the type of

memory, either global (or shared) or local (or distributed), 3). the type of interconnection

network used, and 4). the processing power itself. The interconnection network, for exam-

ple, is not an issue in a serial architecture. It consists of links joining pairs of processors and

provides routes by which processors can exchange messages with other processors, or make

5

requests to read from, write to, or lock memory locations. In designing interconnection

networks for parallel processing systems, every effort is made to minimize the potential

for bottlenecks due to congestion on the network. The basic distinction that can be made

between processing power is whether or not the processors are simple or complex. The

latter are more common in "coarse-grained" architectures, typically consisting of several

processors, say on the order of ten, whereas the former – in "fine-grained" architectures,

typically consisting of thousands of processors.

The design of a parallel algorithm, hence, may be intimately related to the particular

architecture on which it is expected to be used. For example, the parallelization of an

existing serial algorithm, a typical, first-cut approach, may fail to exploit any parallel

features and realize only marginal (if any) speedups. On the other hand, certain "serial"

algorithms, such as simulation methodologies may be, in fact, embarrassingly parallel

in that the scenarios themselves can be studied almost entirely independently (and on

different processors) with the results summarized at the completion of the simulation.

These two situations represent extremes with the most likely situation being that a new

and easier to parallelize algorithm will be developed for a particular problem class.

The last decade has revealed that parallel computation is now practical. The questions

that remain to be answered are still many. What are the best architectures for given

classes of problems? How can a problem be decomposed into several, or into numerous

subproblems for solution on, respectively, coarse-grained or fine-grained architectures?

How do we design an algorithm so that the load across processors is balanced, that is,

all processors are kept sufficiently busy and not idle? What new directions of research

in numerical methods will be unveiled by the increasing availability of highly parallel

architectures? What new applications to economics remain to be discovered?

Parallel computation represents not only a new mode of computation, but a new intel-

lectual paradigm. It requires one to view problems from a new perspective and to examine

problems as comprised of smaller, interacting components, and at different levels of disag-

gregation. It breaks down barriers between disciplines through a common language. With

expected dramatic shifts from serial to parallel computation in the future, a significant

change in scientific culture is also envisaged.

In this chapter the focus will be on parallel computation, numerical algorithms, and

6

applications to economics. The presentation will be on a high level of abstraction and

theoretically rigorous. Although parallel processing plays a role in symbolic processing and

artificial intelligence, such topics are beyond the scope of this presentation. We also do

not address distributed processing, where the processors may be located a greater distance

from one another, execute disparate tasks, and are characterized by communication that

is not, typically, as reliable and as predictable as between parallel processors.

The chapter is organized as follows. In Section 2 we overview the technology of parallel

computation in terms of hardware and programming languages.

In Section 3 we present some of the fundamental classes of problems encountered in

economics and the associated numerical methodologies for their solution. In particular, we

overview such basic problems as: nonlinear equations, optimization problems, and varia-

tional inequality and fixed point problems. In addition, we discuss dynamical systems. For

each problem class we then discuss state-of-the-art computational techniques, focusing on

parallel techniques and contrast them with serial techniques for illumination and instruc-

tive purposes. The techniques as presented are not machine-dependent, but the underlying

parallelism, sometimes obvious, and sometimes not, is emphasized throughout.

In Section 4, we present applications of the classes of problems and associated nu-

merical methods to econometrics, microeconomics, macroeconomics, and finance. Here

we discuss the implementations of the parallel algorithms on different architectures and

present numerical results.

7

2. Technology for Parallel Computation

In this section we further refine some of the ideas presented in the Introduction by

focusing on the technology of parallel computation in terms of both hardware and software.

In particular, we discuss some of the available parallel architectures as well as features of

certain parallel programming languages. We then highlight some computer science issues

of parallel algorithm development which reveal themselves during the presentation of the

technology.

The field of parallel computing is quite new and the terminology has yet to be com-

pletely standardized. Nevertheless, the discussion that follows presents the fundamental

terminology and concepts that are generally accepted.

2.1 Parallel Architectures

Although the speed at which serial computers do work has increased steadily over the

last several decades, with a large part of the speedup process being due to the miniatur-

ization of the hardware components, there are natural limits to speedup that are possible

due to miniaturization. Specifically, two factors limit the speed at which data can move

around a traditional central processing unit: the speed at which electricity moves along

the conducting material and the length and thickness of the conducting material itself.

Both of these factors represent physical limits and today's fastest computers are quickly

approaching these physical constraints. Furthermore, as the miniaturization increases,

it becomes more difficult to dissipate heat from the devices and more opportunities for

electrical interference manifest themselves.

Other possibilities beyond the silicon technology used in miniaturization exist. These

include optical computing and the development of a quantum transistor. Nevertheless,

these technologies are not sufficiently advanced to be put into practical use.

Due to such limitations of serial computation, a paradigm for parallel computing

emerged. Metaphorically speaking, if an individual or processing unit cannot complete the

task in the required time, assigning, say, three individuals or units each a part of the task,

will, ideally, result in the completion of the task in a third of the time.

The most prevalent approach to parallelism today uses the von Neumann or control-

driven model of computation, which shall also be the focus here. Other approaches

8

presently under investigation are systolic, data flow, and neural nets. In addition, many of

the terms that have been traditionally used for architectural classification of parallel ma-

chines can also be used to describe the structure of parallel algorithms and, hence, serve

to suggest the best match of algorithm to machine.

Flynn's Taxonomy

One taxonomy of hardware is due to Flynn (1972) and although two decades old,

it is still relevant in many aspects today. His classification of computer architectures is

with respect to instruction stream and data stream, where intruction stream is defined as

a sequence of operations performed by the computer and data stream is the sequence of

items operated on by the instructions. In particular, the taxonomy may be depicted as

follows:

{,5} I {&} D,

where SI refers to single instruction, MI to multiple instruction, SD to single data, and

MD to multiple data.

In single instruction, all processors are executing the same instruction at any given

time where the instruction may be conditional. If there is more than a single processor,

then this is usually achieved by having a central controller issue instructions. In multiple

instruction, on the other hand, different processors may be simultaneously executing differ-

ent instructions. In single data all processors are operating on the same data items at any

given time, whereas in multiple data, different processors may be operating simultaneously

on different data items.

Under this taxonomy, we have that a SISD machine is just the standard serial com-

puter, but, perhaps, one with multiple processors for fault tolerance. A MISD machine, on

the other hand, is very rare and considered to be impractical. Nevertheless, one might say

that some fault-tolerant schemes that utilize different computers and programs to operate

on the same input data are of this type.

A SIMD machine typically consists of N processors, a control unit, and an intercon-

nection network. An example of the SIMD architecture is the Thinking Machines CM-2

Connection Machine, which will be discussed later in greater detail. A MIMD machine

usually consists of N processors, N memory modules, and an interconnection network.

9

The multiple instruction stream model permits each of the N processors to store and ex-

ecute its own program, in contrast to the single instruction stream model. An example of

a MIMD architecture is the IBM SP1, which also will be discussed later more fully.

Shared Versus Distributed Memory

The second principal issue is that of memory. In a global or shared memory, there

is a global memory space, accessible by all processors. Processors may, however, also

possess some local memory. The processors in a shared memory system are connected

to the shared (common global) memory by a bus or a switch. In local or distributed

(message-passing) memory, all the memory is associated with processors. Hence, in order

to retrieve information from another processor's memory, a message must be sent there.

MIMD machines, for example, are organized with either the memory being distributed or

shared.

Memory and bus contention must be considered in the case of algorithm development

for a shared memory system, since caution must be taken when two processors try to

simultaneously write to the same memory location. Distributed memory systems, on the

other hand, avoid the memory contention problem, but since access to non-local data

is provided by message passing between processors through the interconnection network,

contention for message passing channels is, thus, of concern.

Interconnection Networks

Another common feature of parallel architectures is the interconnection network.

Some basic interconnection networks are: a bus, a switching network, a point to point

network, and a circuit-switched network. In a bus, all processors (and memory) are con-

nected via a common bus or busses. The memory access in this case is fairly uniform

but an architecture based on such an interconnection network is not very scalable due to

contention. In a switching network, all processors (and memory) are connected to routing

switches as in a telephone system. This approach is usually scalable. In a point to point

network, the processors are directly connected to only certain processors and must go mul-

tiple hops to get to additional processors. In this type of network, one usually encounters

distributed memory and this approach is also scalable.

Some examples of a point to point network are: a ring, a mesh, a hypercube, and

10

binary tree (also a fat tree). The processors' connectivity here is modeled as a graph

in which nodes represent processors and edges the connections between processors. In a

ring network, for example, the N processors are connected in a circular manner so that

processor P, is directly connected to processors P,_ i and PH. 1 . In a mesh network, for

example, the N processors of a two-dimensional square mesh are usually configured so that

an interior processor is connected to its neighbors - processors P,_, ,) , P.,)_,,

and P: 1+1. The four corner processors are each connected to their two remaining neighbors,

while the other processors that are located on the edge of the mesh are each connected

to three neighbors. A hypercube with N processors, on the other hand, where N must

be an integral power of 2, has the processors indexed by the integers(0,1,2,...,N - 1}.

Considering each integer in the index range as a (log2 N)-bit string, two processors are

directly connected only if their indices differ by exactly one bit.

In a circuit-switched network, a circuit is sometimes established from the sender to

the receiver with messages not having to travel a single hop at a time. This can result

in significantly lower communication overhead, but at high levels of message traffic, the

performance may be seriously degraded.

Desireable features of the interconnection network are the following: 1). any processor

should be able to communicate with every other processor, 2). the networks should be

capable of handling requests from all processors simultaneously with minimal delays due

to contention, 3). the distance that data or messages travel should be of lower order than

the number of processors, and 4). the number of wires and mesh points in the network

should be of lower order than the square of the number of processors.

As discussed in Denning and Tichy (1990), many interconnection networks satisfy

these properties, in particular, the hypercube. Although some computers utilize inter-

connection networks that do not satisfy these characteristics, they may, nevertheless, be

cost-effective because the number of processors is small. Examples of computers that vi-

olate the fourth property above are the Cray X-MP and the Cray Y-MP, which utilize

a crossbar switch as the interconnection network. These contain N2 switch points and

become unwieldy as the number of processors grows. The Sequent Symmetry and the

Encore Multimax, for example, make use of a shared bus, which may result in violation of

the second property above as the number of processors increases due to congestion on the

11

bus.

Granularity

Another term that appears quite frequently in discussions of parallel architectures is

granularity. Granularity refers to the relative number and the complexity of the processors

in the particular architecture. A fine-grained machine usually consists of a relatively large

number of small and simple processors, while a coarse-grained machine usually consists

of a few large and powerful processors. Speaking of early 19908 technology, fine-grained

machines have on the order of 10,000 simple processors, whereas coarse-grained machines

have on the order of 10 powerful processors (cf. Ralston and Reilly (1993)). Medium-

grained machines have typically on the order of 100 processors and may be viewed as a

compromise in performance and size between the fine-grained and coarse-grained machines.

Fine-grained machines are usually SIMD architectures, whereas coarse-grained ma-

chines are usually shared memory, MIMD architectures. Medium-grained machines are

usually distributed memory, MIMD architectures. According to Ralston and Reilly (1993),

by the mid 1990s, due to technological advances, one can expect that fine-grained machines

will have on the order of a million of processors, coarse-grained machines will have on the

order of one hundred processors, and medium-grained machines will have on the order of

ten thousand processors.

Examples of Parallel Architectures

We now provide examples, selected from commercially available machines that illus-

trate some of the above concepts. The examples include fine-, coarse-, and medium-grained

machines and SIMD and MIMD machines, along with a variety of interconnection networks.

We first list some parallel computers and subsequently discuss several of them more fully.

Examples of distributed memory, SIMD computers are: the Thinking Machines CM-1 and

CM-2, the MasPar MP1, and the Goodyear MPP. Examples of shared memory, MIMD

computers are: the BBN Butterfly, the Encore Multimax, the Sequent Balance/Symmetry,

the Cray X/MP, Y/MP, and C-90, the IBM ES/9000, and the Kendall Square Research

KSR1. Examples of distributed memory, MIMD computers are: the Cray T3D, the In-

tel iPSC series, the IBM SP1, the Intel Paragon, the NCUBE series, and the Thinking

Machines CM-5.

12

It is also worth mentioning the INMOS transputer, with its name an amalgam of

transistor and computer. It is a microprocessor, or family of microprocessors, which has

been specially designed for the building of parallel machines. It consists of a RISC (Reduced

Instruction Set Computer) processor, and its own high level programming language. It is

well-suited to constructing MIMD architectures and can be used as either a single processor

or as a network of processors. The RISC processor, since it maintains a minimum set of

instructions, has room on its chip for other functions, and its design makes it easier to

coordinate the parallel activity among separate units.

Those interested in additional background material on parallel architectures are re-

ferred to the books by Hockney and Jesshope (1981), DeCegama (1989) and Hennessy

and Patterson (1990). For the historical role of parallel computing in supercomputing,

see Kaufmann and Smarr (1993). For a comprehensive overview of parallel architectures

and algorithms, see Leighton (1992). For an overview of parallel processing in general, see

Ralston and Reilly (1993).

For illustrative purposes, we now discuss in greater detail several distinct parallel

architectures that highlight the major issues discussed above. Some of these architectures

are then used for the numerical computations presented in Section 4.

The CM - 2

We begin with the fine-grained, massively parallel CM-2, manufactured by the Think-

ing Machines Corporation. The CM-2 is an example of a distributed memory, SIMD

architecture with 2' s , that is, 65,536 processors in its full configuration, each with 8KB

(kilobytes, that is, 210 or 1,024 bytes) of local memory, and 2,048 Weitek floating point

units. Other common configurations are CM-2's with 8K (8,192) or 32K (32,768) proces-

sors.

Each processor performs very simple, 1 bit, operations. Each processor can operate

only on data that is in its own memory but the processors are interconnected so that data

can be transferred between processors. Sixteen bit serial processors reside on a chip, and

every disjoint pair of chips shares a floating point unit. The front-end system (often a

SUN workstation or a VAX) controls the execution on a CM-2. Programs are developed,

stored, compiled, and loaded on the front-end. The instructions issued by the front-end

are sent to the sequencers which break down the instructions into low-level operations that

13

are broadcast to the processors. Program steps that do not involve execution on parallel

variables are executed on the front-end. Communication between processors on a chip is

accomplished through a local interconnection network. Communication between the 4,096

chips is by a 12-dimensional hypercube topology. The CM-2 has a peak performance of

32 GFLOPS (gigaflops or billions of floating point operations per second). See Thinking

Machines Corporation (1990) for additional background on this architecture.

The CRAY X-MP/48

The CRAY series of supercomputers consists of coarse-grained shared memory ma-

chines where the vector processors may operate independently on different jobs or may be

organized to operate together on a single job. A vector processor is a processor containing

special hardware to permit a sequence of identical operations to be performed faster than

a sequence of distinct operations on data arranged as a regular array.

The CRAY X-MP/48 system, manufactured by Cray Research, is a coarse-grained

system with four vector processors and a total of 8 million 64-bit words. The peak perfor-

mance of the system is .8 GFLOPS. Each processor contains 12 functional units that can

operate concurrently. For additional information, see Cray Research, Inc. (1986).

The C90, also manufactured by Cray Research, contains 16 connected processing

units, each of which is capable of performing a billion calculations a second. It is a shared

memory, MIMD machine. Central memory is 2 GB (gigabytes, that is, 2" or 1.024 x 109

bytes) and the solid state storage device serves as an extension of memory to provide an

additional 4 GB. See Cray Research, Inc. (1993a) for further reading on this architecture.

The T3D exists as a 32-processor prototype, and can be expanded to 128 processors

and, ultimately, 512 . processors. It is a distributed memory, MIMD machine. Each of its

processors is a DEC Alpha 64-bit microprocessor, with a theoretical peak of 150 MFLOPS.

The topology of the T3D is that of a three-dimensional torus. Each processors can contain

16MB of memory. See Cray Research, Inc. (1993b) for additional information.

The KSR1

The Kendall Square Research KSR1 computer is a medium-grained, shared memory

MIMD model whose shared memory is known as "ALLCACHE." The processors are in-

terconnected in levels of rings, with proprietary processors, up to 32 in 1 level, 1066 in

14

2 levels, each with 512KB "subcache" and 32MB "local cache." It uses a Unix operating

system, run in a distributed manner and includes provisions for dynamic load balancing

and time-sharing nodes among different users. For additional information, see Kendall

Square Research (1992).

The ES/9000

The IBM ES/9000 is a shared memory, MIMD machine, which includes a number of

improvements in design and technology as compared to its predecessor, the IBM ES/3090.

It consists of 6 processors, each a vector unit in its own right, and with 8 GB of stor-

age. Each processor has a separate cache for instructions and data, thereby allowing for

concurrent access of instructions and data. The ES/9000 also allows for high-speed data-

handling.

