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Chapter I.E.
Nonlinear Pricing and Mechanism Design

Robert Wilson'

In applications of theories of incentives, the information known privately by an eco-

nomic agent is represented by a point in a Euclidean space. Other agents know the proba-

bility distribution of this point, but not its realization, which is called the agent's type. For

models of this sort, designs of optimal incentive schemes present few difficulties when

agents' types are one-dimensional. The computational difficulties are severe, however,

when the types are multidimensional. When the types are m -dimensional, the main

task is to solve a family of partial differential equations to obtain a map p : R in —>

that provides the Lagrange multipliers for each type' incentive-compatibility constraints.

This chapter describes methods for solving simple versions that arise in nonlinear pricing

and mechanism design.

1. Mirrlees' Formulation
To illustrate the origin of the central computational problem, we present the formulation

of nonlinear pricing introduced by James Mirrlees (1971, 1976). 1 This formulation char-

acterizes the design of a tariff offered by a firm to a customer whose preferences the firm

does not know.

Statement of the Nonlinear Pricing Problem

Consider a monopolist seller who charges a tariff P(q) for a bundle q of its products.

* Stanford Business School, Stanford, CA 94305-5015. Ph: 415-723-8620. Fax: 725-7979.
Internet: RWOYen.Stanford.edu.

1 Mirrlees' initial formulation focused on optimal taxation. Nonlinear versions of
Ramsey pricing and taxation are variants of the general principal-agent problem affected
by adverse selection and/or moral hazard. A formulation in the context of mechanism
design is presented in Wilson (1993b), which includes extensions to cases where agents'
types are correlated. For surveys of other applications, see Roger Guesnerie and Jean-
Jacques Laffont (1984) and Wilson (1993a, §15).



If wealth effects and risk aversion are absent, then a customer of type t is predicted to

respond with the purchase q(t) that maximizes his net benefit U (q , 0 — P(q) among the
feasible bundles q E Q . 2 Here, the utility function U measures the customer's gross

benefit in money terms, depending on both the bundle purchased and the customer's

type. The customer knows his type but the seller does not. The seller's objective is to

offer the tariff that maximizes its expected revenue.

Assume hereafter that Q is the set of nonnegative bundles in an t-diznensional

Euclidean space, and adopt the normalization U(0, 0 = 0. The set T of possible types is

represented similarly as a compact, convex, full-dimensional subset of an m -dimensional

Euclidean space, and it has a piecewise-smooth boundary. Assume further that U is
a smooth increasing function of both the bundle and the type, and a concave function

of the bundle. It is also usual to impose conditions ensuring the existence of a tariff

that induces self-selection by the different types of the customer in the one-dimensional

case with a single commodity and a single type parameter (i.e., £ = m = 1), a typical

condition requires that U91 is uniformly positive and the probability distribution of the

type has an increasing hazard rate; cf. Wilson (1993a, §8).3

The important aspect of Mirrlees' formulation of the seller's problem is to construct

the solution of a relaxed version in which some of the possibly relevant constraints are

omitted. In the single-type case it is known that fairly weak conditions suffice to ensure

that the solution of the relaxed problem is the solution of the complete problem; or,

the solution can be obtained from a simple modification (called the ironing procedure)

described by Mussa and Rosen (1978), Guesnerie and Laffont (1984), and Wilson (1993a,

§8). Although comparable sufficiency conditions have not been established for multi-

dimensional formulations, here we present computational methods only for the relaxed

problem. 4

The motivation for the relaxed problem used in Mirrlees' formulation stems from

2 Formulations that include risk aversion and wealth effects are presented in Mirrlees
(1976, 1986), Kevin Roberts (1979), and Wilson (1993), among many others. We focus
on a formulation without these effects, which captures the key ingredients of the main
computational problem.

3 In multidimensional versions, the relevant conditions on the utility function are the
'increasing differences' and the 'single crossing' properties; cf. Milgrom and Shannon
(1994).
• Various sufficiency conditions invoked to enable representation of the customer's

optimality condition by the envelope property are described by Mark Armstrong (1992,
1993), Mirrlees (1976, 1986) and Wilson (1993a, §8), though mainly for one-dimensional
formulations.
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the following considerations. Given the tariff P, the net benefit of type t is

W(t) = max UW,t) — P(q) .
•€4

Alternatively, given the net benefit W(t), the seller's revenue from type t is

R(t) -:a P(q(0) = U(q(0,0 — W(t)

In this alternative representation, the optimality of the bundle q(t) is conveyed, in part,

by two necessary conditions.

• Incentive-compatibility constraint:

Wt(t) = Ut (q(t) ,t) ,	 (2)

if the bundle q(t) is in the interior of Q .
The incentive-compatibility constraint states the envelope property implied by the cus-
tomer's optimization. Because the type t has m dimensions, each side of the incentive-
compatibility constraint is a gradient vector; e.g., Ut(q , t) ( 31h U (q, t

 Participation constraint:
W(t) > 0 .	 (3)

The participation constraint recognizes that the customer retains the option to forego

purchases.

Auxiliary Constraints

These constraints are just two of the necessary conditions required for a solution of
the customer's optimization problem. To illustrate some of the other conditions that

are potentially relevant, we describe three. One is evident if U is a convex function

of the type: in this case W must be a convex function, since it is obtained as the

pointwise maximum of a family of convex functions indexed by the bundle. Another

is that the customer's local second-order necessary condition for a maximum must be

satisfied. For instance, suppose there exists a smooth mapping t(q) specifying the type

purchasing bundle q . From the customer's first-order necessary condition one infers

that the vector of marginal prices at q is Pq(q) = Ug(q,t(q)) . Then the second-order

condition that requires Uqq(q,t)— Pn(q) to be negative semi-definite at q = q(t) implies

that Ugt(2,1(q)) • tq(q) must be positive semi-definite. In the one-dimensional case, if

Uqi > 0 then this requires that t(q) , and therefore also q(t) , are nondecreasing functions.

(1)
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A third is the requirement that Ug(q(t),t) must be integrable to obtain W(t), as described

below in (7). For a detailed elaboration of these auxiliary conditions and how the solution

of the relaxed problem can be modified to satisfy them in the one-dimensional case, see

Guesnerie and Laffont (1984). Here we ignore these auxiliary conditions and develop

computational methods only for the relaxed problem.

The Relaxed Problem

Assume for simplicity that the seller's costs are nil, so that its objective is to maximize

its expected revenue. Let f(t) be the probability density that the customer's type is t

(or the number of customers of that type), defined on the support T C Rm of possible

types. Then the seller's optimization problem can be cast as choosing the two functions

q(t) and W(t) to maximize its expected revenue

IT R(t) dt J	 (q(t), t) — W(t)1f (t)	 • • dim,

subject to the incentive-compatibility and participation constraints. Note that this formu-

lation converts the seller's optimization from the assignment of a tariff to each bundle,

to the choice of an assignment of a bundle and a net benefit to each type.

Necessary Conditions for a Solution

To address this problem, let p(t) be an rn -dimensional Lagrange multiplier attached to

the incentive-compatibility constraint. The Lagrangian form of the objective function is

then {[U(q(t), t) — W(01 f (0+ [Wt (t) — Ug(q(t), 01 • p(t)1 dt 1 • • • dt,,, .

This objective presents a classical problem in the calculus of variations. On the assump-

tion that W and p are smooth functions, three necessary conditions for an optimum

are the following: 5

• Allocative Optimality of the assignment of bundles:

Uq(q(0,0 f(t) – Ug t (q(0,t) • p(t) < 0 ,	 (4)

and this inequality is complementary to the feasibility constraint q(1) > 0.

5 Two inequalities a < 0 and b > 0 are complementary if their linter product is nil:
a • b = 0 .

IT
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• Welfare Optimality of the assignment of net benefits:

— f(t) — E &-hi (t) < 0,	 (5)
14

and this inequality is complementary to the participation constraint W(t) > 0 on
the interior of the type domain. This is an Euler condition; the sum is called the
divergence of p .

• Optimality on the boundary: if v(t) is the outward-pointing normal vector at a
point t E aT on the boundary of the domain of types, then

v(t) • p(t) < 0 ,	 (6)

and this inequality is complementary to the participation constraint W(t) > 0 on
the boundary of the type domain. This is a transversality condition.

