
Modeling Languages in Computational Economics:
GAMS

Stavros A. Zenios
Operations & Information Management

The Wharton School
University of Pennsylvania

Philadelphia, PA 19104
and University of Cyprus

Nicosia, CYPRUS.

January 2, 1994

Abstract

This working paper is intended as a Chapter in the Handbook of
Computational Economics, H.M. Amman, D. Kendrick and J. Rust
(eds.), North-Holland. It gives an overview of the state-of-the-art in
algebraic modeling languages. Such languages are in widespread use for
the implementation of economic models, especially those that can be
formulated as mathematical programs (e.g., linear programs, nonlin-
ear equilibrium models, transportation models, models for estimating
Social Accounting Matrices). Emphasis is placed on the description of
GAMS of Brooke, Kendrick and Meeraus (1992) — a General Alge-
braic Modeling System — that originated at the World Bank. Example
models are presented.

1 Introduction

Mathematical modeling and computer analysis is a cornerstone of computa-
tional economics. A wide range of economic problems can be represented by
systems of equations or by optimization programs over systems of inequali-

ties. Such models, and the underlying economic applications, are discussed
in other Chapters of this Handbook on General Equilibrium Models, Game
Theory, and Sectoral Models.

These mathematical models are used to represent real and observable
systems. The models are, therefore, developed using economic observations
(i.e., data). They are not merely abstract mathematical descriptions. The
instanciation of an abstract mathematical model using economic data, and
its solution on the computer, is facilitated using high-level modeling lan-
guages. This Chapter provides an introduction to one particular algebraic
modeling language, GAMS of Brooke, Kendrick and Meearus (1992). It
gives an overview of the language and illustrates its use in modeling a prob-
lem in transportation and a problem in the estimation of Social Accounting
Matrices.

A significant part of the time required to develop a model involves data
preparation and transformation, and report generation. The model is trans-
formed from a form that is understandable to the modeler, to a form that
is readable by the computer. Until the 1970's such transformations were
handled by programs tailored to each specific application. Such programs,
known as matrix generators, required several hours of programming time,
were difficult to alter to accommodate changes in the model, were accessible
only to the specialist who wrote them and not to the analyst who developed
the model and, therefore, were difficult to debug and correct.

In the late 1970's the case was made that matrix generators should
give way to algebraic modeling languages, Bisschop and Meeraus (1982) and
Fourer (1983). A modeling language could integrate ideas from relational
database theory with the rapidly expanding field of mathematical program-
ming. Relational databases provide the framework for data organization,
while mathematical programming provides a way for describing a variety
of problems and offers algorithms for their solution. The first steps to-
wards the development of an algebraic modeling language concentrated on
linear programming problems, Bisschop and Meeraus (1982). Extensions
where then made to handle nonlinear programs, Brooke, Drud and Meer-
aus (1984), integer programs, Brooke, Kendrick and Meeraus (1992), net-
work problems, Zenios (1990), variational and complementarity problems,
Rutherford (1992).

The first modeling language — GAMS, a General Algebraic Modeling
System — was developed at the World Bank in the late 1970's. This system
provides a high-level (algebraic) language for the representation of large and
complex models. It allows for unambiguous statements of algebraic relations
that define an abstract system of variables and equations. It also provides
several mechanisms for data management. The system performs appropriate
data transformations to create a specific instance of the model, starting from

2

the abstract representation. Since the model description is algebraic the
GAMS statement of the model provides a readable documentation. The
data management mechanisms also facilitate the preparation of reports.

The use of an appropriate algorithm to solve the model is also handled by
GAMS. From the user's perspective, the model is independent of the solution
algorithm. This approach ensures portability. Only the GAMS statement of
the model needs to be ported among different computer platforms, and the
GAMS statements are machine independent. (Although a model statement
in a later release of GAMS, like 2.25, may be using features that are not
supported on a computer running an earlier release, like 2.05.) A GAMS
model can be ported, today, to a wide range of computer platforms rang-
ing from personal computers, mainframe and workstation systems, attached
array processors and CRAY vector supercomputers.

GAMS is not the only language currently available, although it is the
most widely used due to the experiences accumulated by the World Bank
analysts. For other developments in modeling languages refer to Geof-
frion (1987) and Fourer, Gay and Kernighan (1993).