For additional information on this architecture, see IBM Corporation (1992).

The SP1

The IBM SP1 is a distributed memory, MIMD architecture with "many" off-the-shelf

IBM RS/6000 workstation processors in a single box. Hence, programs that have run

on an IBM RS/6000 workstation can be easily ported to the SP1, since it has the same

compilers available. The scalability of the SP1 lies in its switch technology. In the case of

64 processors, the grouping of the processors is in 4 racks of 16 processors each, with each

rack containing its own switchboard, which handles all communication over the switch. A

typical processor on the SP1 has 32KB of cache memory, 128MB of main memory, and

512MB of extended (virtual) memory.

For more information, see IBM Corporation (1993).

The Paragon

The Intel Paragon XP/S is a message passing, MIMD computer that can also support

the SPMD (Single Program Multiple Data) programming style. It is sometimes referred

to as a scalable heterogeneous multicomputer. It is compatible with the iPSC/860 family

and has a 2D mesh interconnection network. Its "GP" nodes are involved in service and

I/O and its "MP" nodes have four 1860 XP processors operating in a shared memory

implementation. We refer the interested reader to Intel Corporation (1992).

15

The CM-5

The Thinking Machines CM-5 is an example of a MIMD architecture. It is (typically)

medium-grained with distributed memory. It can contain from 16 to 16K processors inter-

connected via a "fat tree" data network with a regular binary tree for the control network.

It consists of processing nodes that are SPARC processors, each of which has 4 proprietary

attached vector units. Each vector unit controls 8MB of memory. A group of nodes under

the control of a single processor is called a partition and the control manager is called

the partition manager. The nodes can be time-shared among different users (cf. Thinking

Machines Corporation (1992a)). The programming model associated with this machine is

referred to commonly as SPMD, Single Program Multiple Data, which can be viewed as

an extension of the SIMD approach to a medium grain MIMD architecture.

2.2 Parallel Programming Languages and Compilers

There are two fundamental (and complementary) categories of parallel programming

languages. The first category consists of explicitly parallel languages, that is, languages

with parallel constructs, such as vector operations and parallel do-loops. Hence, in this

category, the parallellism in a program must be specified explicitly by the programmer.

Languages with explicitly parallel constructs can be further classified as being either low

level or high level. The second category consists of languages in which the potential

parallelism is implicit. For languages in this category, a parallelizing compiler must be

available to determine which operations can be executed in parallel.

Most of the parallel languages developed to date have been Fortran extensions, due,

in part, to the large investment in software development for numerical computations on

serial architectures. For example, CM Fortran, developed for the Connection Machine,

is an explicitly parallel programming language, and was influenced by Fortran 90. It is

also referred to as a data level programming language and exhibits the themes common

to such languages as: elementwise parallelism, replication, reduction, permutation, and

conditionals (cf. Steele (1988)).

As an illustration, in elementwise parallelism, when one adds two arrays, one adds

components elementwise. In terms of replication, one is interested in taking an amount

of data and making more of it in, for example, a few to many case, which is an example

16

of "spreading" in Fortran. On the other hand, one has "reduction" when one takes many

data items and reduces them to a few items. This occurs when one sums over many values,

or takes the "max" or "min" of an array. One encounters a permutation when one does not

change the amount of data but rearranges it in some fashion. CM Fortran (cf. Thinking

Machines Corporation (19926, 1993a)), for example, uses the Fortran 90 array features,

whereas other data parallel languages usually incorporate a new data type. Once the

datasets are defined in the form of arrays or structures, a single sequence of instructions

causes the concurrent execution of the operations either on the full datasets or on selected

portions.

We now present one of the above constructs in CM Fortran. Others are given in sample

codes in Section 4. Consider the addition of two arrays A and B, each of dimension 200 x 200.

The statement in CM Fortran is then given by: C=A+B. This statement is executed as a

single statement and yields the 40,000 elements of the array C simultaneously. In the

case where the number of array elements exceeds the number of processors, the compiler

configures the algorithm for processing on "virtual processors" and assigns each element

its own virtual processor.

In contrast, a serial Fortran 77 version yielding the values of C would consist of the

following statements:

Do 10 i=1,200

Do 20 j=1,200

C(i,j)=A(i,j)+B(i,j)

20 Continue

10 Continue

The flow of control in a data parallel language is almost identical to that of its serial

counterpart, without any code required to guarantee synchronization in the program as is

needed in functional parallelism. In functional parallelism, for example, one may have to

assign particular tasks to specific processors via specific parallel programming task alloca-

tion constructs and then wait for the tasks to be completed, also explicitly stated in the

code, before reassignation. Such a feature is provided in Parallel Fortran (cf. IBM Corpo-

ration (1988)), which is used in the IBM 3090-400 and IBM ES/9000 MIMD architecture

series (cf. IBM Corporation (1992)). In data level parallelism, in contrast, the compilers

17

and other system software maintain synchronization automatically. Furthermore, since the

sequence of events is almost identical to those that would occur in a serial version of the

program, program debugging, analysis, and evaluation is simplified.

There also exist Fortran extensions for programming shared memory, MIMD archi-

tectures. As an illustration, we provide the Fortran 77 code for the above matrix addition;

embedded with Parallel Fortran constructs for task allocation, for the IBM 3090/600E,

which can have up to six processors.

at ask=nprocs ()

Do 5 i=1,ntask

originate any task itask(i)

5 Continue

Do 10 i=1,200

irow(i)=i

dispatch any task next(i), sharing(A1), calling add(irow(i))

10 Continue

wait for all tasks

This routine allocates the task of summing, term by term, the elements of the rows

of A and B to an available processor. The summing is accomplished in the subroutine add,

which shares the common Al with the main routine, which, in turn, contains the elements

of the three arrays A, B, and C. An IBM Parallel Fortran compiler would be needed for the

compilation of the above code, illustrarting the complementary nature of explicit parallel

programming and automatic parallelization.

The second category of languages, which relies on parallelizing compilers, is, indeed,

common to the majority of shared memory MIMD machines and to supercomputers within

this class. Languages in which potential parallelism is implicit are such common program-

ming languages as the already-mentioned Fortran, Pascal, and C. The parallelizing com-

pilers, for example, would automatically translate sequential Fortran 77 code into parallel

form. Sequential Fortran code could, hence, in principle, be more easily ported across

different parallel platforms with the availability of such compilers. These compilers have

had their greatest success in translating Fortran do-loops into vector operations for execu-

tion on pipelined vector processors. Nevertheless, more research is needed in the area of

18

parallelizing compilers for distributed memory architectures.

Finally, it is also worth noting the Thinking Machine's CM-5, which incorporates a mix

of parallel techniques. The extended model is referred to as coordinated parallelism. The

CM-5 retains the positive features of a SIMD machine, in that it is good at synchronization

and communication, and the positive feature of a MIMD machine, that of independent

branching. In order to program the CM-5 in a MIMD style, one makes use of the CMMD

library (cf. Thinking Machines Corporation (1993b)), which supports such operations

as sending and receiving messages between nodes, and such global operations as scan,

broadcast, and synchronization.

One must also be aware that there are libraries of software routines available for

parallel architectures. For example, the CMSSL (Connection Machine Scientific Software

Library) contains routines for solving systems of equations, ordinary differential equations,

and linear programming problems (see, e.g., Thinking Machines Corporation (1992c)). We

will illustrate the use of this library in an application in Section 4. In addition, there is

now a utility known as CMAX, which enables the translation of serial Fortran 77 code to

CM Fortran (see, e.g., Thinking Machines Corporation (1993c)).

The Intel Paragon and the Kendall Square Research KSR1 computers also support

Fortran as well as C. The KSR1, in addition, supports Cobol, since many of its applications

lie in database management. Of course, the Intel Paragon also makes use of message

libraries. Hence, one sees that one no longer must learn different assembly languages

in order to avail oneselves of parallel computation. Rirthermore, it is expected that the

major parallel architectures will also be supporting High Performance Fortran, thus making

codes more portable across the different architectures (cf. High Peformance Fortran Forum

(1992)).

2.3 Computer Science Issues in Parallel Algorithm Development

Before turning to the presentation of numerical methods for particular problem classes

in Section 3, we briefly highlight issues revealed above which impact parallel algorithm

development and which do not arise in serial computation. These issues should be kept

in mind when reading the subsequent sections. The major issues are: decomposition,

task scheduling, load balancing, and synchronization and communication. Finally, the

19

algorithm developer must have the target architecture in mind.

Decomposition

The first and foremost step in the development of any parallel program for the solution

of a problem is to determine the level of decomposition that is possible. One typically

first considers the decomposition of the problem itself from the highest level to the most

refined. Naturally, one should exploit any obvious parallelism. In conjunction with problem

decomposition, one should also consider domain decomposition, that is, whether or not

one can break up the region of definition of the problem into smaller subregions. In many

parallel numerical methods, as we shall see in Sections 3 and 4, problem and domain

decomposition may go hand in hand. In addition, one must consider the decomposition

of the data structures themselves, since, for example, data on a particular architecture

may be stored in local memory, and how one designs the data structures will influence the

architectural level solution of the problem.

Task Scheduling

After the problem is decomposed into subtasks, the subtasks must be allocated for

completion by the available processors. This is easy to understand in the manager-worker

parallel paradigm, in which the manager (a processor) partitions a task into subtasks

and assigns them to workers (other processors). If the tasks are homogeneous, in that

they take about the same amount of time to complete on the processors, and relatively

independent, then the scheduling of the tasks can be accomplished by a deterministic or

random assignment, or using some simple heuristic. If this is not the case, then it may be

difficult to schedule the tasks efficiently. Hence, one should aim to decompose the problem

into subproblems of relative difficulty and size. Such a mechanism will be illustrated in

Section 4 in the context of a multicommodity trade problem.

Load Balancing

This issue brings us to load balancing, which can be achieved satisfactorily by breaking

up the problem into similar subproblems. However, if the workload cannot be predicted

well in advance, then one may have to make use of more advanced techniques than static

load balancing provides. For example, one may attempt dynamic load balancing, adjusting

20

the workload update and task reassignment throughout the computation. This is, however,

difficult to accomplish effectively and may require a great deal of experimentation.

Synchronization and Communication

After one has selected one (or more) decomposition strategies for a given problem, one

needs to assess the amount of synchronization and communication that will be required.

It terms of synchronization, one distinguishes between tightly and loosely synchronous

and asynchronous. In a synchronous strategy one focuses on the elements of the data

domain with the expectation that they are updated accordingly. With an asynchronous

strategy there is no natural synchronization and one cannot determine what data will be

available (and how old it may be) at a particular iteration increment. For aynchronous

strategies it is often very difficult to establish convergence of the underlying algorithm.

Communication requirements are distingushed between static, deterministic and dynamic,

non-deterministic.

Target Machine

Finally, the importance of the target machine cannot be overestimated. In other

words, the selection of an algorithm to solve a particular problem should be made with a

view of the properties of the architecture on which the algorithm is to be implemented.

For example, one should keep the following questions in mind. Is the intended architecture

SIMD, MIMD, or a combination? Is the memory distributed or shared and what is the

available size? What is the structure of the interconnection network? Does the parallel

computer have vector capabilities? Does the architecture support any software libraries,

which may contain frequently used routines that are optimized? Are there message passing

utilities available? One must be cognizant of such issues in order to make the best mapping

of an algorithm to a particular architecture for a specific problem.

Some Performance Measures

We conclude this section with a discussion of some performance measures. A common

measure of the performance gain from a parallel processor is known as speedup. Roughly

defined, it is the ratio of the time required to complete the job with one processor to the

time required to complete the job with N processors. Perfect speedup, hence, would be N.

The achievement of a perfect speedup, at least in principle, may be feasible in the following

21

situations: 1). in the case where each part of the problem is permanently assigned to a

processor and each such subproblem is computationally equivalent, with the processors

experiencing no significant delays in exchanging information and 2). in a machine where

each subproblem can be dynamically assigned to available processors, it may be attained

only as long as the number of subproblems ready for processing is at least N. The best

that one can hope to achieve is speedup that is linear in the number of processors.

More rigorously speaking and a model that is often utilized in measurements and

evaluations of parallel algorithms is the following. Let Tr be the time required to solve a

particular problem using the best possible serial algorithm on a single processor and let TN

be defined as the amount of time required to solve the problem using a parallel algorithm

implemented on N processors. Then the ratio

SN
IN

is known as the speedup of the algorithm, and the ratio

.9 N	 Tr
E N	 —

N N TN

as the efficiency of the algorithm. The above measures may also be evaluated as the

functions of the size of the problem n, with TN = TN (n). In the ideal situation, the

speedup SN = N and the efficiency EN = 1.

Since there may be difficulty in determining the best or optimal serial algorithm and,

hence, 77, this term is sometimes alternatively defined as: the time required by the best

existing serial algorithm, the time required by a benchmark algorithm, or the time required

for the problem using the particular parallel algorithm on a single processor of the parallel

processing system. Note that the last definition yields a speedup measure which evaluates

the parallelizability of the parallel algorithm but provides no information as to its overall

efficiency vis a vis other existing algorithms. Reporting of numerical results on parallel

architectures must, hence, clearly state precisely what measurement of Ti* is being used

for calculating speedup and efficiency.

Another measure, known as Amdahl's Law (see Amdahl (1967)), attempts to take

into consideration the fact that parts of an algorithm (or code) may be naturally serial

and not parallelizable, and, therefore, when a large number of processors may be available

(2.1)

(2.2)

22

the parallel parts of the program may be quickly completed, whereas the serial parts serve

as bottlenecks. In particular, the law is expressed as follows

1 	 1
SN < f (f) S f , for all N,	 (2.3);

where f denotes the fraction of the total computation that is inherently serial. As f

approaches zero, the speedup approaches the idealized one.

Hence, based on Amdahl's Law, the maximum possible speedup, even with an unlim-

ited number of processors, i.e., as N --• oo, would be: }. Consequently, an application

program that is 10% serial, as was found to be the case (at best) in many scientific pro-

grams in the 1960's, would run no more than ten times faster, even with an infinite number

of processors. This law, however, fails to recognize that often a problem is scaled with the

number of processors, and f as a fraction of size may be decreasing, that is, the serial

part of the code may take a constant amount of the time, independent of the size of the

problem. This argument is sometimes used as a refutation of Amdahl's Law.

The measure, mentioned already earlier, known as MFLOPS (or GFLOPS) is also

considered a yardstick for algorithm (and architecture) evaluation. This measure may

have to be determined by hand if there is not the software to compute it on a particular

architecture.

All the above measures, although imperfect, can, nevertheless, provide useful guide-

lines.

23

3. Fundamental Problem Classes and. Numerical Methods

In Section 2 the focus was on the technology and computer science aspects of paral-

lel computing. In this section we turn to the mathematical programming and numerical

analysis aspects of parallel computing. We first overview some of the fundamental math-

ematical problems encountered in economics and then discuss the numerical methods for

their solution. In particular, we emphasize problem classes and associated computational

schemes that can be (and have been) parallelized and that have been subjected to rigorous

theoretical analysis. This presentation is by no means exhaustive but, instead, highlights

problems that occur frequently in practice. The goal here is to present unifying concepts

in an accessible fashion.

We begin with systems of equations, which have served as the foundation for many

economic equilibrium problems. Moreover, computational schemes devised for this class

of problems have also been generalized to handle problems with objective functions and

inequalities. We then discuss optimization problems, both unconstrained and constrained,

and consider the state-of-the-art of parallel algorithms for this problem class.

We subsequently turn to the variational inequality problem, which is a general problem

formulation that encompasses a plethora of mathematical problems, including, among

others, nonlinear equations, optimization problems, complementarity problems, and fixed

point problems. A variety of serial and parallel decomposition algorithms are presented

for this problem class.

The relationship between solutions to a particular dynamical system and the solutions

to a variational inequality is recalled, as well as a general iterative scheme for the solution

of such dynamical systems, which induces several well-known algorithms. For this problem

class we also discuss parallel computing issues.

We first describe the classes of problems under consideration and then the associated

numerical schemes.

3.1 Problem Classes

We briefly review certain problem classes, which appear frequently in economics, and

then recall their relationship to the variational inequality problem.

For standardization of notation, let x denote a vector in R" and F a given continuous

24

function from K to Rn , where K is a given closed convex set.

Systems of Equations

Systems of equations are common in economics, in particular, in the setting of defining

an economic equilibrium state,. reflecting that the demand is equal to the supply of various

commodities at the equilibrium price levels, and in the formulation of macroeconometric

models. Let K = R" and let F : R" 1-0 R" be a given function. A vector x e E R" is said

to solve a system of equations if

F(f) = 0.	 (3.1)

This problem class is, nevertheless, not sufficiently general to guarantee, for example, that

e > 0, which may be desireable in the case where the vector x refers to prices.

Optimization Problems

Optimization problems, on the other hand, consider explicitly an objective function

to be minimized (or maximized), subject to constraints that may consist of both equalities

and inequalities. Let f be a continuously differentiable function where f : K R.