These conditions indicate that the key step in obtaining a solution is to construct the
Lagrange multiplier p . 6 Once this multiplier has been obtained, the optimal assignment

of types to bundles is obtained by solving the ordinary equation (4). Moreover, at the

bundle q = q(t) the vector p(q) a Pq(q) of marginal prices must be p(q) = U,(q,
The tariff P(q) is therefore obtained by integrating these marginal prices, using the
participation constraint (where it binds) to determine the constant of integration.

The main computational task, therefore, is to construct the multiplier p by solving

the welfare-optimality condition (5) and the transversality condition (6), interpreted as
equalities on T and OT . It is important to realize, however, that if m > 1 then the

single partial differential equation (5) and the boundary condition (6) are insufficient to
determine the in components of the multiplier. For this one needs rn— 1 additional
conditions derived from the requirement that the marginal prices must be integrable to
obtain the tariff. An equivalent requirement is that the gradient Wt of the net benefit
must be an integrable function of the type (Mirrlees, 1986, p. 1241). Using the incentive-

compatibility condition, this requirement provides a fourth condition.

• Integrability condition: the vector field

Ut(q(t), t) is integrable.	 (7)

6 The alternative eliminates - p(t) by substituting (4) into (5) and (6) to solve for q(t). If
Uq is linear then this has the same difficulty as solving for p , and otherwise it involves
nonlinear partial differential equations.
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With sufficient smoothness assumptions, this condition is equivalent to the requirement

that the Hessian matrix Wgg(t) is symmetric. Moreover, it is sufficient that only in — 1
of the symmetry conditions are satisfied:

a2w	 02w
A (t) =	 A (0	 i =	 , m — 1 .

Ot ii i+i	 ti

Thus the integrability condition imposes rn —1 additional partial differential equations

that with (5) and (6) ordinarily suffice to determine the multiplier.

When In = 1 , the integrability condition is vacuous and the welfare-optimality and

transversality conditions have the trivial solution p(t) = 1 — F(t) independently of U,

where F is the distribution function for the density f . 7 To illustrate the form of the

integrability condition when t = rn > 2, suppose

U(q, t) = QT • [A — • B • q ,

so that	 Uq(q,t)=A•t—B•q,

where A and B are matrices, and B is symmetric and positive definite. 8 Then the
vector field Wt(t) = q(OT • A must be integrable, where q(t) =	 • A • It — F(01 •
The corresponding Hessian matrix is W, 1 (t) = C • [I — p i (1)] , where the matrix C
AT • B-1 • A is symmetric and positive definite. Consequently, integrability requires.

that C • µ i (t) is a symmetric matrix. When rn = 2, therefore, the condition that ensures
integrability is an equality between the off-diagonal elements of this matrix:

apt	 api	 aP2cll	 Cl2T12" = C21 — + CZ2at2	at,	 at'

where c12 = C21 by construction.

The interplay among the four conditions when rn > 1 is illustrated in the following

example, which allows a closed-form solution.

7 When the hazard rate of F is not increasing the customer's second-order necessary
condition for an optimum need not be satisfied. In this case, it may be necessary to
apply the ironing procedure to modify the bundle assignment so that it is nondecreasing;
cf. Guesnerie and Laffont (1984) and Wilson (1993a, §8).

8 The increasing-differences property requires essentially that A has nonnegative el-
ements, and the super-modularity version of the single-crossing property requires that
the off-diagonal elements of B are nonpositive; cf. Milgrom and Shannon (1984). In-
voicing super-modularity requires that the type space is a complete lattice, such as an
m -dimensional cube.
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Example 1: For this example, t=m and A = B = I so

Mg, = E (tiqi — ig
) 

,

and f(t) = 1 on the domain

T=Ititi � 08zEti

which is the positive orthant of the ball with radius r . To derive the solution analytically,
we guess that W(t) = w(y(t)), where w is a univariate function and y(t) = 	. If this

specification allows a choice of w satisfying the other conditions, then the integrability
condition (7) is satisfied automatically. From the condition (4) for an optimal assignment
we obtain q(t) = t — ii(t) and from the incentive-compatibility condition (2) we obtain

Wt(t) = q(t) , so the specification implies that

ti (y(0)2t = t — p(t) .

Differentiating this relationship and then summing yields

w"(y(t)) EPtif + Oy(0)2m = E [1 —	 (t)} .

Invoking the welfare-optimality condition (5) yields

w"(y)4y + tol(y)2m = rn + 1,

which is a differential equation for w' as a function of y . On the upper boundary where

y(t) = r2 , the outward-pointing normal is proportional to v(t) = 2t, so the transversality
condition (6) imposes the boundary condition 2t • p(t) = 0, or equivalently

E 2tift, — wl (r2)2til = 0 ,

which requires w'(r2) = 1/2. The unique solution of the differential equation that
satisfies this boundary condition is

,(y) 1 ( 1 1
	 rm

=	 + —In {1 ymp
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Consequently, the multiplier is

p(t) = —	 — 11 t.

Fortuitously, this multiplier also satisfies the transversality condition p1(1) = 0 on the

lower boundary where t, = . Therefore, it satisfies all of the conditions required.

Similarly, when the density is exponential, say f(t) = e —v") on the domain { t I

y(t) < r2 } , one obtains

+ EI-Y?	 =m+l—Eyiti

and	 Pi(t) = f(t)(t i — til(y(t))yi (t)] ,

where yi EE fy, provided this yields w' as a function solely of y. For instance, if

y(t) = i E; so that the density is Normal with r = co, and tn is even, then

1	
m/2

FAO = —f(t)	 ak/yk t ,
2

where a1 = 1 and ak,t = [m/2 — fla k . Caution is required, however; e.g., if y(t) =

t, then the resulting multiplier cannot satisfy the transversality conditions, which

stems from the feature that the resulting optimal bundles lie along a 1-dimensional ray.

Hereafter we assume that the range of the bundles is full-dimensional to exclude such

complications.

Example 1 is one of a rare collection allowing closed-form solutions; others that also

rely on exploiting radial symmetries are described in Armstrong (1992, 1993) and Wilson

(1993a, §13.5; 1993b, p. 145 ff.). 9 The following sections therefore describe numerical

methods for solving the differential equations (5) and (7) with the boundary condition

(6). I° We concentrate on the case P = tn = 2. As we shall see, this case with two

products and two type parameters shows already that the problem poses computational

difficulties.

9 In such examples the optimal tariff depends only on a one-dimensional measure of
the aggregate 'size' of the bundle purchased. The analysis of Example 1 in Wilson (1993a,
p. 340) has an error in the leading coefficient of p, .

I° One cannot impose (5) and (6) as equalities throughout T because the Divergence
Theorem would then imply j,. f(t)dt = 0. Typically, they are strict inequalities for
'small' types for whom W(t) = 0; cf. Armstrong (1992, 1993).



For later reference we mention also a second, closely related example for which the

method used for Example 1 is evidently insufficient.

Standard Test Problem: This example is the same as Example 1 with t = rn and

f(t)= I, but the support T is the unit square. In spite of its simplicity, this example

does not seem to be solvable in closed form. In addition, it is peculiar in that it has

a continuum of other 'solutions' whose non-optimality is revealed only by the fact that

they are discontinuous. For instance, one such 'solution' is

	

{	 — t il	 if t i> rnaxio tj ,
(t) =

ti	 if ti < maxm ti ,

which for in= 2 is discontinuous along the diagonal of the unit square. These extrane-

ous solutions indicate that caution is required in using algorithms that rely on discrete

approximation& Such algorithms usually provide no assurance that the differentiable

solution, which is the only optimal one, is the one approximated by numerical calcula-

tions.

2. Computational Methods

In this section we describe numerical algorithms for solving Mirrlees' relaxed problem.

Several are described only for the standard test problem.

Direct Optimization

We mention first the computational method used by Armstrong (1992). This method

solves directly a discrete version of the seller's optimization problem. Although simplest

in design, it is uneconomical in terms of storage and speed.