2 Overview of the GAMS modeling language

A GAMS model is a collection of statements in the GAMS language. These
statements define the variables of the model, specify the symbolic relation-
ships between them in the form of equations, specify data structures and
assign values to them, and instructs the computer to generate and solve
the model. Other GAMS statements are used to handle output. In this
section we describe the basic components of GAMS, without going into de-
tails on the precise syntax. Readers should get a general overview of the
language and its capabilities. Detailed documentation is provided in the
GAMS User's Guide, Brooke, Kendrick and Meeraus (1992). We use upper
case, typewriter font for all expressions that are part of the GAMS language,
such as EQUATIONS and SOLVE.

Data structures, data initialization and symbolic relationships are speci-
fied by writing GAMS statements on GAMS symbols. Symbols must first be
declared as to type, before they can be used. Each symbol must be declared
to belong to one of the following six classes:

SETS	 VARIABLES

PARAMETERS (SCALAR, TABLE)	 EQUATIONS

ACRONYMS	 MODELS

3

Statements in GAMS are classified into one of two groups:

1. Declaration and definition statements.

2. Execution statements.

Declaration statements specify the class of a symbol, and a definition
statement provides values for a declared symbol. For example, the GAMS
statement:

SETS J markets ;

specifies a symbol J as being a set, which is explained in the declaration
statement to be the set of "markets". Elements of this set, i.e., actual
markets, are defined in the following GAMS statement that combines the
declaration of the symbol with its definition:

SETS J markets /NEW-YORK, CHICAGO, TOPEKA /;

Declarations have some common characteristics, as illustrated in the follow-
ing example:

PARAMETER	 A	 (I ,J)	 Input-Output Matrix
Symbol-class-keyword Identifier Domain (Sec. 2.1) Text

Execution statements are instructions to carry out actions such as data
transformation, model generation, model solution and preparation of re-
ports. The execution statements are:

OPTION	 DISPLAY	 ABORT
ASSIGMENT LOOP	 SOLVE

2.1 Domains of parameters and variables

The sets in a GAMS model are used to specify the domains of parameters and
variables. Equations are also defined over domains as discussed in sec. 2.6.
For example,

PARAMETER DO) demand of a product at market J ;

declares a parameter over the set of markets J. For the set J defined above,
this parameter definition is equivalent to the three parameters D("NEW-
YORK") , D("CHICAGOO , D("TOPEKA").

Variables are also defined over sets, as in the example

4

VARIABLE X(I, J) ;

which defines a variable over the product space of sets I and J.
The domain sets can be used to manipulate and transform data by using

indexed operators, as explained in section 2.3. In the context of declaration
and definition of equations the domains are used to specify the symbolic
relationships among variables.

2.2 The GAMS arithmetic operations

GAMS supports arithmetic expressions on parameters and variables. These
expressions can be used either for data manipulation, or for defining symbolic
relationships. The standard arithmetic expressions are

* * exponentiation
*	 multiplication and division
- addition and subtraction

In addition, GAMS supports many commonly used standard functions such
as exponentiation, logarithms, trigonometric functions, absolute value func-
tions etc.

2.3 The GAMS summation and product operators

Algebraic manipulations of GAMS symbols are facilitated with the use of
indexed operators such as SUM (for summation) and PROD (for product). The
format of these operators is based on the idea that both operators have two
arguments: The domain, that is the index set, over which the operator is
executed and an operand. A simple example is:

SUM(J, X(I,J));

which is equivalent to the standard algebraic expression Eic x i3 . Similarly

PROD ((I,J), X(I,J));

is equivalent to FL, I 113e xu.
GAMS supports two additional indexed operators, SMAX and SMIN, that

find the largest and smallest values over the domain of an indexed set. For
example, SMAX (J ,D(J)) finds the largest value of the parameter D(J).

5

2.4 Data entry and manipulations

GAMS allows three different formats for entering data:

1. Lists,

2. Tables,

3. Direct assignments.

Consider for example the PARAMETER DO) for the demand of a product
at each member of the market set J. Assume that demands are identical,
let us say 300, at all markets. The simplest way to initialize the demand
parameter is by the assignment statement

DO) = 300;

The following list format is equivalent to the assignment statement:

PARAMETERS DO)
	

demand at market j in cases
/NEW-YORK 300

CHICAGO 300
TOPEKA 300 /;

The right-hand-side of the assignment statement does not have to be a
number. It could be a GAMS expression that transforms other data struc-
tures. For example, the demand in every market region can be split over
multiple customers. If the SET I defines the set of customers, and TABLE
C-DEMAND (I, 3) is the demand for each customer in each region, then the
total demand in each region can be initialized by using the following assign-
ment statement:

D(J) = SUM(I, C-DEMAND(I,J)) ;

C-DEMAND (I, .1) is an example of a two-dimensional table (or matrix).
GAMS provides the TABLE format for initializing tables. The following state-
ment illustrates the data initialization of the demand for two customers (BIG
and SMALL) that are present in each one of the three markets in J.