Mathematically, the statement of an optimization problem is:

Minimize f (x)	 (3.2)

subject to x E K.

Note that in the case where K = R", then the above optimization problem is an uncon-

trained problem.

Optimization problems occur frequently in economics not only in microeconomics,

such as in the theory of households or firms, but also in econometrics.

Complementarity Problems

Let R7 denote the nonnegative orthant in R", and let F : R" R". Then the

nonlinear complementarity problem over R+ is a system of equations and inequalities

stated as:

Find x s > 0, such that

F(x*)> 0 and F(x e)T • (e) = 0.	 (3.3)

25

(3.5)

(3.6)

Whenever the mapping F is affine, that is, whenever F(x) = Mx + b, where M is

an n x n matrix and b and n x 1 vector, the above problem is then known as the linear

complement arity problem.

The Variational Inequality Problem

The finite-dimensional variational inequality problem, VI(F, K), is to determine a

vector x* E K, such that

F(x s)T • (x — x*) � 0, for all x E K,	 (3.4)

where F is a. given continuous function from K to IP and K a given closed convex set.

Variational inequality problems have been used to formulate and solve a plethora of

economic equilibrium problems ranging from oligopolistic market equilibrium problems to

general economic equilibrium problems.

Dynamical Systems

Consider the dynamical system defined by the ordinary differential equation (ODE)

I =II(x,b(x)), x(0) = x 0 E K,

where given x E K and v E Rk , the projection of the vector v at x is defined by

(P(x by) — x)
11(x,v) — slim

6--•0	 6

and the orthogonal projection P(x) with respect to the Euclidean norm by

P(x) = arg minzEKii x xii•

The difficulty in studying the dynamical system (3.5), as discussed in Dupuis and

Nagumey (1993), lies in that the right-hand side, which is defined by a projection, is

discontinuous. Nevertheless, as established therein, the important qualitative properties

of ordinary differential equations hold in this new, nonclassical setting. The projection

ensures that the trajectory always lies within the feasible set K and, hence, satisfies the

constraints. This would guarantee, for example, that if K was the nonnegative orthant,

the production outputs in an oligopoly example would always be nonnegative; similarly,

the prices in a Walrasian equilibrium problem would also always be nonnegative.

26

3.1.1 Relationship Between the Variational Inequality Problem and Other

Problem Classes

We now review the fact that the variational inequality problem contains the above

problem classes as special cases, discuss its relationship to the fixed point problem, and

recall that its set of solutions corresponds to the set of solutions of the above dynamical

system. For rigorous proofs, see Nagurney (1993).

For example, a system of equations (3.1) can be formulated as a variational inequality

problem. Indeed, a vector e E 10 solves VI(F,R") if and only if F(f) = 0, where

F R" R".

Similarly; both unconstrained and constrained optimization problems can be formu-

lated as variational inequality problems. Consider the optimization problem (3.2) with x*

as the solution. Then x' is a solution of the variational inequality problem:

(x*)T • (x — x*) 0, for all x E K.

On the other hand, if f (x) is a convex function and x* is a solution to VI(Vf, K),

then x • is a solution to the above optimization problem.

If the feasible set K = R", then the unconstrained optimization problem is also a

variational inequality problem.

The variational inequality problem, however, can be reformulated as an optimization

problem, only under certain conditions. In particular, if we assume that F(x) is continu-

ously differentiable on K and that the Jacobian matrix

8Fi
az,

V F(x) =	 :
aF	 8F
an,	 as"

is symmetric and positive semi-definite, so that F is convex, then there is a real-valued

function f K Ft satisfying

V f (x) = F(x)

with x • the solution of VI(F, K) also being the solution of the optimization problem (3.2).

Hence, although the variational inequality problem encompasses the optimization

problem, a variational inequality problem can be reformulated as a convex optimization

27

problem, only when the symmetry condition and the positive semi-definiteness condition

hold. The variational inequality, therefore, is the more general problem in that it can also

handle a function F(x) with an asymmetric Jacobian.

The variational inequality problem contains the complementarity problem (3.3) as

a special case. The relationship between the complementarity problem defined on the

nonnegative orthant and the variational inequality problem is as follows. VI(F, R2) and

the complementarity problem defined above have precisely the same solutions, if any.

The relationship between the variational inequality problem and the dynamical system

was established in Dupuis and Nagurney (1993). In particular, if one assumes that the

feasible set K is a convex polyhedron, and lets b = —F, then the stationary points of (3.5),

i.e., those that satisfy x = 0 = 11(x, —F(x)), coincide with the solutions of VI(F, K).

This identification is meaningful because it introduces a natural underlying dynamics

to problems which have, heretofore, been studied principally in a static setting at an

equilibrium point.

Fixed Point Problems

We now turn to a discussion of fixed point problems in conjunction with variational

inequality problems. In particular, we first recall that the variational inequality problem

can be given a geometric interpretation. Let K be a closed convex set in Ir. Then for

each x E R", there is a unique point y E K, such that

	

lir Yli	 Ilx —	 for all z E K,

and y is the orthogonal projection of x on the set K, i.e., y = P(x)=arg min ZEK ii x zii•

Moreover, y = P(x) if and only if

	

YT • (Z. Y)	 XT • (Z Y)
	

for all z E K

Or

(Y — X)T • (Z y) 0, for all z E K.

Recalling that for two vectors u, v E R", the inner product u • v = lul • Iv'• cos 9,
and, hence, for 0 < 9 < 90°, u • v > 0, then the last inequality above may be interpreted

geometrically.

28

We now present a property of the projection operator that is useful both in qualitative

analysis of equilibria and their computation. Let K again be a closed convex set. Then

the projection operator P is nonexpansive, that is,

H P ' –	 – x'll for all X, X i E Rn.

The relationship between a variational inequality and a fixed point problem can now

he stated. Assume that K is closed and convex. e E K is a solution of the variational

inequality problem if and only if x* is a fixed point of the map

P(I – y) : K 1–■ K, for -y > 0 that is, x* = P(x • – -y.F(e)).

3.1.2 Qualitative Properties of the Variational Inequality Problem

In this subsection, for completeness, we present certain qualitative results for the

variational inequality problem. We also review certain properties and recall definitions

which will be referred to in our discussions of the convergence of algorithms. The interested

reader is referred to Kinderlehrer and Stampacchia (1980) for accompanying results in

standard variational inequality theory.

Existence of a solution to a variational inequality problem follows from continuity

of the function F entering the variational inequality, provided that the feasible set K is

compact. Indeed, if K is a compact convex set and F(x) is continuous on K, then the

variational inequality problem admits at least one solution x".

In the case of an unbounded feasible set K, the existence of a solution to a variational

inequality problem can, nevertheless, be established under the subsequent condition.

Let E R denote a closed ball with radius R centered at 0 and let KR= K fl ER. KR

is then bounded.

By VII? we denote the variational inequality problem

F(x•R) T • (Y – x eR) � 0, for all y E KR.

In this case we have the following result. VI(F, K) admits a solution if and only if elk

satisfies 11411 < R for large enough R.

29

Although 11411 < R may be difficult to check, one may be able to identify an appro-

priate R based on the particular application.

Qualitative properties of existence and uniqueness become easily obtainable under

certain monotonicity conditions. We first outline the definitions and then present the

results.

Definition 3.1

F(x) is monotone on K if

[F(x l) — F(x 2)1 T • (X 1 - x2) 0, for all x l , x2 E K.

Definition 3.2

F(x) is strictly monotone on K if

[F(x l) — F(x 2)1 T • (x l — 2 2) > 0, for all

Definition 3.3

F(x) is strongly monotone if

xl	 x2, x l ,x 2 E K.

[F(x l) — F(x 2)1 T • (Xi X2) > a li xi —x2 11 2 , for some a > 0, and all x l , x 2 E K.

Definition 3.4

F(x) is Lipschitz continous if there exists a positive constant L such that

	

11 F(xl) — nx2)11	 LI1x 1 —	 x2 11, for all x 1 ,x2 E K.

Recall now the following. Suppose that F(x) is strictly monotone on K. Then the

solution is unique, if one exists.

Monotonicity is closely related to positive definiteness and plays a role similar to

that of convexity in optimization problems. Indeed, suppose that F(x) is continuously

differentiable on K and the Jacobian matrix

aFi
ax„

V F(x) =	 •

	

sr	 aF

	

8r	 ax,,

30

is positive semi-definite (positive definite), that is,

xTVF(x)v > 0, for all v E R"

(vTVF(x)v > 0, for all v 0, v E R"),

then F(x) is monotone (strictly monotone).

Under a slightly stronger condition, we have the following result. Assume that F(x)

is continuously differentiable on K and that V F(x) is strongly positive definite, that is,

vTVF(x)v adv112, for all v E 1 , for all x E K.

Then F(x) is strongly monotone.

The property of strong monotonicity guarantees both existence and uniqueness of a

solution. In particular, if one assumes that F(x) is strongly monotone, then there exists

precisely one solution z* to VI(F, K).

Assume now that F(x) is both strongly monotone and Lipschitz continuous. Then

the projection PK [x – 7F(x)] is a contraction with respect to x, that is, if we fix 7 <

where a and L are the constants appearing, respectively, in the strong monotonicity and

the Lipschitz continuity condition definitions. Then

II PK(x 7F(x)) – PK (Y – 7F(Y))11 5 Mi x – Y11

for all x, y E K, where

0(1– 70) 4 <1.

It follows from this result and from the Banach fixed point theorem that the operator

PK(x – 7F(x)) has a unique fixed point x*.

The above results are useful in establishing convergence of algorithmic schemes.

3.2 Algorithms

In this subsection we present some of the basic algorithmic schemes for the solution of

the above problem classes. In particular, we focus on those algorithms, which have been

successfully implemented in practice on both serial and parallel architectures, and that

have been subject to theoretical analysis. Conditions for convergence are briefly discussed

31

with an aim towards accessibility. References where complete proofs can be obtained are

included.

Many iterative methods for the solution of systems of equations, optimization prob-

lems, variational inequality and other problems, have the form

xr+1 = g(x r), r = 0, 1, . ,	 (3.7)

where xr is an n-dimensional vector and g is some function from Rn into itself with

components ID , g2 ,	 For example, in the case where g(x) = Ax b, where A is of

dimension n x n, and b is an n-dimensional vector, one obtains a linear iterative algorithm.

The principal iterations of the form (3.7) are the

Jacobi iteration:
T+1x i 	=	 , x n ,	 z = 1, ..., n,

	

T)	 •

and the

Gauss-Seidel iteration:

=	 i = 1,	 , n.

As is well-known, the Gauss-Seidel algorithm incorporates the information as it be-

comes available, whereas the Jacobi method updates the iterates simultaneously. Hence,

the Jacobi method is a natural parallel method. Indeed, each subproblem i, for the evalu-

ation of 4+1 can be allocated to a distinct processor for simultaneous solution. It is also

worth noting that there are different Gauss-Seidel algorithms, depending on the specific

order with which the variables are updated. Moreover, a Gauss-Seidel iteration may be

totally unparallelizable as when each function g, depends upon all of the components of

the vector x, or it may be possible that, if this is not the case, component-wise updates

may be done in parallel. Of course, one would want to then choose an ordering so that

one could maximize the parallelism in any given iteration.

In our statements of the algorithms for the various classes of problems, for the sake

of brevity, we present only the typical iteration. Of course, each algorithm must be suit-

ably initialized and also convergence must be verified through an appropriate convergence

criterion. This latter issue is discussed more fully in terms of specific applications in the

numerical section.

32

3.2.1 Algorithms for Systems of Equations

The principal iterative techniques for solving systems of equations (cf. (3.1)) are the

Gauss-Seidel and the Jacobi methods.

In the case where the system of equations itself is linear, say,

Ax = 6,

under the assumption that A is invertible, one is guaranteed a unique solution x*. If we

write the i-th equation of Ax = 6 as

E aii xj = hi,
j=1

and assume that a„ 0, then the statement of the Jacobi algorithm for a typical iteration

r, and beginning with an initial vector x° E R", would be

Jacobi iteration:

= 1— —	 aux; — hi , i = 1, , n,
aii

;#1

and the statement of the Gauss-Seidel algorithm for a typical iteration 7:

Gauss-Seidel iteration:

aii ,<,	 pi

±ix	 ij	 E aiix; — bi , i = 1,	 , n.

Other variants of the above algorithms which make use of a relaxation parameter

are the Jacobi Overrelaxation Method (JOR) and the Successive Overrelaxation Method

(S011). These algorithms, under an appropriate choice of relaxation parameter, denoted

by 7 (cf. Bertsekas and Tsitsiklis (1989)), often converge faster.

In particular, an iteration of the JOR algorithm (note the similarity to the Jacobi

iteration) is given by

JOR iteration:

x:+1 (1 _ 7 aiix; — b;,	 i = 1,•••,n,
al E. 	-

[Jo
,

33

whereas an iteration of the SOR algorithm (note the similarity to the Gauss-Seidel itera-

tion) is given by

SOR iteration:

4+1 = (1 —7)
	

a'
	 + E a ii x; — bi , i =	 n.

In the case where y = 1, JOR and SOR collapse, respectively, to the Jacobi and

Gauss-Seidel methods.

We now briefly discuss some convergence results. If the matrix A is row diagonally

dominant, then the Jacobi method converges to the solution of the system of equations.

The Gauss-Seidel method converges to the solution if the matrix A is symmetric and

positive definite. Recall that a diagonally dominant matrix is also positive definite. Both

the JOR algorithm and the SOR algorithm converge, under the same conditions as the

Gauss-Seidel method, provided that the relaxation parameter 7 is sufficiently small (and

positive) in the case of JOR and in the range (0,2) for SOR.

All the above methods, nevertheless, share the desireable, especially from a practical

point of view, property that, if they converge, then they converge to a solution.

3.2.2 Algorithms for Unconstrained Optimization

Here we consider algorithms for minimizing a continuous function f : R" 1-4 I?, in

the absence of constraints (cf. (3.2)). In this case, V' f(x*) = 0 for every vector x* that

minimizes f and, hence, the problem of minimizing f is related to solving the system

Vf(x) = 0 of generally nonlinear equations, where F(x) = Vf(x). In fact, the proofs of

convergence of various schemes for solving linear equations, discussed above, also make use

of this fact. Indeed, cf. Section 3.1.1, under certain assumptions, such as symmetry, in

this case of A, one can reformulate the problem as an optimization problem, which would

here take the form of a quadratic programming problem. This problem, in turn, would

be strictly convex if A is assumed positive definite. Hence, in the proof one establishes

that the objective function must decrease at each step. This is known as the "descent"

approach to establishing convergence.

The statement of the nonlinear Jacobi algorithm for unconstrained optimization is

given by the following expression.

34

Nonlinear Jacobi Method:

4+1 = arg min i, 	 = 1,..., n.

The nonlinear Gauss-Seidel algorithm is defined by the following expression.

Nonlinear Gauss-Seidel Method:

1xr+1 = arg min x x r	 xr	 i = 1,...,n.

One assumes that a minimizing x: +I always exists, and that the algorithms are ini-

tialized with an x° E R".

The nonlinear Gauss-Seidel algorithm is guaranteed to converge to a solution x*

of (3.2) under the assumptions that f is continuously differentiable and convex, and f

is a strictly convex function of x„ when all the other components of the vector x are

held fixed. Both algorithms are guaranteed to converge if the mapping T, defined by

T(x) = x - 7Vf(x), is a contraction with respect to a weighted maximum norm, where

the weighted maximum norm II • 11,,,w =max, I II-. The sequence {x r } generated by either of

these algorithms then converges to the unique solution x e geometrically. The contraction

condition would hold if the matrix V 2f(x) satisfies a diagonal dominance condition (cf.

Bertsekas and Tsitsiklis (1989)).

Note that different versions of the nonlinear algorithms are obtained if R" can be

decomposed into a Cartesian product: m=1 R"', where at each stage, the minimization

is done with respect to the n,-dimensional subvector x,. Cartesian products will also play

an important role in the construction of decomposition algorithms for both constrained

optimization problems and variational inequality problems. These algorithms converge

under analogous assumptions to those imposed previously.

Linearized counterparts of the above algorithms include a generalization of the JOR

algorithm for linear equations, where

JOR Method:

xr+1 = x r — 71D(x r)1 -i Vf(xr)

where -y > 0, and D(x) is a diagonal matrix whose i-th diagonal element is V2 f(x),

assumed nonzero.

A generalization of the SOR algorithm is given by

35

r+1	 r
x i	 Xi	 r+1r, xi i = 1,..., n.

Vif(4-1-1,	 xT-1-11, x7i,

SOR Method:

Both the JOR algorithm, sometimes referred to as the Jacobi method, and the SOR

algorithm, sometimes referred to as a Gauss-Seidel method, are guaranteed to converge

to the unique solution x*, provided that 7 is chosen positive and small enough and of

is strongly monotone (cf. Definition 3.3). For this proof, rather than using the descent

property, one uses a contraction approach (cf. Bertsekas and Tsitsiklis (1989)).