The set T of possible types is represented by a finite set t comprising a discrete

grid of points with mesh size b . The seller's problem is then cast as the nonlinear

constrained optimization problem in which the objective is to choose the nonnegative

variables (q(t), W(t)) tei, to maximize the expected profit

DU(q(0,t) — W(01f(04"`
tEt

subject to the discretized incentive-compatibility constraints

OU

	

W(t+	 —W(0= —(q(t),06,
Oti



for each point t E t and each i < m, where e, is the i -th unit vector. If T is the
unit cube and b = 1/n then this formulation requires Ern + In ni variables and me'
(generally nonlinear) constraints, in addition to the nonnegativity constraints. Thus when
in = 2 the coarse grid with n = 20 requires 1200 variables and 800 constraints. Nonlinear
optimization problems of this size are feasible but storage and time requirements are
substantial. Armstrong (1992) reports results for the standard test problem, for which the
incentive-compatibility constraints are linear and symmetry considerations allow half as
many variables. This method seems to have little prospect of being feasible and accurate
when the number nr of type dimensions exceeds two.

Approximation via Fourier Series

For problems in which the utility function U has a simple analytical form it may be
feasible to derive a Fourier (or other finite-element) approximation. The technique relies
on the derivation of an auxiliary second-order partial differential equation for each mul-
tiplier, from which a class of solutions represented as Fourier series can be constructed.

We illustrate using the standard test problem. For this problem the bundle purchased
by type t is q(t) t – p(t) and the incentive-compatibility constraint requires that
147,(0 = q(t). Consequently, the integrability condition that the Hessian matrix Witt) is
symmetric requires that the Jacobian matrix pa(t) is symmetric. Thus, a solution requires
that

ami 0) – 
at, 

(t) - 0
(512 

in addition to the welfare-optimality condition

api	 0/22(t) + —()+ f = 0 .
ati	 at2

Differentiating these two conditions with respect to 1 2 and ti respectively yields a single
second-order equation for il l (t) :

02 1i1 (0 + 2 Pi (0 4. _jo	 0

ati	 at3	 ati

and analogously for kt 2 . Thus one obtains a classical Poisson equation for each multiplier
separately. The problem is not of the standard Dirichlet or von Neumann form, however,
because the boundary condition where t 2 E 10,1 ) depends on the solution of the
analogous problem for the other multiplier.
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Similarly, if U9 is linear as in (8) and c ii = 1 and cu = 7 then one obtains the
elliptic equation

82p
a• 1 (t) +	 (t) —	 (t)	 701 (0 — 0

at1at2	 ati	 atzut2
Similar equations arise in higher-dimensional versions with constant coefficients.

In the standard test problem, the density is f(t) = 1 on the unit square, and therefore
f = 0, which yields a classical Laplace equation. For the transversality condition

that imposes the boundary condition p i (t) = 0 for t 1 E {0,1} and t2 > 0, Fourier
representations of the multiplicatively separable solutions of the Laplace equation take
the form (cf. Milne, 1970, §10; and Derrick and Grossman, 1987, §10):

AIM = E ak sin(lort i) cosh(1c41 — t21) ,

where the constants ak are arbitrary. Moreover, if P1 has this form then the welfare-

optimality condition implies that

pz(t) = 1 — t2 + E ak cos(lort i) sinh(kirti — (21) ,

where we have fixed the constant of integration to satisfy the transversality condition at-
t2 = 1. The transversality condition on the remaining portion of the boundary where
t2 = 0 imposes the boundary condition 112(t) = 0 there, at least for those types for
which t1 is large enough that the net benefit W(t) is positive. This yields a set of linear
equations of the form

E bk cos(korti ) + 1 = 0 ,
k=1

where bk ak sinh(1c70 , to be solved for a set of rt values of t l to determine the

coefficients bk . In fact, if the chosen points are t 1 (k) = 1— [k —116 where the mesh size

is 6 = 1/n , then bk = 2 except that b. = 1.
In sum, the Fourier method consists of the following steps. First one derives a

Poisson equation for one of the multipliers, say pi . This equation is derived by dif-
ferentiating the welfare-optimality condition and the integrability condition, and then
solving the resulting equations to eliminate the other multiplier, if this is possible in
closed form. From the Poisson equation one establishes a family of Fourier solutions sat-
isfying the boundary conditions for p i on the segments of the boundary where t1 = 0

11



or t 1 = 1 . From the welfare-optimality condition, interpreted as an ordinary first-order

differential equation for p 2 , one then obtains a corresponding family of Fourier solutions

for p2 . The last step is to determine the coefficients from the boundary conditions for

P2 on the remaining segments of the boundary. This method for the two-dimensional

case indicates the outline of a method for higher-dimensional cases, but no examples

have been solved.

Introduction to Finite-Difference Methods

Algorithms based on finite-difference approximations encounter fundamental difficulties.

To motivate the circuitous approach taken in the design of the algorithms described later,

	

we first describe the source of these 	 difficulties. We use 	 k] to indicate the value

of p i(t)/6 at a grid point t = (t , t2) where t, = j6 and 12 = kb for the standard test

problem with mesh size b .

With this notation, a naive approach to representing the welfare-optimality and in-

tegrability conditions in terms of finite differences produces the two equations

(Pi U -4- 1 , —	 +	 k + 11 - 1121j,	 + f (j6, 6) = 0 ,	
(9)

	

k + 11 -	 kl) — (p2U + 1, kl — Pali, k1) = 0 ,

at each interior grid point, and analogous equations on the boundary (excluding the ori-

gin). In fact, however, this approach is doomed to failure: such equations are invariably

both singular (redundant columns in the associated matrix) and inconsistent (redundant

rows with incompatible constant terms)!

These deficiencies stem from an important economic consideration. Although the

welfare-optimality condition is properly formulated in terms of forward differences, the

integrability condition must be formulated in terms of backward differences. This reflects

the orientation of the incentive-compatibility constraint, which in the discrete version is

binding for lower types.

Three schemes are described below. Each takes account in a different way of the

opposite directional orientations of the two conditions. The first two rely on a relaxation

algorithm, and later we describe an alternative scheme that relies on a direct algorithm. "

Relaxation Combined with Newton's Method

The Newton-Relaxation Algorithm takes the conservative view: all directions are in-

cluded in the construction of the values at one grid point from the values at its neighbors.

" See Golub and Ortega (1992, §9) for expositions of these standard algorithms.
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This tactic is implemented by invoking two refinements in the formulation.

The first refinement introduces the analogs of the equations (9) in which the stencil

is rotated. Solving (9) yields

[	
1

, kJ = (f (j 6, k6 6 + pi rj + 1, k1 + pi tj , k + 11+ p2Ij , k + 11 — p2Ej + 1, k1) ,

and analogously for p2[j , k] . This representation is the basis for a recursive formula that

relies on a three-point stencil in which the values µ 1 [j, k1 and µ2[j, k1 are constructed

from the values at the two adjacent points higher in the grid. Rotating this stencil through

90,180, and 270 degrees, and then adding the four formulas produces the recursion
1

kl = - (ptli + 1, kl +	 + +	 - 1, kl + pi rj, k - 1))
4

for the standard test problem. Notice that adding the four rotations of the basic stencil
eliminates the dependence on adjacent values of the other multiplier. Moreover, this

recursion is precisely the one obtained from the natural five-point stencil derived from
the Laplace equation. The recursion is symmetric, produces a nonsingular system of

equations, and yields a relaxation algorithm that is unconditionally stable. 12 In more

general problems, one wants assurance that inclusion of the rotations of the basic stencil
will suffice to assure that it is the differentiable solution that is approximated by the
calculations. No general theoretical justification for this conclusion seems to be known,_

however, and therefore one must rely pragmatically on the encouraging evidence from

computational experience.
The second refinement adapts the transversality condition to obtain a formulation

that relies on only the one multiplier p i occurring in the recursion used for the relaxation

algorithm. No modification is required on the two sides of the unit square where t i E
0,1 : there the boundary condition is pi (t) = 0. To obtain a boundary condition on the

side where t2 = 1 , note that the transversality condition requires p2(t) = 0 and therefore

at, = 0 . In combination with the integrability condition this implies that the solution

must satisfy the differential constraint

api (t) - 0
Ot2

12 The latter property is well known for elliptic equations; cf. Golub and Ortega (1992).
Milne (1970, §10) uses the rotations based on multiples of 45 degrees to obtain a recursion
based on a nine-point stencil for which the error from the discrete approximation is
smaller by an order of magnitude. In the sequel we omit this refinement as well as
others, such as implicit methods, successive over relaxation, and alternating direction
methods; cf. Golub and Ortega (1992, §9).