TABLE C-DEMAND (I,J) demand for each customer in each market

NEW-YORK CHICAGO TOPEKA

BIG 100 100 100

SMALL 200 200 200;

6

GAMS allows the declaration and initialization of tables with more than
two dimensions.

Data structures can be manipulated using standard arithmetic opera-
tions, indexed operations and functions. For example, the statement

DO) = SUM(I, C--DEMAND (I ,J)) ;

manipulates the two-dimensional table C-DEMAND (I , .1) using the SUM in-
dexed operator in order to initialize the parameter DO). Note that both the
right and left expressions of the assignment statement are defined over the
domain set J. GAMS produces an error statement if the domains of the two
sides of an assignment statement are not consistent with each other.

A simple arithmetic operation D(J) = 2 * DO) doubles the level of
demand. Functions can also operate on GAMS data structures as in

LOGD(J) = LOG (DO));

that transforms the demand values to logarithmic scale.

2.5 The GAMS relational operators

A relational operator allow the specification of relations between its left and
right arguments. GAMS supports relational operators in two ways: in the
definition of equations and in logical expressions.

In the definition of equations a relational operator is used to specify
the type of the relationship. For example, =E= is used to define equality
relationships, --.0= is used to define greater-or-equal (>) inequalities, and
=L= is used to define less-or-equal (<) inequalities.

In logical expressions the symbols EQ , NE, LT and so on are used to
specify a required relationship between two values. These three symbols
correspond to the relationships =, and < respectively. GAMS also sup-
ports boolean relational operators (NOT, AND, OR, XOR) although it does
not support a boolean data type. It follows the convention that the re-
sult of a relational operator is 0 if the assertion is false, and 1 if it is true.
(Programmers familiar with the C programming language will notice the
similarity).

2.6 Declaration and definition of equations

EQUATIONS, like all GAMS symbols, must first be declared before they can
be defined and used. The declaration is a list of names (these are the names

7

of the equations), each followed by a domain and by some explanatory text.
We give two examples:

EQUATIONS	 COST	 Cost definition
DEMAND(J) Constraint on required demand in market J ;

The COST equation is a single equation, while for SUPPLY (J) we have one
equation for each element of the set J. The domain of the demand equation
is the set J. The above statements define two blocks of equations; the actual
number of generated equations is equal to the cardinality of the set J, plus
one more for the COST equation.

The next statement specifies the symbolic relationships that define the
equations. First, we define the variables and some additional parameters
that are needed in the specification of the equations. The definition of the
equations follows. It starts with the equation identifier followed by .. , and
then it gives the symbolic expression.

VARIABLES	 TRCOST Total transportation cost
X(I,J)	 Shipment from origin I to destination J ;

PARAMETERS D(J)	 Total demand at each market
C(I,J)	 Per unit transportation cost from I to J;

COST..	 TRCOST =E= SUM((I,J), C(I,J)*X(I,J));
DEMAND(J).. SUM(I,X(I,J)) =G= D(J);

2.7 Exception handling capabilities

The specification of complex relationships requires a mechanism for handling
exceptions. One of the most powerful features of GAMS, in this respect,
is the Dollar ($) Operator. This operator can be used in both arithemic
expressions and in the definition of equations. Conceptually, the dollar
operator is equivalent to an "IF" statement of programming languages. Its
general structure is the following:

A $ B.

It specifies that the expression A is evaluated (if it is a definition state-
ment) or is executed (if it is an execution statement) IF expression B is true.
We illustrate the use of this operator with two simple examples. Detailed
explanations can be found in the GAMS User's Guide.