Both the nonlinear and linear Jacobi methods are easily parallelized with each sub-

problem i being allocated to a distinct processor i. Also, note that these are synchronous

algorithms in that one obtains updates for all {x i }, i = n, before proceeding to the

next iteration.

If f is assumed to be twice continuously differentiable, then another important al-

gorithm for the solution of nonlinear equations and optimization problems is Newton's

method described below.

Newton's Method:

xr+I = x r - ^y(V2 f(xt)) -1 V f (xi).

For additional results and theory with respect to algorithms for the solution of both

nonlinear equations and unconstrained optimization problems, see Dennis and Schnabel

(1983).

3.2.3 Algorithms for Constrained Optimization

Assuming now that the feasible set K is a Cartesian product, where K m 1 Kt,

and each x, is an ni -dimensional vector, then one has natural extensions of the nonlinear

algorithms introduced for the unconstrained case to optimization problems with constraints

(cf. (3.2)). Indeed, the nonlinear Jacobi method is given by

Nonlinear Jacobi Method:

ei +1 = arg	 xi,	 ra i = 1 ,...,z,

and the nonlinear Gauss-Seidel algorithm by

36

Nonlinear Gauss-Seidel Method:

r+14+1 = arg min EK,f(x	 i = 1, ,z.

Hence, the overall problem is decomposed into z smaller subproblems, each of which

itself is a constrained optimization problem, but over a smaller and simpler feasible set.

Convergence of the iterates {x r } generated by the Gauss-Seidel algorithm to a min-

imizer of f over K is guaranteed under the assumptions that f is a continuously dif-

ferentiable function, convex on K, and a strictly convex function of x, when the other

components of the vector x are held fixed. Under the very same conditions, hence, one

was guaranteed convergence of the nonlinear Gauss-Seidel method for unconstrained opti-

mization problems, where K, = R'''.

Convergence of the nonlinear Jacobi method can be established under an appropriate

contraction assumption on the mapping x := x — -yVf (x). The nonlinear Jacobi method

can be implemented on a parallel architecture by allocating a distinct processor to each of

the z subproblems for the computation of the respective x,.

The linearized algorithms for unconstrained optimization are no longer valid for con-

strained optimization. This is due to the fact that, even if we begin within the feasible

set K, an update can take us outside of the feasible set. A simple solution is to project

back whenever such a situation occurs. Recall that the projection P(x) was defined as:

P(x)=arg minsEKii x — vii.

In particular, we have the well-known gradient projection method, where an iterate is

given by

Gradient Projection Method:

Xr+1 = p(x r leVf(xt))

with 7 > 0, a positive stepsize.

Convergence conditions will now be briefly discussed. In particular, if V f(x) is

strongly monotone and Lipschitz continuous (cf. Definition 3.4), and f(x) > 0, Vx E K,

then if -y is selected to be small enough, the sequence {r t. } defined by the above statement

of the gradient projection algorithm converges to the solution x* geometrically. What is

important to note is that, although this linear algorithm is not at first appearance amenable

37

to parallelization, there may, nevertheless, be applications in which the realization of the

above algorithm yields a natural decoupling. For example, this would be the case if the

feasible set K = m_, K1 , with each K, = [0, co), where the projection would be obtained

by projecting the i-th component of x on the interval [0, co), which is simple and can be

done independently and simultaneously for each component. A similar situation may arise

in the case of the solution of dynamical systems, as we shall demonstrate in the numerical

section.

Further, if K is a Cartesian product, one can consider a Gauss-Seidel version of the

gradient projection algorithm defined by the iteration:

Gauss-Seidel Version of the Gradient Projection Method:

xT+1 = P[x; — 7V, f(x1+1 ,	 , x	 . ,	 i = 1,	 , z.

For supporting proofs of convergence of the above schemes, see Bertsekas and Tsitsiklis

(1989).

The algorithms for optimization problems presented here have focused on problems

where the constraint set is a Cartesian product. In the case where this does not hold

one may, nevertheless, be able to exploit the underlying structure of a problem and take

advantage of parallelism by transforming the problem in an appropriate fashion. One

approach is to consider a dual optimization problem, which may be more suitable for

parallelization than the original primal problem. A variety of decomposition approaches for

large-scale problems are presented in Lasdon (1970) and parallel decomposition algorithms,

in particular, are discussed in Bertsekas and Tsitsiklis (1989). Since many such algorithms

are better understood in the context of a specific application, we defer a discussion along

these lines until we consider a specific application in Section 4.

We also refer the interested reader to Lootsma and Ragsdell (1988) for an overview of

parallel computation of nonlinear optimization problems and for a discussion of paralleliza-

tion of the conjugate gradient method, variable-metric methods, and several decomposi-

iton algorithms. For an examination of dynamic programming and parallel computers, see

Casti, Richardson, and Larson (1973) and Finkel and Mnaber (1987). Experimentation on

the parallelization of combinatorial optimization algorithms can be found in Kindervater

and Lenstra (1988).

38

3.2.4 Algorithms for Variational Inequality Problems

We now focus on the presentation of variational inequality algorithms, which may be

applied for the computation of equilibria. In particular, we first present projection methods

and then decomposition algorithms for when the variational inequality to be solved is

defined over a Cartesian product of sets. We discuss decomposition algorithms of both

the Jacobi and Gauss-Seidel type, the former being naturally implementable on parallel

computer architectures. We don't present algorithms for complementarity problems, since

these are special cases of variational inequality problems, and the theory of variational

inequality algorithms is more developed. Moreover, we don't discuss fixed point algorithms

since they may not be appropriate for large-scale problems.

Variational inequality algorithms resolve the variational inequality problem (3.4) into

simpler variational inequality subproblems, which, typically, are optimization problems.

The overall efficiency of a variational inequality algorithm, hence, will depend upon the

optimization algorithm used at each iteration. The subproblems under consideration often

have a special structure and special-purpose algorithms that exploit that underlying struc-

ture can be used to solve the embedded mathematical programming problems to realize

further efficiencies.

3.2.4.1 Projection Methods

Projection methods resolve a variational inequality problem, typically, into a series

of quadratic programming problems. They have been applied for the computation of

a plethora of equilibrium problems (cf. Nagurney (1993)) and, although they were not

developed as parallel computational procedures, per se, may, nevertheless, resolve the

problem because of the underlying feasible set K, into (numerous) subproblems, which

can then be solved simultaneously. The same characteristic was discussed in regards to

the gradient projection method in subsection 3.2.3.

Projection Method:

xr+1 = P(x' —7G-1 F(x r))

where G is a symmetric positive definite matrix, and -y > 0.

Convergence is guaranteed (cf. Bertsekas and Tsitsiklis (1989)) provided that the

function F is strongly monotone (cf. Definition 3.3) and Lipschitz continuous (cf. Defini-

39

tion 3.4), for any -y E (0,70], such that the mapping induced by the projection above is a

contraction mapping with respect to the norm Ho' The sequence {9} generated by the

projection algorithm then converges to the solution x* of (3.4) geometrically.

In the case where the function F is no longer strongly monotone, but satisfies the less

restrictive monotonicity condition (cf. Definition 3.1), and is also Lipschitz continuous,

then the modified projection method of Korpelevich (1977) is guaranteed to converge to

the solution of the variational inequality problem. If the function F is monotone, rather

than strongly monotone, then a unique solution, however, is no longer guaranteed.

Modified Projection Method:

xr+1 = P(x r — -yF(±r))

where th r is given by

x T = P(x r — -yF(xt))

and y, is, again, a positive scalar, such that y E (0, +1, where L is the Lipschitz constant

in Definition 3.4. Note that here G- 1 = I.

3.2.4.2 Decomposition Algorithms

Here we assume that the feasible set K is a Cartesian product, that is,

K= JJ K1
	

(3.8)
i=1

where each Ki C R"';	 1 n, = n; xi denotes a vector in Ws', and F,(x): K R"' for

each i.

Many economic equilibrium problems are defined over a Cartesian product set and,

hence, are amenable to solution via variational inequality decomposition algorithms. For

example, a variety of game theory problems would fall into this framework, where each

player has his or her own objective function and feasible set, with the feasible set depending

upon only the individual's particular strategies, and not on those of the other players.

This would be the case in classical oligopolistic market equilibrium problems (cf. Cournot

(1838), Gabay and Moulin (1980)). In addition, multicommodity spatial price equilibrium

problems (cf. Talcayama and Judge (1971), Dafermos (1986)) would also have a feasible

40

set defined as a Cartesian product, where each commodity would have to satisfy its own

conservation of flow equations.

The appeal of decomposition algorithms lies in their particular suitability for the

solution of large-scale problems. Moreover, parallel decomposition algorithms can be im-

plemented on parallel computer architectures and further efficiencies realized.

We emphasize that for any given equilibrium problem there may be several alternative.

albeit, equivalent, variational inequality formulations, which may, in turn, suggest distinct,

novel, and not immediately apparent, decomposition procedures.

We present the nonlinear decomposition methods and then the linear decomposition

methods. For each, we first present the Jacobi version and then the Gauss-Seidel version.

The statement of a typical iteration r of the nonlinear Jacobi method is given by

Nonlinear Jacobi Method:

xr +I = solution of: Fi (xt	 ,	 xi, 44.,	 (x/i_xi)>0,	 E Ki, Vi.

A typical iteration of the nonlinear Gauss-Seidel method is given by

Nonlinear Gauss-Seidel Method:

= solution of: F1 (x r+1 . x r+I x	 xr-1) • (x: — x)> 0, Vx' E K„ Vi.I	 •	 •	 3-1	 2,	 t-I-1	 • • •

The linear Jacobi method, on the other hand, is given by the expression

Linear Jacobi Method:

x1+1 = solution of: [Fi (x t)i- ii i (x T) • (x i — 4)1 T • [x: — x i] > 0, Vili E Ki,Vi.

The linear Gauss-Seidel method is given by the expression

Linear Gauss-Seidel Method:

x Ir+ = solution of:

1	 r
.,4)-1- Ai(ri-1

l• • •

_1 , ,x;) • (x, — x;)] T • [x: — x i] > 0

Vx; E Ki,Vi.

41

There exist many possibilities for the choice of A t e). If A,(x r) = V x, F,(x r), then

we have a Newton's method. If we let Ai (x r) = D,(x r), where Di (•) denotes the diagonal

part of Gr i, Fi •), then we have a linearization method. If A t (•) = G„ where G, is a fixed,

symmetric and positive definite matrix, then we get a projection method.

Note that the variational inequality subproblems above should be easier to solve than

the original variational inequality since they are smaller variational inequality problems,

defined over smaller feasible sets. In particular, if in the linear methods we select the

At (•) to be diagonal and positive definite, then each of the subproblems is equivalent to a

separable quadratic programming problem with a unique solution (cf. Section 3.1.1).

The subproblems that must be solved at each iteration of the nonlinear methods are

themselves variational inequality problems. Hence, an algorithm such as the projection

method (cf. subsection 3.2.4.1) would have to be applied, where V f(x) would now be

replaced by F(x), and the relaxation parameter would need to lie in the range (0,1]. See

Dafermos (1983) and Nagurney (1993) for additional discussion of the projection method

for variational inequality problems, as well as other algorithms, including the relaxation

method.

The linear methods are appealing since each variational inequality subproblem may

be expected to take on a simpler form for computational purposes than in the case of the

nonlinear methods. This is especially true, as already mentioned above, if A(•) is selected

to be diagonal.

We now present a convergence theorem for the above decomposition algorithms that

is due to Bertsekas and Tsitsiklis (1989) (see, also, Nagumey (1993)).

Theorem 3.1

Suppose that the variational inequality problem (3.4) has a solution x* and that there

exist symmetric positive definite matrices G, and some 6 > 0 such that A 1 (x) — SG, is

nonnegative definite for every i and x E K, and that there exists a 7 E [0,1) such that

ii GT 1 (Fi(x) — Fi(Y) — IMO • (x i —	 � mrc ii x i	 Vx, y E K,

where lix t il i = (1,TGexi) 1 . Then the Jacobi and the Gauss-Seidel linear and nonlinear

decomposition algorithms, with A i (x) being diagonal and positive definite, converge to the

solution x*.

42

Variational inequality theory was originally introduced by Hartman and Stampacchia

(1966) for the study of partial differential equations, that arise principally in mechanics.

Such problems, however, in contrast to the ones considered here, are infinite-dimensional.

For the parallel solution of partial differential equations, see Ortega and Voigt (1985).

3.2.5 Algorithms for the Dynamical System

Although the dynamical system (3.5) provides a continuous adjustment process, a

discrete time process is needed for actual computational purposes. Towards this end, in this

subsection, we first review a general iterative scheme introduced in Dupuis and Nagurney

(1993), which induces a variety of numerical procedures, all of which, in turn, are designed

to estimate solutions to the variational inequality problem (3.4) and to trace the trajectory

of the dynamical system from the initial state. We then present several schemes induced by

the general iterative scheme. These schemes are not in themselves parallel. Nevertheless,

since they are based on a projection operation, which in many applications takes on a

very simple form that is decomposable in the variables, one oftentimes obtains a parallel

scheme. Indeed, this will be illustrated in terms of concrete applications in Section 4.

The proposed algorithms for obtaining a solution to the variational inequality problem

all take the form

xr = P(xr — arF,(xr)),	 (3.9)

where, without loss of generality, the "r" denotes an iteration (or time period), fan r E

T} is a sequence of positive scalars, and the sequence of vector fields {F,.(.), r E

"approximates" F•).

We now present the Euler-type method, which is the simplest algorithm induced by

the above general iterative scheme.

Euler-Type Method:

In this case we have that

Fr(x) = F(x)

for all r E T and x E K. This would correspond to the basic Euler scheme in the numerical

approximation of standard ODEs.

Another method is

43

Heun-Type Method:

In this case we have that

F7(x) = 2 [F(x) + F(x) + P(x — a, F(x)))]

Finally, if the function F is defined in a sufficiently large neighborhood of K, another

method is

Alternative Heun-Type Method:

In this case we set

F,-(x) = [F(x) + F(x — a, F(x))] .

Other methods, which are induced by this general iterative scheme, include Runge-

Kutta type algorithms.

We now consider a situation where the above schemes would be parallelizable. Suppose

that the feasible set K = m_, K;, where each K, = [0, oo). Then it is easy to see that

the expression (3.9) takes on the following simple closed form expression:

4+1 = max{0, x r — Fr (x r)}, i =	 z.

All of the x: +1 's, hence, can be updated in parallel.

We now give the precise conditions for the general convergence theorem and present

its statement. For proofs, see Dupuis and Nagurney (1993).

Assumption 3.1

Fix an initial condition x° E K and define the sequence fir, E T} by (3.9). Assume

the following conditions.

1. ato a i = oo, ai > 0, a; 0 as	 oo.

2. d(Fr (x), P(x)) —■ 0 uniformly on compact subsets of K as r	 oo, where d(x, A) =

inf {11x — Y11, y E A}, and the overline indicates closure.

3. Define 4) y to be the unique solution to i = 11(x, —F(x)) that satisfies (4(0) = y E K.

The w—limit set

UyEK nom (-1 3>t Ny(3)}

44

is contained in the set of stationary points of i 11(x, —F(x)).

4. The sequence {x' r E T} is bounded.

5. The solutions to X = 11(x,—F(x)) are stable in the sense that given any compact set

K1 there exists a compact set K2 such that U Y EKriKi Uj>0 {thy(t)} C K2.

The assumptions are phrased as they are because they describe more or less what

is needed for convergence, and because there are a number of rather different sets of

conditions that imply the assumptions.

Theorem 3.2

Let S denote the solutions to the variational inequality (3.4), and assume Assumption

3.1 and Assumption 3.2, where

Assumption 3.2

	

There exists a B < cc) such that the vector field —F :	 1—*	satisfies the linear

growth condition: lI — F(x)II < B(1 + IA) for x E K, and also

(—F(x) + F(y), x — y)	 —

for all x, y E K.

Suppose ff. , r E T} is the scheme generated by (3.9). Then d(x r ,S) —■ 0 as r —* co.

Corollary 3.1

Assume the conditions of Theorem 3.2, and also that S consists of a finite set of points.

Then	 xr exists and equals a solution to the variational inequality (3.4).

The above classes of problems and accompanying numerical methods were selected

for their general applicability with an eye towards unifying principles. In the subsequent

section we focus on applications and numerical results that help to illustrate and synthesize

the computer science and mathematical programming principles of parallel computing

discussed thus far.

45

4. Applications and Numerical Results

In this section we discuss both applications and numerical results. We begin with an

application of systems of equations, and also discuss applications of optimization problems,

variational inequality problems, and dynamical systems. The applications are drawn from

econometrics, macroeconomics, and finance.