33



on this segment of the boundary. This is a boundary condition of von Neumann form.

The corresponding discrete version imposes the constraint

pill, n] =	 n —1]

In principle, a similar condition also applies on the opposite side where 17 = 0 . However,

computational experience shows that it is practically impossible to enforce a differential

constraint there with any reasonable mesh size. The reason for the disparity between

the two sides where t2 E {0,1} is evident from solved examples: near the upper

boundary the differential constraint is nearly satisfied, whereas near the lower boundary

it is far from satisfied. Another relevant consideration is that on the lower boundary

the differential condition need not apply for small values of 1 1 for which W(t) = 0,

whereas the monotonicity assumptions imposed on U ensure that it applies uniformly

on the upper boundary. Therefore, we enforce the differential constraint only on the

upper boundary and seek an alternative condition on the lower boundary.

To obtain a useful boundary condition on the side where t2 = 0, we integrate the

welfare-optimality condition over the interval from 1 2 = 0 to 12 = 1 for each fixed t l .

Taking account of the welfare-optimality constraint yields

,2am
tb(t i ) .e I

1 	 2	
(

—(0 dt2 = —	 + 1(0) dt2
at2	 0	 Vil

Further, the transversality condition requires p 2 = 0 at both extremes, so we obtain the

integral constraint that requires

c(ti) = 0

at each 1 1 > 0. The corresponding discrete form of the integral value is

n-1

O[j] — E	 1:7 + 1, — tti [j, k]) + (j 6, kb)) b ,
knO

In the algorithm, Newton's method is used to improve iteratively the estimates of the

n — 1 values (Pi U, 01)o< 2 <n on the lower boundary until the corresponding integral

conditions OW = 0 are satisfied approximately.

Summary of the Newton-Relaxation Algorithm

These ingredients provide the following summary statement of the relaxation algorithm

combined with Newton's method. We are given a symmetric stencil specifying a discrete

14



recursion amenable to implementation as a relaxation algorithm. Typically this recursion
is obtained by summation of the recursions derived from rotations of a basic asymmetric
stencil. For the standard test problem, this equation is linear and involves only the one
multiplier pi , but more generally it may be nonlinear and involve all the multipliers, as
we illustrate later.

The only impediment to straightforward calculation of a solution by successive relax-
ation, therefore, is the unusual set of boundary conditions. Typically these are Dirichlet
conditions on a portion of the boundary (where h E {0,1}), but on other portions
(where t2 E {0,1 } ) they depend on the other multiplier. To eliminate this dependence,
they are replaced by a differential condition (where t2 = 1) and an integral condition
(where t2 = 1). On these portions the boundary values are estimated by iterative im-
provement from an initial guess; in particular, Newton's method is used to improve the
approximation of the integral condition.

We use the standard test problem to illustrate. The algorithm starts with an initial
approximation of the boundary values pi (t) for 12 E {0,1} and ti > 0. This approxi-
mation is then improved on the upper boundary by repeatedly applying the differential
condition; and on the lower boundary, by repeatedly applying Newton's method to the
integral constraints. Between these improvements of the boundary values, the values at
interior grid points are obtained by successive relaxation; that is, the symmetric recursion:
is applied repeatedly.

To initiate the algorithm, we specify an initial guess pi [j, k] of the values of IWO
at all grid points (j6, kb) E 11 of the grid, requiring only that pl[0, k] = 0 on the left
side and m? [n, k] = 0 on the right side of the boundary, for 0 < k < n , where the mesh
size is b = 1/n . The subsequent steps of the algorithm alternate between two phases.
Phase 1: Construction of the Interior Values. In this phase the boundary values remain
fixed while the symmetric recursion is applied repeatedly. Thus, using an explicit form
of relaxation, the new values in iteration r + 1 are obtained from the previous values by
the recursion

PC+1 [. kl = (pr[j + 1, kl + prjj, k + 1] + pr[j — 1, lc] + pgj , k — 1]) ,

for 0 < j, k < n, as derived previously for the symmetric five-point stencil. 13 These
iterations are repeated until a test of convergence is satisfied.

13 This recursion can be improved in accuracy and/or convergence rate by using
Milne's nine-point stencil and/or an implicit form, possibly augmented by over relaxation.
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Phase 2: Improvement of the Boundary Values. To improve the estimates of the values

on the upper and lower boundaries, we proceed as follows.

• On the upper boundary where t2 = 1:

Pri 	 =	 n — 1 1 ,

which enforces the differential constraint kp i = 0 there.

• On the lower boundary where t2 = 0, Newton's method is employed to improve

the boundary values to meet the integral constraint:

pr I 01 =	 — e.r1 • Or ,

where µi[•, 0] indicates the vector (pi[j,0])0<j<„ and similarly Or[j] is the cur-

rent value of the j -th integral in iteration r . Also, 6 E (0,1) is a parameter fixing

the step size and J is an approximation of the Jacobian matrix of with respect

to pd•,0].

After a single iteration of phase 2, one returns to phase 1 to adjust the interior values to

conform to the revised boundary values.

Computational experience shows that in practice it is sufficient to use a coarse ap-

proximation of the Jacobian matrix. A typical column of this matrix can be constructed,

by calculating the difference between the integral values obtained from Phase 1 and the

integral values obtained when one boundary value (say p i [n/2, 0] ) is perturbed. Figure

1 shows this difference for the standard test problem. It is evident in the figure that the

main effects are a positive increment in its own integral value and a negative increment of

equal magnitude in the adjacent integral value. Consequently, it suffices to use a scaled

version of the Jacobian matrix for which the diagonal elements are 1, the next-higher

diagonal elements are —1, and other elements are zero. This implies that the inverse of

the scaled Jacobian, J -1 , has elements that are 1 on and above the diagonal, and zero

below. This approximation works well even for problems that differ substantially from

the standard test problem, including the case (8) in which U9 is linear. A typical value

of the step size that works well is B = 0.2.

The Program nra2L and a Numerical Example

The Appendix includes the APL program nra2L that implements this algorithm for the

2-dimensional linear version (8) in which the matrix C (defined previously) conveys

the relevant information about the two coefficient matrices A and B. This program
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assumes that the matrices A and B are symmetric with diagonal elements 1 and off-
diagonal elements a and b. Using this algorithm for the case a = b = 1/2 and grid

size 6 = 1/40 , one obtains the approximation of the multiplier iii (t) shown in Figure 2
for several values of tz

For small values of t2 the multiplier is large and declines steeply as t 1 increases.
For larger values of t 2 the multiplier is smaller, and first increases before declining as ti
increases. The feature that Ap i(t) 0 when t2 1 is evident in the figure: for large
values of t2 the curves are close together, and indeed the curve for t 2 = 0.9 is virtually
indistinguishable from the curve along the upper boundary where t2 = 1.

Because the optimal bundle requires q1 (t) = max10, — plan the customer's
purchase of commodity 1 is zero where p i(t) > t 1 . In the figure, therefore, only the
region where p 1 (t) < t 1 is relevant to the calculation of the optimal assignment and the
marginal prices. This eases somewhat the error produced by not enforcing the differential
condition on the lower boundary where t2 = 0; however, one must expect that the effects

of this error propagate to some extent throughout the type space.

Figure 3 shows the resulting schedule p i (q) of marginal prices obtained via poly-
nomial interpolation. As with the multiplier, the marginal price pm(q) first increases
and then decreases as qi increases. The resulting bundles have the spectacular prop-
erty ('pure bundling') that each type purchases either both products or neither, which"
Armstrong (1992, 1993) has shown to be true for a wide class of cases.