Consider the following:

8

SCALAR X,Y;

Y=2; X=1;
X = 2$(Y GT 1.5);

This statement assigns the value 2 to X if Y is greater than 1.5.
The next example uses the dollar operator to control an indexed opera-

tion. Assume that we are given the demand parameter D(J), but for some
markets in the set J the demand is unavailable and is assigned a value of
-INF (i.e., -infinity). The total demand can be calculated by the following
expression:

PARAMETER TOTAL;
TOTAL = SUM(J$(D(J) NE -INF), DO));

2.8 GAMS solvers

While the GAMS language provides the flexibility for the specification of
a wide variety of models, the GAMS system is interfaced with several op-
timization solvers that allow the solution of the models. The basic system
is usually configured with two linear programming solvers (BDMLP and
MINOS). GAMS/MINOS (Murtagh and Saunders (1977)) can also han-
dle nonlinear programs. Other linear and nonlinear programming codes
include GRG2 of Lasdon et al. (1978)) and CONOPT (Drud (1985)). In-
teger programs can be solved using GAMS/ZOOM (Singhal, Marsten and
Morin (1989)). Network problems, linear and nonlinear, can be solved using
GAMS/GENOS (Zenios (1990)). More specialized solvers are also avail-
able, like HERCULES of Drud and Kendrick (1986) for large, economywide
models, GAMS/MATBAL of Zenios, Drud and Mulvey (1989) for solving
matrix estimation problems, and GAMS/CPLIB of Dirlcse et al. (1992) that
allows the interfacing of GAMS with solvers for the mixed complementarity
problem.

Most of these solvers are available on several machines. Those range
from personal computers, to workstations, mainframes and vector super-
computers. More information on the availability of solvers is given in the
GAMS manual.

2.9 The GAMS libraries of economic and financial models

It is often useful to build a model for an economic system by modifying the
model of a closely related economy. This practice facilitates the develop-
ment of the conceptual model, building on prior experiences by others. It

9

also makes it easier to implement the actual model on the computer. The
GAMS system includes a large library of 100 models, called GAMSLIB.
Some of the models is the library are included to illustrate the capabilities
of GAMS. Others are included because they represent classical and widely
used models. Of particular interests to economists are the models on agri-
cultural economics (those include several country-wide models for Pakistan,
Egypt, Turkey, Brazil), general equilibrium, economic development, energy
economics (including again country-wide models for Korea, Turkey, USA), as
well as models in micro- and macro- economics and econometrics. Detailed
information on GAMSLIB is given in Brooke, Kendrick and Meeraus (1992).

A library on financial models expressed in GAMS is also available. This
library contains most of the standard optimization models from corporate
finance (Markowitz's mean-variance models, portfolio dedication and port-
folio immunization), as well as more specialized and complex models for
structuring collateralized mortgage obligations (CMOs), term- structure es-
timation and so on. Detailed information on these models is given in Dahl,
Meeraus and Zenios (1993).

3 Example Applications

A GAMS model typically consists of the following statements:

Specification of the data: This part of the statement does the following:
Declare and define sets
Declare and define parameters
Assign data to parameters
Display the values for inspection purposes.

Specification of the model: This part of the statement does the follow-
ing:
Declare variables
Declare equations
Define equations
Define a model

Solution of the model: This part of the statement solves the model and
displays results.

The next section illustrates the use of these basic GAMS features.

10

3.1 A simple transportation model

We consider as an example a simple transportation problem. In this problem
we are given a set of production plants and a set of potential markets. Each
plant has a given level of production, and each market has a known level of
demand. The cost of shipping one unit of the product from the plants to
the markets is also given.

A simple, algebraic, statement of the problem is the following: Let i and
j be indices for the plants and markets respectively. Denote by s i the supply
of each plant, and by di the demand at each market. Let also x ii denote
the decision variables, indicating the amount supplied to market j by plant
i, and let cii denote the cost of shipping one unit from i to j. The following
linear program determines the least-cost solution:

Problem 3.1

Minimize
	

(1)

s. t.xij � Si	 for all i	 (2)

E ij > di	 for all j	 (3)

We consider now a specific instance of this problem, described in Dantzig (1963,
ch. 3). In this example there are two plants and three markets. A complete
GAMS statement of this model is given next. Lines starting with a * are
comments. Note that the model is self explanatory.

* Declare two sets, and define their member elements.