4.1 Nonlinear Equations

In this subsection we discuss an application of nonlinear equations (cf. (3.1)) that

illustrates the parallel computation of the solution via the Jacobi and the Gauss-Seidel

methods using a software library.

4.1.1 Econometric Model Simulation

Nonlinear equations are used in the formulation of macroeconometric systems. Such

problems can be very large, especially when one wishes to solve the same model repeatedly

for different data sets, as would be the case, for example, in stochastic simulation and

optimal control. Indeed, such problems were some of the first economic problems that

were solved using supercomputers with vectorization (see, e.g., Amman (1985), Ando,

Beaumont, and Ando (1987), Petersen (1987), Petersen and Cividini (1989), and Amman

(1989)).

Recently, Gilli and Pauletto (1993) considered the solution of a system of equations

(3.1) consisting of linear and nonlinear equations on the CM-2 architecture. The model

that they solved was a macroeconometric model of the Japanese economy, developed at

the University of Tsukuba and consisting of 98 equations and 53 exogenous variables. The

model was solved for ten time periods from 1973 to 1982.

The model, when put into block recursive form, exhibited a pattern common to

macroeconometric models, in that a large fraction of the variables (77 of them) lay in

one interdependent block, and were both preceded and followed by recursive equations. 6

variables were defined recursively before the block, followed by 15 variables that did not

feed back on the block.

The authors studied the ordering of the equations for the purposes of the Gauss-Seidel

algorithm through the use of a DAG (directed acyclic graph) in order to try and achieve

the highest possible speedup. Both the Gauss-Seidel and the Jacobi method converged for

46

the model, the latter requiring 4.5 seconds, and the former .18 seconds using 8K (8,192)

processors of the CM-2.

The authors then proceeded to repeatedly solve the same model, but using 8,192

different datasets, corresponding to 8,192 different sets of exogenous variables. The number

of datasets was selected to correspond to the number of processors in order to yield the

best speedup possible. The Gauss-Seidel algorithm required 22.2 seconds on the CM-2
z'+' zr

using the convergence tolerance I 	 I < e, for all i, with e = .001. It required 1,109z,
seconds on a Sun ELC, yielding a speedup of 50. Since the convergence verification step

itself was found to be time-consuming, a modification of it reduced the CPU time on the

CM-2 to 12.7 seconds and on the Sun to 863 seconds, yielding an improved speedup of

68. The authors made use of the library, CMSSL (cf. Thinking Machines Corporation

(1992c)), which contains routines for solving systems of equations.

4.2 Optimization Problems

In this subsection we focus on constrained optimization problems (cf. (3.2)), in par-

ticular, portfolio optimization problems and, subsequently, an estimation problem known

as the constrained matrix problem. Both of these constrained optimization problems are

quadratic programming problems. For the portfolio optimization problem we utilize the

gradient projection method in which we embed a special-purpose algorithm for the solution

of the simpler subproblems. For the constrained matrix problem, we apply a dual method

which has been specifically developed for this problem and exploits its special structure.

Since the resulting subproblems are of the same structure as those encountered in the

application of the gradient projection method to the portfolio optimization problem, the

same special purpose algorithm is applied at each iteration.

4.2.1 Portfolio Optimization Problems

As mentioned in the Introduction, portfolio optimization problems stimulated the

interest in the development of the area of mathematical programming known as quadratic

programming.

Recall the classical portfolio optimization problem (cf. Markowitz (1959) and Sharpe

(1970)) where there are n financial instruments, x denotes the n-dimensional vector of

shares of the instruments, Q is the variance-covariance matrix of dimension 71 x and r

47

(4.7)

(4.8)

is the n-dimensional vector of expected returns on the individual instruments. Then the

portfolio optimization problem may be formulated as follows:

Minimize f (x) x T Qx — rT x	
(4.1)

subject to

	

Ex	 1	 (4.2)

xi > 0, for all j = 1,	 , n,	 (4.3)

where the objective function denotes the risk minus the expected returns.

One may also introduce a risk parameter A in which case the objective function (4.1)

is modified to

Minimize f (x) = xT Qx — ArT x
	

(4.4)

and the full problem also incorporates the above constraints. The variational inequality

formulation of this problem is given by

	

[2Q x* — ArT] T • [x -	 > 0, Vx E K,	 (4.5)

where the feasible set K consists of the constraint (4.2) and the nonnegativity constraints

(4.3).

An application of the gradient projection method discussed in subsection 3.2.3 resolves

this problem into simpler quadratic programming problems, where the quadratic matrix at

each iteration is now the diagonal identity matrix and where at iteration r the subproblem

is given by:

Minimizer* EK
xt T xr

(7(2Qx r - ArT) x r-1)Tx r . 	
(4.6)

In applications one may wish to vary the A over a horizon in which case we have the

problem
T	 •

Minimize f(x) = E x Qx' — AirTri
i=1

subject to

E xij = 1, i = 1,..., rn,
i=i

48

>0,	 for all i = 1,...,m;	 j = 1,...,n,	 (4.9)

where x' here denotes the n-dimensional vector with components {xl, , 0 correspond-

ing to the shares associated with the problem A'.

Observe that this problem may be decomposed into in subproblems, each of the form

given by (4.4) with a distinct A. In fact, an even finer decomposition (on the level of riz x n

is possible with an appropriate implementation of the exact equilibration algorithm, which

is discussed (in a more general context) in subsection 4.2.2.

The dataset that we utilized consisted of a variance-covariance matrix that was es-

timated using the Standard & Poor's index consisting of 500 firms. The data consisted

of monthly data from 1986 through 1992 and the resulting estimated Q matrix was of

dimension 500 x 500.

The system utilized for the implementation of the gradient projection method was the

CM-2 with a SUN as the front-end. The parameter if was set to .001 and the convergence

an	 Itolerce E was set equal to .0001. The convergence criterion was: I x r — x r	-< E. The gra

dient projection method with the embedded exact equilibration scheme was implemented

in CM Fortran.

First, the single portfolio optimization problem with A = 1 was solved; this problem

was equivalent to (4.1) subject to (4.2) and (4.3). Subsequently, A was varied from 1 to

100 (cf. (4.7)) in increments of 2 yielding 51 portfolio optimization problems with a total

of 25,500 variables.

The single problem with A = 1 required 252 iterations for termination, whereas the

51 problems, with A l = 1, A' = 3, ... , = 100, required a total of 312 iterations. The

CPU times on the CM-2 required for convergence are reported in Table 4.1.

Table 4.1

Portfolio Optimization

CPU Times in Seconds

Example 8K 16K 32K

single problem

51 problems

365.28

962.92

238.16

694.85 421.40

49

We did not solve the single problem using 32K processors since it had only 500 vari-

ables. In regards to the relative times on 8K processors, the 51 problems required less than

3 times the amount of CPU time as did the single problem. Indeed, when 32K processors

were used the 51 problems required only approximately 20% more CPU time than the

single problem required on 8K processors.

It is worth mentioning that multi-sector, multi-instrument general financial equilib-

rium problems, formulated as variational inequality problems (cf. Nagumey, Dong, and

Hughes (1992), Nagurney (1994)) can be decomposed into subproblems of the form con-

sidered here and, hence, at least in principle, are also amenable to massively parallel

computation.

4.2.2 Constrained Matrix Problems

Constrained matrix problems arise in numerous applications, such as the estimation of

input/output tables, social accounting matrices, migration tables, and origin/destination

tables in transportation (see, e.g., Bacharach (1970)). These problems can also be very

large-scale in practice and are usually formulated as optimization problems. Here we

shall consider a special-purpose algorithm for the solution of the problem which allows for

parallel computation. The algorithm is a dual method that decomposes the problem into

many simpler subproblems, each of which can then be solved explicitly and in closed form.

In this subsection we briefly review the constrained matrix problem with known row

and column totals under consideration here. For the formulation of the general quadratic

constrained matrix problem with unknown row and column totals and other variants, we

refer the reader to Nagurney and Eydeland (1992), and the references therein.

In particular, we consider the diagonal constrained matrix problem, which is formu-

lated as a minimization of the weighted squared sums of the deviations. We denote the

given m x n matrix by X° = (x?), and the matrix estimate by X = (xu). Let s° denote

the known row i total, and .s i the estimate of the row i total. Let ci° denote the known

column j total, and dj the estimate of the column j total. We assume that the "yi2 elements

are all positive.

The diagonal quadratic constrained matrix problem is given by:
rn n

Minimize f(x) = EE	 o 2
	

(4.10)
1=1 j=i

50

subject to the row constraints

and the column constraints

where

0	 •E Zii = , Z = 1,	 , t7/

j=1

E x • - — d°- j = 1u —),
i=1

(4.11)

(4.12)

> 0, for all i,j.	 (4.13)

Note that this problem is of the form (3.2), where the feasible set K is defined by the

set of x that satisfy constraints (4.11)-(4.13).

For generalizations of this model to the estimation of financial flow of funds accounts,

see Hughes and Nagurney (1992) and Nagurney and Hughes (1992).

4.2.2.1 The Splitting Equilibration Algorithm and the Exact Equilibration Al-

gorithm

Neither a Gauss-Seidel algorithm nor a Jacobi algorithm can be applied for the solution

of this problem because the feasible set K here is not a Cartesian product, that is, of the

form (3.8). Nevertheless, the problem has alot of structure that can be exploited for

parallel computation. In particular, one can see that if the objective function was subject

to either only the constraints (4.11) and (4.13), or (4.12) and (4.13), then each of the

in, respectively, rt subproblems could be solved simultaneously. Note, for example, the

similarity of this optimization problem to the portfolio optimization problem (4.7) subject

to constraints (4.8) and (4.9), in which case 4 would be equal to 1 but although Q is

no longer diagonal in the portfolio optimization problem, the gradient projection method

approximates the problem by making use of the diagonal identity matrix at each iteration.

Hence, the decomposed subproblems have essentially the same structure and can be solved

by the same suitable algorithm.

The algorithm, known as the Splitting Equilibration Algorithm (SEA) (cf. Nagurney

and Eydeland (1992)), computes a solution to the quadratic programming problem (4.10),

subject to constraints (4.11) through (4.13), by first considering a modification of the

51

objective function subject to only the row constraints (4.11), and then by considering a

modification of the objective function subject to only the column constraints (4.12). The

former problem is referred to as the Row Equilibration Step, whereas the latter problem

to as the Column Equilibration Step. The algorithm can be interpreted and analyzed as a

dual method.

The simplicity of the procedure lies in that each of the row/column subproblems,

because of their special structure, can be solved exactly, and in closed form, using exact

equilibration. Exact equilibration algorithms were originally introduced by Dafermos and

Sparrow (1969), and then later generalized and theoretically analyzed in Eydeland and

Nagurney (1989). The massively parallel implementation of the Splitting Equilibration

Algorithm (as the implementation of the gradient projection method for the portfolio

optimization problem) depends crucially on the massively parallel implementation of the

(row/column) exact equilibration algorithm.

The statement of SEA is as follows:

The Splitting Equilibration Algorithm

Step 0: Initialization Step:

Let p l E R" = 0. Set r := 1.

Step 1: Row Equilibration:

Find XV") such that

n	 m

X(pr)—+ Mint f(x)— E ,,; (E x ii — 4) (4.14)

subject to

E Xi • =	 i = 1,...,m,	 (4.15)
i=1

x ii > 0, for all i,j.

Compute the Lagrange multipliers according to:

A T+1 = 2.7i/Xii(r) 271.4P 	 — for i = 1,	 , m.

52

Step 2: Column Equilibration

Find X(A T+1) such that

X(Ar+1) –■ Min z f(z) – E	 – s?)	 (4.16)
1=1	 j=1

subject to
m

	

E Xii =	 j = 1,... ,n,	 (4.17)
i=1

x ii > 0, for all i,

Compute the Lagrange multipliers according to:

pir+1 =	 r4-1	 2	 o	 r+I) – "Ri x – A i 	 for j = 1,... , n.

Step 3: Convergence Verification

If KE(Ar+1)-3?)/41	 for all i, terminate; else, set r := r +1, and go to Step
I I)

1.

We now present an algorithm for the solution of each of the row/column subproblems

with special structure. The notable feature of this procedure is that it lends itself to a

massively parallel implementation. For simplicity, we develop the presentation of the exact

equilibration procedure in the context of the column equilibration step.

In particular, in the column equilibration step at iteration r, we are interested in com-

	

puting for each subproblem j, the flows	 from the rows 1, , m to the column

j that satisfy the constraint (4.17) and the following optimality/equilibrium conditions:

(4.18)

where the gii =27,i terms, for i = 1, , m, are all greater than zero and hi) = –

Ar', for i = 1, , m. The term pi is simply the Lagrange multiplier corresponding to

the constraint (4.17) (where the superscript r + 1 has been removed), and not known a

priori. The algorithm below computes the solution to the above system (4.18) in closed

form. It can then be applied to solve each of the n column subproblems.

= p) , if x ii > 0

>µ j if	 = 0
gu ru +

53

Exact Equilibration

(i). Sort the hu 's; i = 1,	 , in, in nondescending order and relabel the 11, 2 's accordingly.

Define h„,+ 1,3 = co. Set v := 1.

(ii). Compute

rit-1	 + d.?
pi =

E:11	 •
(4.19)

If ho < p <	 then stop; s' := v, and go to (iii). Otherwise, set v := v + 1, and go

to (ii).

(iii). Set

X j .7 = i = 1,	 , s'

x ij = 0, 2 = + 1,	 , m.

Note that py" is then equal to the i4 computed above.

In an analogous manner one can construct an exact equilibration algorithm for solving

the i-th row equilibration subproblem (4.14), subject to constraint (4.15) for the particular

row. Note that the algorithm should then be applied for the solution of all the 171 row

subproblems.

As described above SEA decomposes the constrained matrix problem into in row

subproblems, each of which can be solved independently and simultaneously on a distinct

processor using exact equilibration, and into n column subproblems, each of which can

also be solved independently and simultaneously. In this context, hence, if rn = rt then

at most in processors would be used for the parallel implementation; this is, indeed, the

case with a coarse-grain architecture. However, in the next subsection we will show how a

massively parallel implementation of SEA with the exact equilibration algorithm exploits

all n x n processors, if such an architecture is available.

4.2.2.2 The Massively Parallel Implementation of SEA

The massively parallel implementation of SEA was earlier reported in Kim and Nagur-

ney (1993). The language that was used for the implementation was CM Fortran and the

architecture, the CM-2.

54

We now briefly describe some of the intrinsic functions of CM Fortran that make

it very well-suited for implementing the exact equilibration algorithm. For example, the

intrinsic function cmf_order sorts elements of a matrix either row - wise or column - wise

and returns the indices. The minval and maxval functions, in turn, return the smallest,

respectively, largest element of a row or a column in an array. The transpose feature of a

matrix, in turn, is useful in minimizing the cost of communication between processors in

which the data elements are located.

Since matrix operations in CM Fortran must be conformable, i.e., the operated on

matrices must be of the same dimensions, one may need to change a matrix into a vector,

or vice versa; for such transformations the functions pack and unpack are very useful. Also

one may use the spread command to replicate a vector into a matrix.

Finally, we note the availability of logic statements, such as the where, else, end

statement that checks conditions on vector/matrix elements in parallel.

Here we consider the estimation of an input/output table. Before presenting the

numerical example, we focus on the critical implementation issues.

Recall that SEA decomposes the constrained matrix problem into row subproblems

and column subproblems. Hence, in an rt x n problem there would be n row subproblems to

be solved and then 11 column subproblems, until convergence. In particular, the solution of

each of the n subproblems of the form (4.18), which consisted of n unknown xu variables,

was carried out by using n of the processors to first compute the p7 given in equation (4.19),

for v = 1, , n. A shift command was then utilized in order to bring the neighboring

it y+1,i values to the same location, in order to minimize the communication. The h„) <

< 14+1,1 check condition was implemented using the where, else, end construct.

All n column problems were solved in the same fashion, simultaneously. The xu 's for

i = 1, ... ,71; j = 1,	 ,n were then updated, also simultaneously.

We report now the results of both the implementation of SEA on the CM-2 and on

the IBM 3090/600.

For the parallel version of SEA on the IBM 3090/600E we utilized as the base the

serial FORTRAN code developed on this machine and added the Parallel Fortran (PF)

constructs in order to handle the task allocation, that is, the assignment of each of the

n row / n column subproblems to the six CPU's. The conversion of the serial Fortran

55

code to this parallel code was relatively straightforward in that only task origination state-

ments, dispatch statements that allocated a row/column subproblem to the next available

processor, a waiting statement for synchronization, and task termination statements had

to be added to the original serial code.

We now present the results of our implementations on the two architectures. The

convergence criterion was set at e = .01. The weights, the -y, i 's were set to * for 4 > 0,

and to 1, otherwise.