It is useful to note the consequences of modifying this example so that 1.19 (q, t) =
Alt + e1 — Bq , where c is a positive parameter. In this case, the multipliers remain
unchanged but the construction of the bundle q(t) differs significantly. For each suf-
ficiently small value t2 of the second type, there are now two roots of the equation
tt + e1 = p (t l , t2) that defines the lower bound 11(t2) of the values of the first type
tl for which qi (tr, t2) > e . In fact, it is the larger of these two roots that is the correct
one, and the smaller root is extraneous. An additional feature is that the bundle is a dis-
continuous function of the type, since qi (t) jumps from zero to c at (tt (t2), t2 ) . This
discontinuity reflects the necessity of including a fixed fee in the tariff.

The Pure Relaxation Algorithm

The pure relaxation algorithm takes a bolder approach, relying on the presumption that

formulation of the integrability condition in terms of backward derivatives suffices. It
enables a much simpler algorithm, but caution is advised because it has not been tested
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on enough examples to ensure that this presumption is always justified. As before, we

illustrate using the standard test problem.

Using backward derivatives for the integrability condition, the discrete formulation

of the welfare-optimality and integrability conditions specifies the two equations

(MU + 1, — Ail. , kl) + p21 k + 11 — 142 U, k1)+ (I 6, kb) = 0 ,

(Pi	 — 1] - /LIU, k)) — (ii2U —1, — µ21j, kl) = 0 ,

which yields the recursion

Pr Li, le) = Z (f , kb)b +	 + 1, ki +	 k — 11 + /JAL k + 1) — 1121.i — 1 , k1)

and similarly for tt2[j, k], based on the symmetric five-point stencil. Phase 1 remains

unchanged except that this recursion is used for successive relaxation of both multipliers

at the interior grid points. In Phase 2 the differential condition remains unchanged too:

as before, it is derived solely from the integrability condition and the corresponding

transversality condition on each of the two upper boundaries. The significant difference

is that now the boundary condition on each of the two lower boundaries can be derived

from the welfare-optimality condition and the transversality condition. For instance, on

the lower boundary where t 2 = 0 the boundary condition for 14(t 1 ,0) is

am' (t 1 ,0)+ f(t 1 ,0) =0,

which is just the welfare-optimality condition when the transversality condition p2(t i , =
0 is invoked to get Aft 2 (t i , = 0. As mentioned previously, however, when t i is
small this last equality is difficult to enforce with any reasonable grid size; consequently,

in practice it is better to use the full form of the corresponding discrete formulation:

— 1, 01 =	 , 01 +	 11 + f (i 6,06)6 ,

which can be solved recursively starting from min, 01 = 0, as required by the transver-

sality condition on the boundary where t i = 1 .

This algorithm is implemented in the APL program pra2L included in the Appendix.

It is written for the general linear form (8) and the type density f is arbitrary; also, it

allows that the grid size can differ along the two dimensions of the type domain.

ate
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Other Boundary Shapes

As one can see from the contrast between Example 1 and the standard test problem, which
differ only in the shape of the upper boundary, the geometry of the type domain is a
critical determinant of the multiplier. When the domain is not square the transversality
condition involves both multipliers along each boundary segment that is not horizontal

or vertical. Such cases require minor modifications of the differential condition and the
integral condition.

We illustrate with Example 1. The upper boundary is a segment of a circle and
therefore the transversality condition requires that

tr th(t) + t2p2(i) = 0

along this segment. To obtain the integral condition, therefore, one substitutes the integral
formula for p2(t) derived from the welfare-optimality condition to obtain:

t2

time) – t2	 (f(ti,r)+ "Oh r)) dr = 0 .
o

The corresponding discrete version is

	

— k	 (fOS, sb) + tj + 1, .91 — pl fj,s1) = 0 ,
s<k

where ti = j b and t2 = kb on the discrete upper boundary that approximates the actual
boundary — or one can use an appropriate interpolation for points on the actual upper

boundary.
Similarly, to identify the differential condition for the multiplier p i along this seg-

ment, one substitutes the integrability condition -A = *p 2 into the derivative of the
transversality condition with respect to h to obtain the formula

op,	 api
Aim+ 

Oti
(t) + t2—

Ot2
(t) = 0 .

The corresponding discrete version is

14+1 U, 	 = 	  ( • * •
1 + j + k \311113 1, k) +
	 [j, k – 11) .

Higher Dimensions

-Phase 1 presents no intrinsic difficulties in higher dimensions. For instance, for the analog
of the standard test problem when the dimension in is arbitrary, the equation for 	 is
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the general Laplacian
TM

E	 - .
Ot2

awl

The analog of the basic recursion used in the relaxation algorithm is therefore the stencil

with 2m + 1 points that constructs pi (t) at the grid point t as the average of the

2m values at the adjacent grid points in each of the positive and negative orthogonal

directions. In general, as in this example, the stencil is obtained by summing over the

stencils obtained from the possible orthogonal rotations of a basic stencil, but if an explicit

second-order equation can be derived for each multiplier separately then one can use its

natural stencil directly. 14

In Phase 2, the differential condition is essentially unchanged. The integral condition

is complicated partly by the large number of integral constraints. For instance, when the

type space is the unit cube the boundary condition o l (t) = 0 applies on two faces and

the differential constraints apply on m —1 additional faces, so there remain m —1 faces

where [rn — llren- 1 boundary values must be determined from integral constraints. For

the standard test problem, the analog of the simple approximation of the Jacobian used

for 2-dimension problems works equally well in three dimensions.

The main complication, however, is the fact that each integral constraint depends

on m — 1 of the multipliers. For the standard test problem, at one of these values on

the face where t i = 0, the integral constraint is

—	 Efft) + L 42(t))
0	 sn2 

Ot,

nal

which involves more than one of the multipliers if m > 2. Consequently, it is apparently

necessary to solve for all the multipliers simultaneously. In the next paragraphs, such a

scheme is outlined for the general case, including nonlinear versions of the integrability

constraint; the comments regarding Phase 2 in that case apply here as well.

The Appendix includes the APL computer program nra3D that implements this

algorithm for the 3-dimensional version of the standard test problem. The approximation

of the multiplier p i (t) obtained from this program is shown in Figure 5 for all values of

ti and several values of the other two type parameters. Note that the two values of t3

yield almost the same curve for t2 = I.

14 Standard software is available for solving fairly general elliptic equations with Dirich-
let boundary conditions of considerable complexity. One source of such software writ-
ten in Fortran is NetLib at Oak Ridge National Laboratory: the Internet address is
NetLib@ornl.gov.
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Nonlinear Equations

No examples for which the integrability condition is nonlinear have been solved, but we

hazard a guess about the modifications required. Phase 1 in such cases evidently requires

one to solve the bundle-optimality condition (4), the welfare-optimality condition (5),

and the integrability condition (7), jointly for the 2m values (qi(t), )iri,..,m at each

grid point t . This involves 2m equations, of which all but (5) is typically nonlinear;
consequently, one of the many algorithms for solving nonlinear equations must be used.

Based on experience from two-dimensional examples, the key modification required

for convergence and stability is that the m equations derived from (5) and (7) should

be formulated as the sum of the 2m sets of rn equations derived from each of the

m + 1 -point stencils obtained from rotations of a basic stencil. With this modification,

Phase 1 is again a relaxation algorithm, albeit a nonlinear one, for all in multipliers

simultaneously, and incidentally the m quantities, at each grid point. 15

In Phase 2, the differential condition derived from the joint application of the transver-

sality condition and the integrability condition is also nonlinear, so again a nonlinear

equation must be solved. The integral condition requires no significant modification
since it involves only the welfare-optimality condition, which is linear. However, it

should be noted that, because a solution is sought for all multipliers simultaneously, at

each point on each segment of the boundary one of the boundary values must be deter--

mined by either a differential and or an integral condition. As mentioned above, each
integral condition requires summing over values of the discrete approximations of the

derivatives of m —1 of the multipliers.

These considerations about the Newton-Relaxation Algorithm are considerably sim-

plified if one uses the higher-dimensional version of the Pure Relaxation Algorithm,

because the role of Newton's Method is replaced by using the welfare-optimality condi-

tion to specify the boundary conditions on the lower boundaries. Lacking computational
experience with this algorithm in more than two dimensions, however, we are reluctant

to venture a guess about its implementation.