SETS

I	 production plants	 /SEATTLE, SAW-DIEGO/

markets	 /NEW-YORK, CHICAGO, TOPEKA/;

* Declare the supply and demand parameters, and define their numerical values.
PARAMETERS

S(I)	 capacity of plant i in cases
/SEATTLE 350

SAN-DIEGO 600 /
DO) demand at market j in cases

11

/NEW-YORK 325

CHICAGO 300
TOPEKA 275 /;

* Declare a table of distances from each plant to each market,
* and define the numerical entries of the table.
TABLE (I , J) distance in thousands of miles

NEW-YORK CHICAGO	 TOPEKA

SEATTLE 2.5 1.7 1.8

SAN-DIEGO 2.5 1.8 1.4

* Define scalar parameters, and perform some data transformations to
* convert the distance between each pair of plant/market to a monetary cost.

SCALAR	 F	 freight in dollars per case per thousands of miles /90/;
PARAMETER	 C(I,J)	 transport cost in thousands of dollars per case ;

C(I,J) = F * D(I,J) / 1000 ;

* Declare the variables of the model
VARIABLES

X (1 , J)	 shipment quantity (in cases) from plant i to market j
Z	 total transportation costs in thousands of dollars

POSITIVE VARIABLE X;

* Declare the equations, and specify the symbolic relationships that define
* each equation. There are three groups of equations. One equation is the
n

* objective function. A second group specifies constraints on the available
* supply at each plant. A third group specifies constraints on the required
* demand at each market.

EQUATIONS
COST define the objective function
SUPPLY (I) observe supply limit at plant i
DEMAND (J) satisfy demand at market j;

COST ..	 Z	 SUM((I,J), C(I,J) * (I, 3));

12

SUPPLY(I)..	 SUM(J,X(I,J)) =L= S(I);

DEMAND(J)..	 SGM(I,X(I<J)) =G= G(J);

* Define a model, called TRANSPORT, that contains all the
* equations declared and defined above.
MODEL TRANSPORT /ALL/;

* Solve the model, using a linear programming package.
SOLVE TRANSPORT USING LP MINIMIZING Z;

* Solve the model again, using a network optimization solver.

OPTION LP=GENOS;
SOLVE TRANSPORT USING LP MINIMIZING Z;

* Display the level (1) and marginal values (.M) of the variables

DISPLAY X.L, X.M;

3.2 The SAMBAL system: estimating Social Accounting
Matrices

We now describe a system, developed based on GAMS, to facilitate the repre-
sentation and solution of matrix estimation problems. The GAMS/SAMBAL
system is a custom-made template of the GAMS language that allows easy
specification of models for estimating a Social Accounting Matrix. This sys-
tem is specialized for the particular application, but the full set of GAMS
features explained above remain available.

The matrix estimation problem is typically posed as follows:

Given a rectangular matrix A, determine a matrix X that is close
to A and satisfies a given set of linear restrictions on its entries.

A matrix that satisfies the linear restrictions is said to be balanced. For a sur-
vey of models and algorithms for this problem see Schneider and Zenios (1990).
In this section we are interested in the estimation of Social Accounting Ma-
trices.

A Social Accounting Matrix, or SAM, is a square matrix A whose en-
tries represent the flow-of-funds between the national income accounts of
a country's economy at a fixed point in time. Each index of a row or a
column of A represents an account, or agent, in the economy. Entry at,

13

is positive if agent j receives funds from agent i. A SAM is a snapshot of
the critical variables in a general equilibrium model describing the circular
flow of financial transactions in an economy. For balancing problems arising
from estimating SAMs, the linear restrictions are the a priori accounting
identities that each agent's total expenditures and total receipts must be
equal. That is, for each index i of the matrix A, the sum of the entries in
row i must equal the sum of the entries in column i. The volume by Pyatt
and Round (1985) provides an introduction to Social Accounting Matrices.

The agents of an economy in a simplified SAM include institutions, fac-
tors of production, households, and the rest-of-the-world (to account for
transactions with the economies of other countries). Briefly, the production
activities generate value-added which flows to the factors of production —
land, labor, and capital. Factor income is the primary source of income for
institutions — households, government and firms — who purchase goods and
services supplied by productive activities, thereby completing the cycle. Of
course, to be useful for equilibrium modeling, this highly aggregated model
must be desegregated into subaccounts for each sector of the economy.