In Table 4.2 we present the results of the computations on the CM-2 system for a

dataset based on an input/output matrix, I072b, consisting of 485 rows and 485 columns

and representing a dataset of a 1972 input/output matrix for the US. This problem con-

sisted of 235,225 variables. The problem was solved using 8K processors, 16K processors,

and, finally, 32K processors.

Table 4.2

Constrained Matrix Problem

Example I072b (485 rows x 485 columns)

# of Physical Processors 	 CPU Time in Seconds

8K	 51.74

16K	 29.58

32K	 16.34

Observe that the CM-2 CPU time decreases approximately linearly as the number of

processors is increased. We note that the same problem when solved on an IBM 3090/600E

required 438.35 CPU seconds for the serial Fortran code (cf. Nagurney and Eydeland

(1992)), compiled using the FORTVS compiler, optimization level 3, and 291.54 CPU

seconds on an IBM 3090/600J. The number of iterations required for convergence was 4 for

SEA both on the CM-2 and on the IBM 3090/600. In terms of the parallel runs on the IBM

3090/600E, the wall clock time required for convergence of the parallel implementation of

the Splitting Equilibration Algorithm, compiled using the PF compiler, was 444.18 seconds

for 1 CPU, 229.85 seconds for 2 CPUs, 118.76 seconds for 4 CPUs, and 86.32 seconds for

6 CPUs.

For additional discussion on the constrained matrix problem and supplementary ref-

erences, see Nagurney (1993).

56

4.3 Parallel Computation of Variational Inequality Problems

Here we consider the parallel computation of variational inequality problems (cf.

(3.4)). We first discuss the massively parallel computation of spatial price equilibria with

ad valorem tariffs via the modified projection method. As mentioned in subsection 3.2.4.1,

this algorithm is not a parallel decomposition method per se, but, may, nevertheless, due

to the structure of the feasible set K in the application in question, yield subproblems

that can be solved simultaneously. This is precisely the feature that is illustrated in this

application. We then discuss the parallel computation of multicommodity spatial price

equilibrium problems via variational inequality decomposition algorithms and their imple-

mentation on a coarse-grained architecture.

4.3.1 Spatial Price Equilibrium Problems with Ad Valorem Tariffs

In this subsection we briefly review the perfectly competitive spatial market model

with ad valorem tariffs introduced in Nagurney, Nicholson, and Bishop (1993).

We consider m supply markets involved in the production of a homogeneous commod-

ity and n demand markets. We denote a typical supply market by i and a typical demand

market by j. Let s, denote the supply at supply market i and dj the demand at demand

market j. We group the supplies into a column vector s E Rm and the demands into

a column vector d E R". Let Q‘i denote the nonnegative commodity shipment between

supply and demand market pair (i, j), and group the commodity shipments into a column

vector Q E R"'".

The commodity shipments and the supplies and demands must satisfy the following

conservation of flow equations:

Si = E	 I = 1,...,m,	 (4.20)
j=1

d, = E Q„,	 (4.21)
i=1

Hence, the supply at each supply market must be equal to the sum of the commodity

shipments from that market to all the demand markets, and the demand at each demand

market must be equal to the sum of the commodity shipments from all supply markets to

each demand market.

57

We now describe the price and cost structure. Let r, denote the supply price at supply

market i and 1)2 the demand price at demand market j. We group the supply prices into a

row vector r E Fr' and the demand prices into a row vector p E IV. The transportation

cost associated with shipping the commodity between supply market i and demand market

j is denoted by cu . We group the transportation costs into a row vector c E R".

We assume that the supply price at a supply market may, in general, depend upon

the supplies of the commodity at every supply market, that is,

= ir(s).	 (4.22)

Similarly, the demand price at a demand market may, in general, depend upon the demands

for the commodity at every demand market, that is,

P = P(d)•
	 (4.23)

The per unit transportation cost, in turn, associated with shipping the commodity

between a pair of supply and demand markets is assumed to be fixed, that is, it is inde-

pendent of the volume of commodity shipments, where the fixed per unit cost is denoted

by e;) , and the associated mn-dimensional vector by E. Hence, we have that

c = E.	 (4.24)

Note that other fixed per unit transfer costs and per unit tariffs can be readily incorporated

into the fixed E function.

We now introduce discriminatory ad valorem tariffs. Let denote the ad valorem

tariff, assumed positive, and applied to imports by demand market j from supply market

i. The incorporation of ad valorem tariffs modifies the spatial price equilibrium conditions

(cf. Samuelson (1952), Talcayama and Judge (1971)) as follows: For all pairs of supply

and demand markets (i, j); i = 1, , j = 1, , n, a commodity supply, shipment, and

demand pattern (s*,Q* , d.) satisfying (4.20) and (4.21) is said to be in equilibrium if

(ri(s e) + Eij) • (1 + 41) = PJ(d*),
if Qz; > 0

if Cizi =0.
(4.25)

Hence, in equilibrium, if a positive amount of the commodity is shipped between a

pair of supply and demand markets, then the effective supply price plus transportation

58

cost after the imposition of ad valorem tariffs must be equal to the demand price at the

demand market. If there is no commodity shipment between a pair of supply and demand

markets, then the effective supply price plus transportation cost can exceed the demand

price.

In view of constraints (4.20) and (4.21), one can define the functions ir,(Q)	 ri(s),

z = 1, , rn, and the functions pi (Q) = p j (d), j = 1, , rz. The variational inequality

formulation of the equilibrium conditions governing the spatial market model with ad

valorem tariffs derived in Nagurney, Nicholson, and Bishop (1993) is

m n

E E(\irs(Q-) + zo) • (1 + ti)) — o)(Q .)) • (Qi, — (27,) (), VQ E R-Tn•
1=1

If one then defines

Fi/(Q)	 ((fr i(Q) + e,,) • (1 + t ii)	 ■aj(Q)),

(4.26)

(4.27)

and lets F(Q)E Fenn be the row vector with (i, j)-th component F,J (Q), then variational

inequality (4.26) may be expressed in standard form as:

Determine Q' E K, such that

F(Q*) • (Q — Q*) � 0, VQ E K,	 (4.28)

where the feasible set K a- {QIQ E R7n}.

The algorithm that we propose is the modified projection method (cf. subsection

3.2.4.1) which resolves the variational inequality problem under consideration here into

subproblems that are very simple for computational purposes. Indeed, we obtain a closed

form expression for the determination of the commodity shipments at each iteration. More-

over, since each of the commodity shipments between a pair of supply and demand markets

can be evaluated separately and simultaneously at any iteration, this algorithmic scheme

enables one to exploit the availability of (massively) parallel computer architectures.

We now provide the closed form expressions for the solution of encountered subprob-

lems. In particular, one must first compute: For all supply and demand market pairs (i, j),

z = 1,...,m; j = 1,...,n,

QT, = max { 0 ,7((- 71 t(e) eu)(1 + E y) + P) (dr)) Qrj),	 (4.29)

59

and then: For all supply and demand market pairs (i, j), i = 1, ... ,m; j = 1,	 ,

= max(0,-y((—rr i (C) — eij)(1 tii) pi (dr)) +	 .	 (4.30)

In view of expressions (4.29) and (4.30), one sees that all of the inn commodity

shipments can be solved simultaneously at each iteration r. Hence, an "ideal" computer

architecture for the solution of such problems may be one in which there are as many

processors as there are pairs of markets. The convergence results can be found in Nagurney,

Nicholson, and Bishop (1993).

4.3.1.1 Implementation of the Modified Projection Method on the CM-2

In this subsection some numerical results are presented for the implementations of

the modified projection method on two distinct architectures, the IBM ES/9000, when

the algorithm is implemented in Fortran, compiled, and executed using a single processor,

and the CM-2, when the algorithm is implemented in CM Fortran and executed on 8K,

16K, and 32K processors. We consider the solution of large-scale spatial price equilibrium

problems with discriminatory ad valorem tariffs.

Specifically, we consider spatial price equilibrium problems in which the supply price

and demand price functions are asymmetric and linear and the transportation cost func-

tions are fixed.

The CM Fortran code for the implementation of the modified projection method for

the model consisted of an input and setup routine and a computation routine to implement

the iterative steps (4.29) and (4.30). The crucial feature in the design of the program was

the construction of the data structures to take advantage of the data level parallelism

and computation. We first constructed the array C, of dimension in x n, to store the

transportation costs We then constructed the array t to store the tariff rates, with

the (i, j)-th component equal to tii.

The supply price coefficients were stored in an m x in array SC, and the demand

price coefficients were stored in an n x rt array DC. We also introduced additional arrays

SP and DP to denote, respectively, the supply prices and the demand prices at a given

iteration, where the i-th row of SP consisted of the identical elements {ir,} and the j-th

column of DP consisted of the identical elements {pi }. To compute the supply prices, we

60

used the spread command to spread the supplies and then multiplied the resulting matrix

with the SC matrix. Specifically, the spread command makes multiple copies of a vector

along columns or along the rows to create a 2-dimensional array. We then used the sum

command to add the elements of each row of the resulting arrays and added the resulting

vector to the vector containing the fixed supply price terms. The result was then spread to

create the supply prices SP at the particular iteration. The demand prices were obtained

in an analogous fashion. The array QO was used to store the values of Q from the previous

iteration and was used for convergence purposes.

We now present the critical steps in the CM Fortran computation section.

Implementation of the Modified Projection Method

Do while (err.ge.e)

1. QO(:,:)=Q(:,:)

2. construct SP and DP

3. temp(:,:)=Q(:,:)-1-7(DP(:,:)-(C(:,:)+SP(:,:))*(144))

4. Q(:,:)=temp(:,:)

5. where(temp(:,:).1t.0.) Q(:,:)=0.

6. update SP and DP with new Q

7. temp(:,:)=Q0(:,:)±^y(DP(:,:)-(C(:,:)+SP(:,:))*(1-1-t))

8. Q(:,:)=temp(:,:)

9. where(temp(:,:).1t.0.)Q(:,:)=0.

10. err=maxval(abs(Q-Q0))

11. update supplies and demands

end do

Hence, from step 3 above it can be seen that element (i, j) of the array "temp" contains

at the r-th iteration the value of: 7(pi (dr) — (e„ + ri (s r))(1 tv)) Q;:i (cf. (4.29)). In

step 7 above, on the other hand, it can be seen that element (i, j) of the array "temp"

now contains at the r-th iteration the value of: -y(p) (it) — (e" + tt,(3`))(1 + t ")) + C4;

(cf. (4.30)). All the variables above followed by a "(:,:)" are 2-dimensional arrays.

Q is updated by using a mask in steps 5 and 9, where the (i, j)-th element is set

to zero if the value of temp(i,j) is negative. What is important to note is that, at each

61

iteration, all of the Q,3 's, for i = . . . m; j = 71, are computed and updated simul-

taneously. This is not possible when the algorithm is implemented on a serial architecture,.

with consequences that shall be highlighted subsequently.

Note that the above code can be easily adapted to solve spatial price equilibrium

problems without ad valorem tariffs, but with fixed unit transportation costs, by simply

removing the (1 t) expression, which we did, as well.

We now turn to the presentation of the numerical results. The problems are large-

scale problems ranging in size from one hundred supply markets and one hundred demand

markets to five hundred supply markets and five hundred demand markets, that is, with

ten thousand to two hundred and fifty thousand commodity shipment variables.

The numerical results for the large-scale problems are reported for both the serial

implementation of the algorithm in Fortran on the IBM ES/9000 and the parallel imple-

mentation in CM Fortran presented above on the CM-2 architecture.

The tariffs t ii were generated randomly and uniformly in the range: [0, 2,]. A full

description of the datasets, along with additional numerical results, can be found in Nagur-

ney, Nicholson, and Bishop (1993).

We set the convergence tolerance e = .01, and set -y = .0001 for all the numerical

examples. Also, we initialized the algorithm for each example with 0) .-- 0 for all i, j.

The serial implementation of the modified projection method on the IBM ES/9000

yielded the same number of iterations as had been obtained on the CM-2 for each example.

The CPU times are reported in Table 4.3. We report the times for each example both with

the tariffs and with the tariffs removed.

62

Table 4.3

Numerical Results for Large-Scale Problems with Ad Valorem Tariffs

CPU Times in Seconds

IBM ES/9000 CM-2 (8K)	 CM-2 (16K)	 CM-2 (32K)

ExampleWithout With	 Without With	 Without With	 Without With

m x n	 Tariffs Tariffs Tariffs Tariffs Tariffs Tariffs Tariffs Tariffs

100 x100 8.80 241.50 7.58 186.72 5.22 130.90 -

200 x200 53.83 632.08 17.23 178.72 14.96 155.19 10.89 112.89

300 x 300 107.94 >900 21.28 239.96 14.04 158.19 10.05 113.07

400x400 246.31 >900 38.23 523.15 24.92 340.64 17.43 238.29

500 x 500 880.47 >900 158.82 657.48 120.78 499.26 68.88 284.58

The first example, 100 x 100, consisting of one hundred supply markets and one

hundred demand markets, required 185 iterations for convergence in the absence of tariffs

and 4,611 iterations in the presence of tariffs. The second example, 200 x 200, consisting

of two hundred supply markets and two hundred demand markets, required 286 iterations

for the without-tariff case, and 2,951 iterations for the with-tariff case.

The third example, 300 x 300, consisting of three hundred supply markets and three

hundred demand markets, required 250 iterations for convergence for the without-tariff case

and 2,796 iterations for the with-tariff case. The fourth example in Table 4.3, 400 x 400,

consisting of four hundred supply markets and four hundred demand markets, required 305

iterations for the without-tariff case, and 4,140 iterations for the with-tariff case. The final

problem, 500 x 500, consisting of five hundred supply markets and five hundred demand

markets, required 686 iterations for convergence for the problem without tariffs, and 2,825

iterations for convergence for the problem with tariffs.

It is apparent that the use of a massively parallel architecture for these large-scale

problems realized substantial savings in CPU time over the time required on the serial

architecture. For example, in the smallest problem, 100 x 100, and without tariffs, the

time on the IBM ES/9000 was 8.8 seconds, whereas the time using 16K processors of the

CM-2 was 5.22 seconds. (We did not solve this problem on 32K processors since there were

only 10,000 variables in this size of problem.) In the next largest problem, 200 x 200, the

63

time on the ES/9000 for the problem without tariffs was 53.83, whereas the same problem

was solved in only 10.89 seconds using 32K processors of the CM-2, a five-fold improvement.

This improvement in relative performance increased as the size of the problem increased,

with the result that the largest problem in this set, 500 x 500, required 880.47 seconds on

the ES/9000 and less than a tenth of that time, 68.88 seconds, when 32K processors of the

CM-2 were utilized. The largest problem, 500 x 500, and with tariffs, only required about

4 minuites using 32K processors of the CM-2.

4.3.2 Multicommodity Problems

In this subsection we consider a multicommodity version of the spatial price equi-

librium model described in subsection 4.3.1, but without ad valorem tariffs, which will

be used as a model for illustrating variational inequality decomposition algorithms. For

additional background, see Nagurney (1993).

Consider again rn supply markets and rt demand markets but now involved the pro-

duction / consumption of J different commodities, with a typical commodity denoted by k.

As before, denote a typical supply market by i and a typical demand market by j. Let

denote the supply of the commodity k associated with supply market i and let in denote

the supply price of this commodity associated with supply market i. Let cl, denote the

demand for commodity k associated with demand market j and let 4 denote the demand

price associated with demand market j and commodity k. Group the supplies and supply

prices, respectively, into a column vector S E RJm and a row vector 7r E 1?-1". . Similarly,

group the demands and the demand prices, respectively, into a column vector d E Fthi and

a row vector p E

Let Qt denote the nonnegative commodity shipment of commodity k between the

supply and demand market pair (i,j) and let cti denote the nonnegative unit transaction

cost associated with trading commodity k between (i, j). Assume that the transaction cost

includes the cost of transportation; depending upon the application, one may also include

a tax/tariff, fee, duty, or subsidy within this cost. Group then the commodity shipments

into a column vector Q E IV" and the transaction costs into a row vector c E

The market equilibrium conditions, assuming perfect competition take the following

form: For all pairs of supply and demand markets (i, j) : i = 1,	 , m; j = 1, , n, and

64

all commodities k = 1,	 ,J:

= p,(c1"), if Q 1k• > 0
rt(s") +

> pi (d"), if Qti e = O.
(4.31)

The condition (4.31) states that if there is trade of commodity k between a market pair

(i, j), then the supply price of k at supply market i plus the transaction cost between the

pair of markets associated with trading commodity k must be equal to the demand price of

k at demand market j in equilibrium; if the supply price plus the transaction cost exceeds

the demand price, then there will be no shipment of that commodity between the supply

and demand market pair.

Moreover, the following feasibility conditions must hold for every commodity k, and

markets i and j:

(4.32)

and

tit = E	 (4.33)
1=1

The transaction cost between a pair of supply and demand markets associated with trading

a commodity may now depend upon the shipments of all the commodities between every

pair of markets, that is,

c = c(Q)	 (4.34)

where c is a known function.