Construction of the Price Schedules and the Tariff

The end product of the algorithm is an approximation of the vector multiplier u(t) at

each point t in a discrete grid T used to approximate the domain of types. Using

is Some discussion and results about methods and conditions for convergence and
stability of nonlinear systems are included in Golub and Ortega (1992, P.3).
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this multiplier, one obtains the optimal assignment of the bundle q(t) to type t from

the ordinary equation (4). If this equation is nonlinear then one can use any standard

method for solving nonlinear equations, such as Newton's method, or one of the standard

software packages for nonlinear optimization. Where the bundle q(t) Ls nonzero, say

for t E t , the vector of marginal prices is required to be

p(t) p(g(t)) = Ug(g(t), 0 ,

at least for those components for which q i(t) > 0 , and the total tariff is

Pto a P(q(t)) = U(g(t), 0 — W(t),

where W(t) = 0 and .P(t) = 0 on the lower boundary of t where q(t) = 0.

The next step is to construct the actual vector p(g) of marginal prices and then

the total tariff P(q) . This can be done by Delaunay triangulation, which for the two-

dimensional case is implemented in Mathematioz (Wolfram, 1991; Boylan, 1991). From

the list (gl (t), g2(t), (0) for t E T., for instance, this technique produces a piecewise-

linear approximation of p/ (q) as a function of the vector q = 92) E Q; and p2(q) can

be approximated similarly. Figure 4 shows the Delaunay triangulation of the marginal

price schedule pi (q) for the standard test problem. Alternatively, the isoquants of the

marginal price schedules can be calculated by polynomial interpolation, as in Figure 3.

As mentioned earlier, if the bundle jumps upward from zero for the least types

served, then it is necessary to include a fixed fee in the tariff to ensure that lower types

find it unprofitable to purchase a positive bundle. This fee is the amount of the surplus

otherwise gained by these types. Taking this fee into account, the penultimate step calcu-

lates the total tariff P(q) as the path integral (approximated discretely) of the marginal

prices from the origin to q . As a check that the integrability condition (7) is satisfied,

it is useful to verify that the tariff is independent of the path used, or nearly so to the

degree of the accuracy allowed by the numerical calculations.

This completes the construction of the solution to the relaxed problem in Mirrleess

formulation. In principle, however, a final step is required. One must still verify that

the solution of the relaxed problem solves the complete problem. This involves two

checks, one to verify that each type's bundle is globally optimal given the tariff, and

another to verify that the tariff is a global solution of the seller's problem. Although

sufficient conditions (and the ironing procedure for modifying the solution of the re-

laxed problem) ensuring these global properties are well-known for the one-dimensional
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case, comparable results for multidimensional cases are known only for formulations
having the increasing-differences and super-modularity properties studied by Milgrom

and Shannon (1994).

An Alternative Version

An alternative version of the algorithm is described by Wilson (1993, §13.6). 'Although it

can be adapted to more general problems, we sketch it only for the standard test problem.

The idea is to reinterpret the second-order equation for p i as a first-order equation

for the two functions a(t) – (2) and b(t) E:- –3-801(0, linked by the integrability

condition ztaw = Al(t). The boundary conditions imply that b(t) = 0 on the left and

right boundaries where ti E {0,1 }, and fol a(t)dti = 0 for all values of 22 . In fact,

one can show that if the latter condition is satisfied on the upper boundary where 2 2 = 1

then it is satisfied everywhere, and therefore the boundary condition for b on the left

boundary is extraneous. In a discrete version, therefore, one implements the algorithm

by initially guessing values of a on the upper boundary that sum to zero, and specifying

that the values of b on the right boundary are all zero. From these values one can then
use the discrete approximations of the first-order equation and the integrability condition

to calculate the values of a and b at all grid points from the 3-point stencil rotated 180° ,

proceeding from upper-left to lower-right along successively lower diagonals. The aim,,
therefore, is to find values of a on the upper boundary that ensure that the integral

condition is satisfied, expressed here in the form

(f(t) – a(Melt2 = 0

for each value of 1 1 > 0, or the corresponding summation in discrete form. One can

therefore use Newton's method (as above) to improve iteratively the estimates of a on

the upper boundary.

One can do better than this, however, when the first-order equation is linear with

constant coefficients. The solutions for a and b throughout the grid can be expressed in

terms of the coefficients of the values of a from the upper boundary. Consequently, the

integral conditions provide a set of linear equations, which fortunately is nonsingular.

Solving these equations yields the required values of a on the upper boundary, and then

the values of a and b throughout the grid can be obtained from the coefficients. Finally,

one obtains the multiplier from the discrete version of the formula p i (t) = a(t) dt1 -
The solution of the standard test problem obtained from this algorithm differs only

fol
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slightly from the solutions produced by nonlinear optimization, Fourier approximation,

and the relaxation algorithm.

The Appendix includes an APL program aalg2D that implements this algorithm for

the standard test problem.

3. Summary and Conclusions

Nonlinear pricing is one instance of a wide variety of problems derived from the principal-

agent paradigm and its extensions to mechanism design. The key ingredient of the stan-

dard formulation is the representation of an agent's private information as a point in a Eu-

clidean space. The key step in characterizing a solution is reliance on the necessary con-

ditions derived from the seller's relaxed problem. This approach is fruitful when the type

space is one-dimensional because the Lagrange multiplier on the incentive-compatibility

constraint can be obtained in closed form. When the type space is multidimensional,

however, construction of the multipliers presents a classical problem involving first-order

partial differential equations, complicated by awkward boundary conditions. The differ-

ential equations, moreover, involve both the simple linear form in the welfare-optimality

condition (5) and possibly nonlinear forms derived from the integrability condition (7).

Computational procedures naturally divide into two phases. In Phase 1 the dif-

ferential equations are solved with fixed (Dirichlet) boundary values. Straightforward

approaches to solving these equations based on discrete approximations encounter in-

consistencies. The explanation seems to be that the integrability condition is properly

formulated in terms of backward derivatives and the welfare-optimality condition, in

terms of forward derivatives. The Pure Relaxation Algorithm relies on this asymmetry

to form the recursion (from a symmetric stencil) for successive relaxation on the inte-

rior. The more cautious Newton-Relaxation Algorithm enforces a symmetric setup by

including all rotations of a basic stencil to form the recursion for successive relaxation. In

some examples, inclusion of the rotated stencils is equivalent to solving the second-order

equation derived from the welfare-optimality and integrability conditions.

In Phase 2 the boundary values are adjusted to improve the approximation of the

boundary conditions imposed by the transversality condition. For both algorithms, the

differential condition (derived from the integrability condition) provides an adequate

(von Neumann) boundary condition. In the Pure Relaxation Algorithm, the boundary

conditions on the lower boundaries can be derived from the welfare-optimality condi-

tion. This yields an especially simple scheme for calculations. In the Newton-Relaxation
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Algorithm, however, these boundary conditions are specified by the integral constraints
(derived by integrating the welfare-optimality condition), and Newton's method is used
to obtain successive improvements. Fortunately, simple approximations of the Jacobian
suffice for Newton's method in the limited class of examples that have been studied.

Limited experience with an alternative algorithm indicates that it may also be feasible
to use an rn + 1 -point stencil if the functions are interpreted as the gradients of the
multipliers, but this algorithm has been implemented only for the standard test problem.

The examples that have been solved indicate that these difficult computations are
worthwhile. In particular, the qualitative properties of the tariff and its marginal prices
bear little relation to those predicted from studies of the one-dimensional case. For
example, in the standard test problem the multipliers are not monotone functions of
the types, and the marginal prices of commodities are not monotone functions of the
quantities purchased. Also, each customer purchases either both commodities or neither,
which indicates that implicit 'bundling' is an essential ingredient, as Armstrong (1992,
1993) has emphasized. The implication is that the chief qualitative features of multi-
product pricing and taxation differ substantially from the single-product case.