The variational inequality formulation of the equilibrium conditions (4.31) is

Ir(s*)• (s — s') c(Q*)- (Q — Q*)— p(cr) • (d — d') � 0, V(s,Q,d) E K,	 (4.35)

where K -a	 Kk, where Kk is defined as the set of (s,Q,d), such that constraints

(4.32) and (4.33) are satisfied.

The algorithm that was utilized for the solution of this problem was the linear Jacobi

method with a diagonal matrix A(.), which resolves the problem into single commodity

problems, each of which, in turn, is equivalent to a quadratic programming problem.

The algorithm that was utilized for the solution of the embedded subproblems was the

65

demand market equilibration algorithm of Dafermos and Nagurney (1989). In particular,

the algorithm in the context of this application, is expressed as follows.

Linear Gauss-Seidel Method:

Start with an initial feasible (s°,Q°,d°) E K.

At iteration r, construct new supply price, demand price, and transaction cost func-

tions, which are linear and separable, and given for each commodity k by

r k k	 "i r k	 k r	 thrt r r k
r. (a •) =)si + Ori (s 4 (8)si)),g s as i = 1, . , m,

 k .r.	 °Pi
(d)d;

)dj,k
Pr/ (4) = Trik (dr)C1 (P, (d r — .r3d,	

)	 j = 1,	 , n,

OC	 aCk
C8 k ((A)	 (Qr) (1t, + (C (C2 r) —.(Qr)Q7-;k 	 i = 1, ... ,rn; j = 1 	 n,

OQ

and solve the variational inequality subproblem for each k, of the form (4.35), which is

equivalent to a quadratic programming problem. The solution is (s r+1 , Qr+1 , dr+1).

In Nagurney and Kim (1989) a problem consisting of 50 supply markets, 50 demand

markets, and 12 commodities was solved, where the supply price and demand price func-

tions were quadratic, and the transaction cost functions were highly nonlinear (to the

fourth power).

In Table 4.4 the speedups and efficiencies (cf. (2.1) and (2.2)) obtained when the

algorithm was implemented on an IBM 3090/600E and compiled using the Parallel Fortran

compiler are reported. 77 here denotes the time required for the algorithm implemented

on a single processor of the system. The task allocation was accomplished by using the

constructs provided in Parallel Fortran.

Table 4.4

Speedups and Efficiencies for a Multicommodity Example
N TN Tis S N EN

2

3

73.34

55.63

128.72

128.72

1.76

2.31

88%

77%

Additional numerical results can be found in Nagurney and Kim (1989) for both the

linear Jacobi algorithm and the linear Gauss-Seidel algorithm.

66

4.4 Parallel Computation of Dynamical Systems

In this subsection we consider the computation of dynamical systems via the Euler

Method presented in subsection 3.2.5. We first illustrate the method through an applica-

tion to the classical oligopoly problem and then discuss a massively parallel implementation

of the algorithm for the computation of a dynamical systems model of spatial price equi-

librium.

4.4.1 Oligopolistic Market Equilibria

In this subsection we first briefly review the oligopoly model and its variational in-

equality formulation. We then present the dynamical system whose set of stationary points

corresponds to the set of solutions of the variational inequality problem.

Assume that there are m firms involved in the production of a homogeneous com-

modity and a single demand market. Let q, denote the nonnegative commodity output

produced by firm i and let d denote the demand for the commodity at the demand market.

Group the production outputs into a column vector q E R+.

The following conservation of flow equation must hold:

d = Eqi.	 (4.36)

Associate with each firm i a production cost f„ where

= fi(qi)•	 (4.37)

The demand price for the commodity is given by

P = P(d)-	 (4.38)

The profit or utility u, of firm i is then given by the expression

= PCs —	 (4.39)

In view of (4.36)-(4.38), one may write the profit as a function solely of the production

output, i.e.,

u = u(q).	 (4.40)

67

Now consider the usual oligopolistic market mechanism (cf. Cournot (1838), Nash

(1950)), in which the m firms supply the commodity in a noncooperative fashion, each one

trying to maximize its own profit. We seek to determine a nonnegative production pattern

q* for which the in firms will be in a state of equilibrium as defined below.

Definition 4.1

A commodity production pattein q* E 11+ is said to constitute a Cournot-Nash equi-

librium if for each firm i; i = 1, , m,

iti(q7,g;`) � u i (qi , q-7), Vqi E R+	 (4.41)

where q:`	 (qr,	 , 911_ 1 , qt" ,	 ,

As established in Gabay and Moulin (1980), the variational inequality formulation of

the Cournot-Nash equilibrium is as follows.

Assume that for each firm i the profit function u i (g) is concave with respect to the

variables {qi , , gm } , and continuously differentiable. Then q* E 141 is a Cournot-Nash

equilibrium if and only if it satisfies the variational inequality

Oui(e)
NI 97) 0, V9 E RT ,	 (4.42)aqi

or, equivalently, q* is an equilibrium production pattern if and only if it satisfies the

variational inequality

[afi(qn ap(Er=i of q; p(E qn} X [q - of 0, Vq E R:age	 Oqii=1

(4.43)

We will now put the oligopolistic market equilibrium problem into standard variational

inequality form. Let x be the column vector x -=- q E R im , and let F(x) E Rm be the row

vector with components: (— atW. , — au;÷), and K {gl q > 0}, then variational

inequality (4.43) governing the classical Cournot-Nash oligopoly problem can be placed in

standard form.

We now state the ordinary differential equation (ODE) (cf. (3.5) and (3.6)). The class

of pertinent ODES takes the form:

=11(x, —F(x)), x(0) = xo E K.	 (4.44)

68

As established in Lemma 1 in Dupuis and Nagurney (1993), each stationary point of

(4.44), that is, each point in the set of x • satisfying

0 = II(x*, —F(x')),	 (4.45)

also satisfies the variational inequality (4.42).

The ordinary differential equation (4.44), however, is not standard in that the right-

hand side is discontinuous. Nevertheless, as has been established in Dupuis and Nagurney

(1993), the important qualitative and quantitative results of "standard" ODEs will still be

applicable.

We now briefly interpret the ODE (4.44) in the context of the oligopoly model. First,

note that ODE (4.44) ensures that the production outputs are always nonnegative. Indeed,

if one were to consider, instead, the ordinary differential equation: i = —F(x), such an

ODE would not ensure that x(t) > 0 for all t > 0, unless additional restrictive assumptions

were to be imposed, such as the assumption that the solutions to the oligopoly problems

lie in the interior of the feasible set (cf. Okuguchi (1976) and Okuguchi and Szidarovsky

(1990)). ODE (4.44), however, retains the interpretation that if x at time t lies in the

interior of K, then the rate at which x changes is greatest when the vector field —F(x) is

greatest. Moreover, when the vector field pushes x to the boundary of the feasible set K,

then the projection II ensures that x stays within K.

Recall now the definition of F(x) for the oligopoly model, in which case the dynamical

system (4.44) states that the rate of change of the production outputs is greatest when

the firms' marginal utilities are greatest. If the marginal utilities are positive, then the

firms will increase their shipments; if they are negative, then they will decrease their

shipments. Therefore, ODE (4.44) is a continuous adjustment or tatonnement process for

the oligopoly problem. Although the dynamical system provides a continuous adjustment

process, a discrete time process is needed for actual computational purposes. In particular,

in the context of the classical oligopoly model, one would, at each iteration r of the Euler

Method, compute the new production outputs for each firm i in closed form as follows

qtri-1	 ui(qr)
= max{0, ar 	 + q;}, for each i = 1,	 , m.	 (4.46)

flq,

Observe that (4.46) is a parallel adjustment process, where in the classical oligopoly

problem all of the production outputs are updated simultaneously. Proof of convergence

69

of the Euler Method for this model, as well as for a spatial oligopoly model, can be found

in Nagumey, Dupuis, and Zhang (1993).

It is worth noting the similarity between the Euler-type method and the Goldstein-

Levitin-Polyak Gradient Projection Method, cf. Goldstein (1964, 1967) and Levitin and

Polyak (1966), who independently proposed a projection method for minimizing a con-

tinuously differentiable function f : K II, where the iteration r takes the form:

x r = P(x, — arVf(x.,.)) (see also Bertsekas (1976)). The oligopoly problem, however,

is a variational inequality problem and not an optimization problem, and although the

Euler-Type Method can be used to solve an optimization problem, the converse does not

hold true, that is, an optimization algorithm cannot be used to solve a variational inequal-

ity problem (unless it can also be cast as an optimization problem, which would hold in

the very special case where the Jacobian of F is symmetric).

It is also worth mentioning that Arrow and Hurwicz (1958a,b) earlier proposed a

gradient method for optimization problems, which was stated as solving a dynamical sys-

tem. A discussion of other gradient-type methods, based on both the Hildreth (1957) and

the Arrow-Hurwicz methods, and their application to classical spatial price equilibrium

problems, can be found in Takayama and Judge (1971).

4.4.1.1 A Numerical Example

We now apply the Euler-Type Method to compute the solution to a numerical example.

The algorithm was coded in. Fortran and the system used for the numerical work was the

IBM ES/9000.

The example is taken from Murphy, Sherafi, and Soyster (1982). The oligopoly consists

of five firms, each with a production cost function of the form:

hCiq	 	
Pi +1) $	 ql

with the parameters given in Table 4.5. The demand price function is given by:

-5	 5	 1.1

p(E qi) = 5000"h (E q i)	 •
1=1	 i=1

(4.47)

(4.48)

70

Table 4.5

Parameters for the 5-Firm Oligopoly Example

firm i ci h, hi

1 10 5 1.2

2 8 5 1.1

3 6 5 1.0

4 4 5 .9

5 2 5 .8

The convergence criterion was:	 < .001, for all i. The algorithm was initial-

ized at q° = (10,10,10,10,10). We utilized the sequence: {a4=10 x {1, 21 , 21 , 31 , 31 , 31 , ...}.

The algorithm required 19 iterations and only a negligible amount of CPU time for

convergence. The algorithm converged to g*-r-(36.93, 41.81, 43.70, 42.65, 39.17), reported

to four digits of accuracy.

As reported in Nagurney (1993), the projection method, which would in the above

general iterative scheme (cf. (3.9)) correspond to Fr (x,-) = F(x,.) with a, = -y, for all

iterations r, required 33 iterations for convergence to the same solution with -y = .9, under

the same initial conditions. The relaxation method, on the other hand, cf. Nagurney

(1993), required only 23 iterations but was more computationally costly, since at each

iteration nonlinear equations must be solved. Also, we emphasize that the conditions for

convergence of both the projection and the relaxation method are more restrictive than

those required by the general iterative scheme described in subsection 3.2,5.

4.4.2 Spatial Price Equilibria

In this subsection we consider a dynamical systems model of a single commodity

version of the spatial price equilibrium model described in 4.3.2. For additional background

and numerical results, see Nagurney, Takayama, and Zhang (1993).

We do, however, use an alternative variational inequality formulation, which makes

the massively parallel decomposition by market pairs more apparent. The decomposition

proposed here is of the finest possible for this problem. In particular, we consider the

variational inequality formulation of the problem given by

F(Q*)T •(Q — Q*) � 0, VQ E K,	 (4.49)

71

here F(.) is the mn-dimensional row vector whose (i, j)-th component is given by: r,(3)-F

cti (Q) — pj (d), and the feasible set K is defined as the nonnegative orthant: K {Q1Q >

0}.

We now present the ordinary differential equation (ODE), whose set of stationary

points corresponds to the set of solutions of variational inequality (4.49), or, equivalently,

to the set of spatial price equilibrium patterns satisfying conditions (4.31), with the number

of commodities J = 1. The pertinent ODE is given by:

Q = 11 (Q, —F(Q)), Q(0) = Q° E K.	 (4.50)

The intuition behind the dynamical system in the context of the spatial price equi-

librium problem will now be briefly addressed. If Q(t) E K°, that is, in the context of

the spatial price equilibrium problem, all the commodity shipments at time t, Q(t), are

positive, then the evolution of the solution is directly given in terms of F Q = —F(Q),

where recall that —F11(Q) = pi(d) — c,j (Q)— 7,(s). In other words, if the demand price at

a demand market exceeds the supply price plus transaction cost associated with shipping

the commodity between this pair of supply and demand markets, then the commodity

shipment between this pair of markets will increase. On the other hand, if the supply price

plus transaction cost exceeds the demand price, then the commodity shipment between

the pair of supply and demand markets will decrease. If a stationary point is reached, that

is, if Q = 0 = —F(Q), then the supply price plus the transaction cost will be exactly equal

to the demand price for each pair of markets and the associated commodity shipments will

be positive.

However, if the vector field F drives Q to the boundary of K, (i.e. F(Q(t)) points

"out" of K) the right-hand side of (4.50) becomes the projection of F onto ar.c. In other

words, if the commodity shipment is driven to be negative, then the projection ensures

that the commodity will be nonnegative, by setting it equal to zero.

For the computation of the solution to this problem, we applied the Euler Method (cf.

Section 3.2.5), where the expression (3.10) now takes the form:

Q;)+1 = max{O, ar (soi (dr)— c,i (Q r)— r,(s r)) + Q;), i = 1, . , m; j = 1,	 , n. (4.51)

Note that (4.51) is a parallel adjustment process in that each of the mn market

72

pair subproblems can be solved simultaneously at each iteration. Moreover, each such

subproblem can be solved explicitly in closed form.

In view of the similarity between the iterative step (4.51) and the iterative steps (4.29)

and (4.30), the massively parallel implementation of the Euler Method in CM Fortran is

similar to the massively parallel implementation of a single step of the Modified Projection

Method.

For completeness, and easy reference, we present some numerical results. In particu-

lar, we considered spatial price equilibrium problems with linear, asymmetric supply price

functions, linear, asymmetric demand price functions, and quadratic transaction (trans-

portation) cost functions. We report the results on a set of five examples, the first example

consisting of 100 supply markets and 100 demand markets, with 10,000 variables or un-

known commodity shipments, and ending with a problem with 500 supply markets and

500 demand markets, that is, with 250,000 variables. The numerical results are reported

in Table 4.6 for the examples using 8K, 16K, and, finally, 32K processors of the CM-2.

The algorithm was initialized with Q° = 0. The convergence criterion used was:
trif- — Qri I < e for all i, j, with the tolerance e set to .001.

Each example (except for the first, which had only 10,000 variables) was solved with

8K processors, with 16K processors, and, finally, with 32K processors.

Table 4.6

CM-2 Times for Spatial Price Equilibrium Problems

Nonlinear Transportation Costs

Example

of Supply

Markets

of Demand

Markets 8K

CM-2 Time (sec.)

16K	 32K

ASP100 100 100 48.98 37.27

ASP200 200 200 165.70 154.19 111.88

ASP300 300 300 263.69 172.95 122.80

ASP400 400 400 544.84 352.61 245.17

ASP500 500 500 1772.58 1214.51 690.65

The first example in this set, ASP100, required 2,558 iterations for convergence, the

second example, ASP200, required 5,693 iterations, the third example, ASP300, took

5,869 iterations, the fourth example, ASP400, took 8,188 iterations, and the fifth example,

73

ASP500, 13,264 iterations.

We then considered the solution of spatial price equilibrium problems in which the

transportation cost functions were fixed, that is, of the form (4.29) and applied the Euler

Method on the CM-2, the CM-5, and the ES/9000. These problems has been previously

solved on the CM-2 in Nagumey, Takayama, and Zhang (1993). The problems ranged in

size from 300 x 300 or 90,000 variables for SP300 to 500 x 500 or 250,000 variables for

SP500 and the CPU times on the three distinct architectures are reported in Table 4.7.

Table 4.7

CM-2, CM-5, and ES/9000 CPU Times for Spatial Price Equilibrium Problems

Fixed Transportation Costs

CPU Times in Seconds

CM-2 CM-5 ES /9000

Example 32K 128 256 512 1

SP300 93.31 54.31 45.68 40.92 1,170.59

SP400 243.33 311.54 106.49 90.31 4,034.25

SP500 686.78 305.88 180.38 133.80 9,600*

Table 4.7 reports the CPU times using 32K processors of the CM-2, and 128 nodes,

256 nodes, and 512 nodes of the CM-5. Only a single processor of the ES/9000 is also

used. The examples (as one would expect) required the same number of iterations for

convergence on the CM-5 as they did, respectively, on the CM-2 and on the ES/9000.

SP300 required 4,483 iterations, SP400 required 8,187 iterations, whereas SP500 required

13,262 iterations. The CPU time on the ES/9000 for SP500 is estimated, since it became

prohibitively expensive to solve it serially.

The numerical results clearly indicate the following. First, it is imperative that an

algorithm be mapped to the appropriate architecture. The Euler Method in its realization

in the economic equilibrium problem under consideration here is a massively parallel al-

gorithm and, hence, should be implemented on a massively parallel architecture. Indeed,

although the Euler mMthod requires many iterations for convergence, the total time re-

quired for convergence is minimal in the massively parallel implementation for spatial price

equilibrium problems, since each iteration is computationally inexpensive, because of its

simplicity and because the problems are solved simultaneously.