The complexity of the multidimensional nonlinear pricing problem addressed here
suggests that an entirely different formulation might be useful in practice. An alternative
approach is developed in Wilson (1993; §12, §14) by relying on a formulation in which-
it is supposed that the seller has no information about the distribution of types and
about the dependence of customers' preferences on their types. Instead, the seller knows
only the aggregate distribution of bundles purchased in response to linear tariffs. This
formulation precludes an exact analysis of the participation constraint (3) because the
demand data do not distinguish whether a price increase curtails a customer's demand
or extinguishes participation; in particular, pure bundling is generally not optimal. On
the other hand, this formulation allows calculation of a solution via a simple gradient
algorithm, and quite complicated problems can be addressed routinely.
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Appendix

APL Programs

The APL programs nra2L and nra3D that implement the relaxation algorithm with

Newton's method are shown on the following page. The program nra2L is designed

for 2-dimensional problems with linear coefficients as in (8), whereas nra3D is designed

for the 3-dimensional version of the standard test problem. Both use the inverse of the

coarse approximation of the Jacobian (described in the text), expressed in terms of partial

sums of the errors in the integral constraints.

On the following page are the APL programs pra2D and pra2L that implement the

pure relaxation algorithm for the 2-dimensional version of the standard test problem,

and the linear-coefficients model as in (8).

Shown next is the program aalg2D that implements the alternative algorithm for the

standard test problem.

The parameter 72 in the programs plays the role of n + 1 in the text. All four

programs assume that the domain of the type parameters is the unit square.
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Ocr 'nra2L'
multC nra2L fibld;erlmtn;x;e;teiefle.
se nra2L	 Relaxation Algorithm : U_cleAt-Bg, f arbitrary, te(0,11Am. met.
A Based on 5-point stencil, plus boundary conditions for mul. 	 2emeppf.
A Initial guess of mul is x; iterate from there. 2eppC. 4 EpC, Cm/00(81B)A.
A xemulitl i t2); tl & t2c(0,4,26 	  1);	 2).1+(m,n)-1.	 ellee. Pee.
A4-.001 0 eat.2 0 n'-pf 0 )(trip° 0 6 4-+n-1 O m4-n(1) 0 n4-11(2] 0 C 4-,C aSet up.
b4-(b,-C(27+2■■/e)+dt2•+/b4-C(4 1)+6+2 0 x[11]* .xIm i l*-0	 At PDE Coeffs.
efq-(((CL43+A[1]) • 1 -14(1 14f)--1 14f)-(C(21•e(2))•-1 14(1 14f)-1 -144)+d

L; (I+.1(2)■+/0 -14-( -1 04f)+((1 04x)--1 04x)+6(1] A Compute error at bdy.
x[11)«xI11)-(AA■0+\.d),0 0 xI l n/ •-xt l n-1)	 A Apply Newton's Method.

MI mu1*(b(1)■0 -14(2 14x)+(-2 14x))+1,I2) x-1 01(1 24x)+(1 -24x) A	 Solve
mul 4-mul • (b(3) ■ (2 24x)+(-2 -24x)-(2 -24x)+( -2 24x))+Af	 A PDE via relax.
mul e-x[;1],(0Tmul;0),x[in] 0 -+(4>f/er.-(1/1d).(1/1,mul-x))/0 	 A -*Exit.
x+-mul 0 +(a<er(2))/M 0 	 A Repeat until error small.

Ocr 'nra3D'
mu+mra3D Nid;djler,f;11j;k:11;12;13;mingolp;q1rixia;AA;41
se nra3D	 Relaxation Algorithm, standard test problem: U_q-t-(4,f-ism-3!
A Initial guess of mu is x, iterate from there. (3.N.N.N)epx, Gag, tame.
m4-3 0 x•-(m.mpN)p0 A xemuIlitlit21t3l; t_ie(0.6,26 	  1); Ael+n, neN-1.
A.-.001 0 eto+.3+m o 64-1. n.-(N4-14px)-1 0 ro-tm .-pN 0 f.+Npl	 (14-4 Set up.
11tI♦tn(13 0 12+14tn(2) 0 l3.+14tn131

Phase2: A* Improve boundary values via Newton Method & Differential Cond.
Ls di .+(0,N)p0 0 p+-0mti 0 j+. 1 A Calculate deerrors in Integral Conditions.
p•--140p 0 d4-((p4x(j;;;])-(-p)4x(j:::))+4[.1] 0 dj.-dj;d,[j)(•N-2)4d
-•(mi.-j+1)/01c-1 O dt(0,14N)p0 0 cp4mt-1 0 14-1
q+ - 10q 0 d4-d;-e[1]•+/[1]q4C++idj(r-11;;I 0+(mt1 4-1+1)/Olc A4Newton Method.
x[1;;10tx[1;;10-AA me +N ed[2:0 0 x(11;s1).+x[111;1]-(se■e+ked(3;;]
x[2;1;0 4-x(2;1; ) 1-Ae • e+Ned(1 1 0 0 x(2;;;134-x[2;;;13-A6%0+\11d(3,13
x[3;1;04-x[3,1;;]-AA■0+\41d(1;;) 0 x(3;1104-x(3;11;)-he■0+\0d12;;1
xI2 304113;0 4-x12 3,NI1l-1;;)	 0 xI1 3:;N[2]04-x(1 3;IN(27-11)
x[I 2;;;N(3)]4-xI1 2;;;N(31-13 0 d4-(0,(m-1)p1)4d At Different. Condition.
Phases, A* Solve PDE via Relaxation Algorithm using (2m+1)-point stencil.
xI1;1 1 ;itx[1;N[1];;] .+0 0 x(2;;1;14-x(2;;N(210 .+0 0 x(3;;;114-x[3;;;N[3]1+-0

M: o+ - 1+(p-40mtl 0 p 4-1+q 0 q+-1-3■q 0 mu+-0 0 it - 1	 s4 Relaxation algorithm.
mui-mu.(0,10(3)4((0.140p)4x)+(0.14q)♦x 0 -,(mk-1+1-1)/Olc A Approximate PDE.
er4-(1/1,d).(/1.x[:11;12;13)-mu4-mu+2•m 0 x[;11;12 1 131tmu	 A Update data.
mtv-x 0 -P((&>!/er),4<er[21)/0,M 0 •Phase2	 A Stop or repeat Relaxation.



Ocr 'pra2D'
mu-pra2D nIA:a0:allbOlbl:epier;fl1llis,x;xnlY;Vngelat,
AV pra2D n : Pure relaxation algorithm for std test problem: U_get-g,fEl.
A Uses 'backward' Integrability and 'forward' Welfare Optimality. 2EmEpn.
f-npl 0 (4,4-.0001 0 so-444/n 0 mu'-(2,n)p0 0 1*-n-2 0 x 4-y4-1p0 0 14-1
40-a14-1[1]p0 0 b04-131 4-1[2]p0 0 Ato4-((,A 0 .3cA),x/AxA)+64.KA.-+n-1 A PDE wts.

Phases:	 n • Relaxation algorithm for interior grid points.
A.-(0 - 14a0,x) 7 (0 14y,0);( - 1 04b0;y);(1 04x0),E.511 14 - 1 -14f
x114-( Aaxi 1 -1 1,11[1]-1)4. .xA 0 yn•-(aa[3 1 4 2 51x-1 1 1 1,n[2]-1)+.KA
A4-0 0 -“(30>1 4-1+1) Aep<er4-1/1,((x4-xn),y4-yn)-x,y)/Phasel 0 xn4-yn4-0
Phasel: A	 Improve boundary values via Differential, Welfare Optimality.
a14-x[:1[2]] 0 b1•-1,[1[1] 1 ] 0 A•-0 0 14-1[1]	 A *Differential Condition.
a0[11 4-Al-a0[11-s • a0[1]-A+a[1] x (y(1;1]+a[2])*f[14. 1;1] 0 -,.(1E14-1-1)/01c
A4-0 0 14-1[2] A t4 sEstepsize.	 A t4 Welfare Optimality Condition.
b0[1]*A4--b0[1]-s xb0111-A+A[2]*(x[1:1]*.&111]+ftl i 1.1] 0 .C1E14-1-1)/01c
14-1 0 er4-4/1,(mu4-(07(a0.x,a1);0),[.5][0,(b0;flb1),0))-mu
0• (44er),450<Ocursor[21]pOtcn1 0 •(ep<er)/Phasel