74

Second, the ease of portability of the CM Fortran code between the CM-2 and CM-5

was demonstrated. No changes to the code were needed (except for the compilation) in

order to execute the CM Fortran code on the CM-5 which had been developed for the

CM-2. Third, the numerical results on the CM-5 suggest that very large-scale problems in

economics can be solved very efficiently. Indeed, the largest problem, consisting of 250,000

variables required only approximately 2 minutes for solution. This is due, partially, to

the fact of the layout of the data structures and partially to the algorithm itself and its

implementation in CM Fortran.

Moreover, these results and those in the preceding numerical subsections suggest that

massively parallel computation can enable one to conduct many simulations of alternative

policy interventions such as, for example, different tariff structures, in a timely fashion.

75

Acknowledgments

The research reported herein was supported, in part, by the National Science Foun-

dation under grant DMS 9024071 under the Faculty Awards for Women program.

This research was conducted at the National Center for Supercomputer Applications

at the University of Illinois at Urbana-Champaign, at the Pittsburgh Supercomputing

Center, and at the Cornell Theory Center at Cornell University in Ithaca, New York. The

use of these facilities and the technical assistance provided at these centers are gratefully

acknowledged.

The author would also like to thank the computer scientists Marilynn Livingston and

D. R. Math for many helpful discussions in the course of preparing this work and Kathy

Dhanda for assistance with the literature searches.

76

References

Amdahl, G., "The validity of single processor approach to achieving large scale computing

capabilities," in AFIPS Proceedings, 1967, pp. 483-485.

Amman, H. M., "Applying the Cyber 205 for optimal control experiments in economics,"

Supercomputer 8/9 (1985) 71-74.

Amman, H. M., "Nonlinear control simulation on a vector machine," Parallel Computing

10 (1989) 123-127.

Ando, A., Beaumont, P., and Ando, M., "Efficiency of the CYBER 205 for stochastic

simulations of a simultaneous, nonlinear, dynamic econometric model," The International

Journal of Supercomputer Applications 1 (1987) 54-81.

Arrow, K. J., and Hurwicz, L., "Gradient method for concave programming, I: local re-

sults," in Studies in Linear and Nonlinear Programming, K. J. Arrow, L. Hurwicz,

and H. Uzawa, eds., Stanford University Press, Stanford, California, 1958a, pp. 117-126.

Arrow, K. J., and Hurwicz, L., "Gradient method for concave programming, III: further

global results and applications to resource allocation," in Studies in Linear and Non-

linear Programming, K. J. Arrow, L. Hurwicz, and H. Uzawa, eds., Stanford University

Press, Stanford, California, 1958b, pp. 133-145.

Arrow, K. J. , Hurwicz, L., and Uzawa, H., eds., Studies in Linear and Nonlinear

Programming, Stanford University Press, Stanford, California, 1958.

Bacharach, M., Biproportional Scaling and Input-Output Change, Cambridge Uni-

versity Press, Cambridge, United Kingdom, 1970.

Bertsekas, D. P., "On the Goldstein-Levitin-Polyak gradient projection method," IEEE

Transactions on Automatic Control AC-21 (1976) 174-184.

Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation, Pren-

tice-Hall, Englewood Cliffs, New Jersey, 1989.

Casti, J., Richardson, M., and Larson, R., "Dynamic programming and parallel comput-

ers," Journal of Optimization Theory and Applications 12 (1973) 423-438.

Chow, G. C., Analysis and Control of Dynamical Systems, John Wiley & Sons, New

York, 1975.

77

Coddington, E., and Levinson, N., Theory of Differential Equations, McGraw-Hill,

New York, New York, 1955.

Cournot, A., Researches into Mathematical Principles of the Theory of Wealth,

1838, English translation, McMillan, New York, New York, 1987.

Cray Research, Inc., "CRAY X-MP Computer Systems Functional Description Manual,"

Eagan, Minnesota, 1986.

Cray Research, Inc., "CRAY C90 Series Functional Description Manual," Eagan, Min-

nesota, 1993a.

Cray Research, Inc., "Cray T3D System Architecture Overview Manual," Eagan, Min-

nesota, 1993b.

Dafermos, S., "An iterative scheme for variational inequalities," Mathematical Program-

ming 16 (1983) 40-47.

Dafermos, S., "Isomorphic multiclass spatial price and multimodal traffic network equilib-

rium models," Regional Science and Urban Economics 16 (1986) 197-209.

Dafermos, S., and Nagurney, A., "Supply and demand equilibration algorithms for a class

of market equilibrium problems," Transportation Science 23 (1989) 118-124.

Dafermos, S., and Sparrow, F. T., "The traffic assignment problem for a general network,"

Journal of Research of the National Bureau of Standards 73B (1969) 91-118.

Dantzig, G. B., "A proof of the equivalence of the programming problem and the game

problem," in Activity Analysis of Producton and Allocation, T. C. Koopmans, ed.,

John Wiley, New York, New York, 1951, pp. 330 -335.

DeCegama, A. L., The Technology of Parallel Processing: Parallel Processing

Architectures and VLSI Hardware, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

Deng, Y., Glimm, J., and Sharp, D. H., "Perspectives on parallel computing," Daedalus

(1992) 31-52.

Denning, P. J., and Tichy, W. F., "Highly parallel computation," Science 250, November

30 (1990) 1217-1222.

Dennis, J. E., and Schnabel, R. B., Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations, Prentice- Hall, Inc., Englewood Cliffs, New Jersey,

78

1983.

Dixon, P. B., Bowles, S., and Kendrick, D., Notes and Problems in Microeconomic

Theory, North-Holland, Amsterdam, The Netherlands, 1980.

Dorfman, R., Samuelson, P. A., and Solow, R., Linear Programming and Economic

Analysis, McGraw-Hill Book Company, New York, New York, 1958.

Dupuis, P., and Nagurney, A., "Dynamical systems and variational inequalities," Annals

of Operations Research 44 (1993) 9-42.

Eydeland, A., and Nagumey, A., "Progressive equilibration algorithms: the case of linear

transaction costs," Computer Science in Economics and Management 2 (1989) 197-219.

Finkel, R., and Manber, U., "DIB - A distributed implementation of backtracking," ACM

Trans. Prog. Lang. Syst. 9 (1987) 235-256.

Flynn, M. J., "Some computer organizations and their effectiveness," IEEE Transactions

on Computers, C-21 (1972) 948-960.

Gabay, D., and Moulin, H., "On the uniqueness and stability of Nash equilibria in noncoop-

erative games," in Applied Stochastic Control in Econometrics and Management

Science, A. Bensoussan, P. Kleindorfer, and C. S. Tapiero, eds., North-Holland, Amster-

dam, The Netherlands, 1980, pp. 271-294.

Garcia, C. B., and Zangwill, W. I., Pathways to Solutions, Fixed Points, and Equi-

libria, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

Gilli, M., and Pauletto, G., "Econometric model simulation on parallel computers," The

International Journal of Supercomputer Applications 7.3 (1993).

Goffe, W., Ferrier, G. D., and Rogers, J., "Global optimization of statistical functions with

simulated annealing," Journal of Econometrics, 1993, in press.

Goldstein, A. A., "Convex programming in Hilbert space," Bulletin of the Mathematical

Society 70 (1964) 709-710.

Goldstein, A. A., Constructive Real Analysis, Harper & Row, New York, New York,

1967.

Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York, New

York, 1964.

79

Hartman, P., and Stampacchia, G., "On some nonlinear elliptical differential functional

equations," Acta Mathematica 115 (1966) 271-310.

Hennessy, J. L., and Patterson, D. A., Computer Architecture: A Quantitative

Approach, Morgan Kaufmann, San Mateo, California, 1990.

High Performance Fortran Forum, "High Performance Fortran Language Specification,

version 4," Rice University, Houston, Texas, 1992.

Hildreth, C., "A quadratic programming procedure," Naval Research Logistics Quarterly

4 (1957) 79-85.

Hillis, W. D., "What is massively parallel computing, and why is it important?" Daedalus

(1992) 1-15.

Hockney, R., and Jesshope, C., Parallel Computers, Adam Huger Ltd., Bristol, England,

1981.

Holbrook, R. S., "A practical method for controlling a large, nonlinear, stochastic system,"

Annals of Economic and Social Measurement 3 (1974) 155-176.

Hughes, M., and Nagurney, A., "A network model and algorithm for the analysis and

estimation of financial flow of funds," Computer Science in Economics and Management

5 (1992) 23-39.

IBM Corporation, "Parallel FORTRAN Language and Library Reference," Document

Number SC23-0431-0, 1988.

IBM Corporation, "IBM Enterprise System/9000: Introducing the System," GA24-4186,

Endicott, New York, 1992.

IBM Corporation, "IBM 9076 Scalable POWERparallel Systems: General Information,"

GH26-7219, Kingston, New York, 1993.

Intel Corporation, "Paragon Supercomputers," Beaverton, Oregon, 1992.

Intriligator, M. D., Mathematical Optimization and Economic Theory, Prentice-

Hall, Englewood Cliffs, New Jersey, 1971.

Judd, K. L., Numerical Methods in Economics, Hoover Institution, Stanford Univer-

sity, Stanford, California, 1991.

80

Kantorovich, L. V., The Best Use of Economic Resources, Moscow Akademia Nauk,

1959, English translation, Harvard University Press, Cambridge, Massachusetts, 1965.

Kaufmann III, W. J., and Smarr, L. L., Supercomputing and the Transformation of

Science, Scientific American Library, New York, New York, 1993.

Kendall Square Research, "KSR1 Technical Summary," Waltham, Massachusetts, 1992.

Kendrick, D. A., "Stochastic control in macroeconomic models," IEEE conference publi-

cation no. 101, London, England, 1973.

Kim, D. S., and Nagurney, A., "Massively parallel implementation of the Splitting Equili-

bration Algorithm," Computational Economics (1993), in press.

Kinderlehrer, D., and Stampacchia, D., An Introduction to Variational Inequalities

and Their Applications, Academic Press, New York, New York, 1980.

Kindervater, G. A., and Lenstra, J. K., "Parallel computing in combinatorial optimiza-

tion," Annals of Operations Research 14 (1988) 245-289.

Koopmans, T. C., Activity Analysis of Production and Allocation, John Wiley &

Sons, New York, New York, 1951.

Korpelevich, G. M., "The extragradient method for finding saddle points and other prob-

lems," Ekonomicheskie i Mathematicheskie Metody, translated as Matekon 12 (1976) 747-

756.

Lasdon, L. S., Optimization Theory for Large Systems, Macmillan, New York, New

York, 1970.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes, Kaufmann Publishers, San Mateo, California, 1992.

Lemke, C. E., "A survey of complementarity problems," in Variational Inequalities and

Complementarity Problems, R. W. Cottle, F. Giannessi, and J. L. Lions, eds., John

Wiley & Sons, Chichester, England, 1980, pp. 213-239.

Lootsma, F. A., and Ragsdell, K. M., "State-of-the-art in parallel nonlinear optimization,"

Parallel Computing 6 (1988) 133-155.

Markowitz, H., "Portfolio selection," The Journal of Finance 7 (1952) 77-91.

81

Markowitz, H., Portfolio Selection: Efficient Diversification of Investments, John

Wiley & Sons, New York, New York, 1959.

Murphy, F. H., Sherali, H. D., and Soyster, A. L., "A mathematical programming approach

for determining oligopolistic market equilibrium," Mathematical Programming 24 (1982)

92-106.

Nagurney, A., Network Economics: A Variational Inequality Approach, Kluwer

Academic Publishers, Boston, MA, 1993.

Nagurney, A., "Variational inequalities in the analysis and computation of multi-sec-

tor, multi-instrument financial equilibria,"Journal of Economic Dynamics and Control 18

(1994) 161-184.

Nagurney, A., Dong, J., and Hughes, M., "The formulation and computation of general

financial equilibrium," Optimization 26 (1992) 339-354.

Nagurney, A., Dupuis, P., and Zhang, D., "A dynamical systems approach for network oli-

gopolies and variational inequalities," School of Management, University of Massachusetts,

Amherst, Massachusetts, 1992.

Nagumey, A., and Eydeland, A., "A Splitting Equilibration Algorithm for the compu-

tation of large-scale constrained matrix problems: theoretical analysis and applications,"

Computational Economics and Econometrics, Advanced Studies in Theoretical and

Applied Econometrics 22, H. M. Amman, D. A. Belsley, and L. F. Pau, eds., 1992, pp.

65-105.

Nagurney, A., and Hughes, M., "Financial flow of funds networks," Networks 22 (1992)

145-161.

Nagurney, A., and Kim, D. S., "Parallel and serial variational inequality decomposition

algorithms for multicommodity market equilibrium problems," The International Journal

of Supercomputer Applications 3 (1989) 34-58.

Nagumey, A., Nicholson, C. F., and Bishop, P. M., "Spatial price equilibrium models

with discriminatory ad valorem tariffs: formulation and comparative computation using

variational inequalities," School of Management, University of Massachusetts, Amherst,

Massachusetts, 1993.

82

Nagurney, A., Takayama, T., and Zhang, D., "Massively parallel computation of spatial

price equilibria as dynamical systems," 1993, to appear in Journal of Economic Dynamics

and Control.

Nash, J. F., "Equilibrium points in n-person games," Proceedings of the National Academy

of Sciences 36 (1950) 48-49.

Norman, A. L., "First order dual control," AnnaLs of Economic and Social Measurement

5 (1976) 311-322.

Okuguchi, K., Expectations and Stability in Oligopoly Models, Lecture Notes in

Economics and Mathematical Systems 138, Springer-Verlag, Berlin, Germany, 1976.

Okuguchi, K., and Szidarovsky, F., The Theory of Oligopoly with Multi-Product

Firms, Lecture Notes in Economics and Mathematical Systems 342, Springer-Verlag,

Berlin, Germany, 1990.

Ortega, J. M., and Voigt, R. G., "Solution of partial differential equations on vector and

parallel computers," SIAM Review 27 (1985) 159-240.

Pardalos, P. M., and Rosen, J. B., Constrained Global Optimization: Algorithms

and Applications, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin,

Germany, 1987.

Petersen, C. E., "Computer simulation of large-scale econometric models: Project LINK,"

The International Journal of Supercomputer Applications 1 (1987) 31-54.

Petersen, C. E., and Cividini, A., "Vectorization and econometric model simulation," Com-

puter Science in Economics and Management 2 (1989) 103-117.

Ralston, A., and Reilly, E. D., eds., Encyclopedia of Computer Science, third edition,

Van Nostrand Reinhold, New York, New York, 1993.

Samuelson, P. A., "A spatial price equilibrium and linear programming," American Eco-

nomic Review 42 (1952) 283-303.

Scarf, H., "The approximation of fixed points of continuous mappings," SIAM Journal of

Applied Mathematics 15 (1964) 1328-1343.

Scarf, H., with T. E. Hansen, The Computation of Economic Equilibria, Yale Uni-

versity Press, New Haven, Connecticut, 1973.

83

Sharpe, W., Portfolio Theory and Capital Markets, McGraw-Hill Book Company,

New York, New York, 1970.

Smale, S., "A convergent process of price adjustment and Global Newton methods," Jour-

nal of Mathematical Economics 3 (1976) 1-14.

Steele, Jr., G. L., "Languages for massively parallel computers," in Proceedings of the

IEEE Second Symposium on the Frontiers of Massively Parallel Computations,

1988, pp. 3-13.

Takayama, A., Mathematical Economics, Dryden Press, Hillsdale, New Jersey, 1974.

Takayama, T., and Judge, G. G., "Equilibrium among spatially separated markets: a

reformulation," Econometrica 32 (1964) 510-524.

Takayama, T., and Judge, G. G., Spatial and Temporal Price and Allocation Mod-

els, North-Holland, Amsterdam, The Netherlands, 1971.

Thinking Machines Corporation, "CM-2 Technical Summary," Cambridge, Massachusetts,

1990.

Thinking Machines Corporation, "CM-5 Technical Summary," Cambridge, Massachusetts,

1992a.

Thinking Machines Corporation, "Getting Started in CM Fortran," Cambridge, Mas-

sachusetts, 1992b.

Thinking Machines Corporation, "CMSSL Release Notes for the CM-200," Cambridge,

Massachusetts, 1992c.

Thinking Machines Corporation, "CM Fortran User's Guide," Cambridge, Massachusetts,

1993a.

Thinking Machines Corporation, "CMMD User's Guide," Cambridge, Massachusetts, 1993b.

Thinking Machines Corporation, "Using the CMAX Converter," Cambridge, Massachu-

setts, 1993c.

Varian, H., "Dynamical systems with applications to economics," in Handbook of Math-

ematical Economics, K. J. Arrow and M. D. Intriligator, eds., 1981, pp. 93-110.

84

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85