Ocr 'pra2L'
mu-C pra2L f;a:a03a1;b;b0ibl:d:df;eiemer:gih:1;j:ltnis;u;v;xiy;PIV;W;a
Fly mu-C pra2L f : Pure relaxation algorithm for problem: U_gEAt-Bg, where
Fly tc[0,1]42; CEORA)+.x(10)+.KA & density f are arbitrary. 2 2 EpC, 2Eppf.
AV Uses 'backward' Integrability and 'forward' Welfare Optimality.
ep4-.0001 0 n'-pf 0 a4-(1 -1),14-n-1 0 s-4+1 /n 0 14-n-2 0 /14--g•-1 1 0 14-1
mu*C2,n/p0 0 x4-y4-1p0 0 a04-a14-1[1]p0 0 b04-b14-1[2]00 	 A Initial guesses.
Wts: A • Compute weights for 4 points of stencil In relaxation algorithm.
d4-(44. /C K a a .ma)+.xdf 4-(h4g4-1 040;f),[.5]h4g40 -140,f 0 P4-h4g4f
11*(2 4pa o .xe.-EC:042 29A) . . X F+d	 A WEwts applied to n11,.,n22,m11,m22,f.
W4-W,[211 3 4 2X(e(W x /112 	 Kedf+d, (.51d).. m I (4)a), $ /a 0 a•-1,t,
F4-(F,E.51F)x141;7:0 0 W-0 -1 0 04W n4Weights for Differential Condition.
g4-411(,e) . . x ( - 1414fhn[2]1)+e[10 .1. . x df*C -24	 f[snC21]).[.5]-1414f[;1[2]]
/14- 14(,e) . .“ - 1414fEn[1];])+e[20+.fldf 44 - 1414f[1[1]0),E.51-24 	 fEn[l]i]
Phasel: A • Relaxation algorithm for interior grid points.
V4-(-1 040;x);(0 -14a0,x) 7 (-1 04b0;y);(0 -140,y);(1 04x 7 0),[.5](0 14y,0)
u*P[1;04.+AW[1:::]xV 0 v*F[2iO4-*/W[2::O xV At Values at stencil points.
V*6 0 .((30>1•-1+1)Aep<er•-[/1,((x4-u),y4-v)-x,y)/Phasel 0 u•-v4-0
Phase2: A * Improve boundary values via Differential, Welfare Optimality.
al-b4-0 0 1 4-1[1) 0 j4-0	 A 4 Differential Condition.
A: j*J*1 0 a1[j]•-b4-g[j;]*.xb,x[J11[2]),0,y[j11[2]]
a0[1]4-a • a0[1]-sic a0[1]-a+a[l] x [y[1;1)4-a[2])4. f[1+1;1] 0 •(1Ei•-1-1)/A
a•-b4-0 0 14-1[2] 0 j•-0 A t sastepsize!	 A t Welfare Optimality Condition.
B: j.-J+1 0 bi[j]4-b4.h[j:]*.mx[1[1];j],0,y[1[1];j],b
b0[1] 4-a4b0[11-s x b0[1]-a+a[21 x (x(1;13+8[1])+f[1;1*11 0 -0(1E14-1-1)/B
1 •-1 0 er4-[/1,(mu•-(07(a0,x,a1);0),E.530.(b0;y:b1),01-mu
0*(4yer),(50<Ocursor[2])pOtcn1 0 -qep<er)/Phasel



Ocr 'aalg2D1
mul+aalg2D nilijskimixiA,B;ItIX:AsAA
Rv Solve Mlrrlees conditions: Examplel: U_q-t-q, f-1: Example 2: f-•-+/t.
A Integrability condition is d\mu2/dtl-A • d\mul/dt2, where A-1 for Ex.1
A	 and A-(r2/r1) • 2 for Ex.2, where ri-•-tl, d/dti vd/drl, etc.
A Notes t2 decreases from 1 as 1 Increases: tl increases as j increases.
A A & B are coefficients in vmul of xvmul(.,1). Accuracy requires ns20.
m+n+1 0 A1-11+((n-1),m,n)p0 0 Aril 2:11+-1 0 j+n
AU-I:1 2 8,11+1 0 -*(1<j+j-1)/01c 0 1+2 0 It+n-1
Ex: 04-'Ex 1 or 2? (1 or 2] ' 0 -6 (-(X+fOinkey)c1 2)/0 0 A+AA+1
Iterate:	 j+IrIt 0 k+1
Calculate:	 +k/Integrability
Consistency:	 Ahl:j)+AE:1-1:j1+BE,1-1,j-11-BC:1-1;j1 0 	 -*Next
Integrability: -*(X-1)/I 0 A+((1-1)+(n-j))*2 0 AA+((1-2)+(n-j))*2
I:	 BE,13.j1+((AA•B(11-11j])-(Alli:j1-A[11:j+11))+8 0 -*Next
Next: lc*-21k+1 0 -0 (k+--(1-m)+(j-n))/Calculate 0 1+1+1 0 j+j+1
-*((ism)A(jsn))/Calculate 0 	 k+1 0 1+2 0 -0(IsIt+It-1)/Iterate
I+3-It 0 j+1 0 Ahl:j1+A(,1-1,j1-B[ 1 ] - 11j1 0	 -*(1<m)/Iterate

x+((n-1)pm-1)31+0 - 1 1 013 1 2kA 0 mul*-(44\4x+.$A,0)+n
mulhm-1 1 11+0 0 mul+kimul	 A Now min's arguments are Itl:t21.



Figures

Figure 1 shows the changes in the integral values resulting from a perturbation of

Pi(t) on the lower boundary where t1 = 1/2 and t2 = 0 . These changes indicate that the
Jacobian can be approximated by a matrix with diagonal and super-diagonal elements
that are 1 and —1 respectively, with other elements set to zero.

Figure 2 displays the multiplier tri (t) for several values of 12 using the version
(8) in which the diagonal and off-diagonal elements of A, B, and C are 1 and 1/2
respectively. The data for the figure were computed using the relaxation algorithm
combined with Newton's method, and the grid size was 5 = 0.025 .

Figure 3 shows the marginal price p i (q) of product 1 derived from Figure 2 using
polynomial interpolation.

Figure 4 shows the marginal price pi (q) of product 1 for the standard test problem,
calculated via Delaunay triangulation.

Figure 5 shows the 3-dimensional standard test problem's multiplier pi (t) for sev-

eral values of t2 and 13 , computed using the relaxation algorithm combined with New-

ton's method, using the grid size 6 = 0.025. Note that when t2 = 1 the two values of -
ts yield nearly the same curve.
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Change In the Integral Value at t 1

FIGURE 1 The changes in the integral values resulting from perturbing

PI(1 /2, 0) when #1 (0 = 0 initially. These changes, representing

one column of the Jacobian matrix for the standard test prob-

lem, can be approximated by the function that is 1 and —1 at

t i = 1/2 and 1/2 — 6, and zero elsewhere.



Multiplier p.,

1.2

1.0

0.8

0 .6

0.4

0.2

0.0
0 0.2	 0.4	 0.6

	
0.8

Type parameter t

FIGURE 2 The multiplier pt (t) for the example based on (8) in which the

diagonal elements of A, B, and C are 1 and their off-diagonal

elements are 1/2. From top to bottom, the curves correspond to

t2 = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, although the bottom two are

nearly indistinguishable. The mesh size 6 = 0.025 was used for

the calculations.
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Quantity of Product 2
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FIGURE 3 The schedule pi (q) of marginal prices for product 1 as a function

of the vector q = (q1 , q2) of quantities of the two products. This

approximation of the price schedule was derived from the data

for Figure 2 using rational polynomial interpolation.



FIGURE 4 The schedule pi (q) of marginal prices for product 1 as a func-

tion of the vector q = q2) of quantities of the two products.

This piecewise-linear approximation of the price schedule for the
standard test problem was constructed using Delaunay triangu-

lation.



02	 0.4	 0.6
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ao

Multiplier

FIGURE 5 The multiplier ui (t) for the 3-dimensional version of the stan-
dard test problem, shown for the types 1 2 = 0.25,0.50, 0.75,1.00,
and t3 = 0.5, 1.00 . The bottom two curves are indistinguishable.
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