The compilation of a SAM is a difficult task due to data inconsistencies.
Inconsistent data is an inherent problem when statistical methods are used
to estimate underlying economic models. Morgenstern (1963) devoted his
book to the problem of inconsistency in economic measurements. In partic-
ular, the direct estimate of a SAM is never balanced. The following quote
of Sir Richard Stone (Van der Ploeg (1982, p.186) summarizes the sources
of inconsistency in SAM modeling.

" ... it is impossible to establish by direct estimation a system of
national accounts free of statistical discrepancies, residual errors,
unidentified items, balancing entries and the like since the infor-
mation available is in some degree incomplete, inconsistent and
unreliable. Accordingly, the task of measurement is not finished
when the initial estimates have been made and remains incom-
plete until final estimates have been obtained which satisfy the
constraints that hold between their true values. "

Therefore, the raw estimates of a SAM must be adjusted so that the consis-
tency requirements are satisfied. This problem motivates much of the work
on matrix balancing for economic modeling.

A matrix balancing problem also arises when partial survey methods are
used to estimate a SAM. Frequently, estimates are available of the total
expenditures and receipts for each agent in an economy but current data

14

are not available for the individual transactions between the agents. If a
complete (balanced) SAM is available from an earlier period, then the SAM
must be updated to reflect the recent index totals. The problem is then to
adjust the entries of the old matrix A so that the row and column totals
equal the given fixed amounts. A similar balancing problem occurs when
the entries of an input-output matrix must be updated to be consistent with
exogenous estimates of the total levels of primary inputs and final demands.

The matrix balancing application we describe here can be formulated as
follows:

Problem 3.2 Given an n x n nonnegative matrix A = (a 0), determine a
"nearby" non-negative matrix X = (x 0) (of the same dimensions) such that

E x0 = E xii , i = 1, 2, ... ,n,	 (4)
j=1	 i=1

and x0 > 0 only if a0 > 0.

In general, there are infinitely many matrices satisfying the consistency re-
strictions (4). For the problem to be well-posed the notion of a nearby
matrix has to be defined. This notion is defined by some distance func-
tion f(X; A) which measures the "distance" between X and A. The choice
f(X; A) aII X — A Il 2p, where II • IIF denotes the Frobenius norm, leads to
a linearly constrained quadratic optimization problem. Another commonly
used objective is the negative entropy functional:

E xii
111 &

.1-) — 11 •	 (5)
(1,3)

The GAMS/SAMBAL system specifies exactly how data structures for
a matrix balancing model should be set up. A GAMS statement ACRONYMS
is used to specify the distance functions. Additional data structures are
provided to hold the data of the problem by using two sets of GAMS symbols.
One set, prefixed with T, is used to provide information about the entries
of the Social Accounting Matrix (e.g., initial values, upper/lower bounds
on the estimated values, specification of the distance measure). The other
set, prefixed by Y, is used to specify information about the row and column
totals. Though problem 3.2 only specifies that row sums should be equal to
column sums, it is also possible that some a priori target values are given
for these totals. It is possible to specify a problem whereby row sums are

15

required to be equal to column sums, while minimizing some distance from
the prespecified values.

The following data structures are available for the specification of the
Social Accounting Matrix.

TINIT	 the initial values of the matrix
TMAX	 upper bounds on the entries of the balanced matrix
TMIN	 lower bounds on the entries of the balanced matrix
TFUNC	 functional form of the distance function, chosen from the

list of ACRONYMS
TWEIGHT	 weighing coefficients of the penalty term for each entry of the matrix
TEASE	 the balanced values of the matrix

The same data structures, prefixed with Y —YINIT, YMAX, YMIN, YFUNC,
YWEIGHT, YBASE— are available to store information about the row and col-
umn totals. For example, YINIT specifies the initial, target, values for the
row and column totals. Not all of the above data structures need to be
provided for a well-specified model. Minimal data requirements include the
specification of the initial matrix values TINIT and the functional from of
the distance norms. Other information is incorporated in the model if it is
provided.

Figure 1 illustrates the output of a simple model in GAMS/SAMBAL.
This model estimates the entries of a 5x5 social accounting matrix. For three
of these rows/columns we are given an estimate of the totals (see line 31),
and a quadratic distance function is specified (line 49). For the remaining
totals no prior information is given, and a residual distance function (i.e., a
penalty identically equal to zero) is specified in line 50.

16

1 SET ACC ACCOUNTS / LABOR, HOUSE), HOUSE2, PROD1, PROD2 /

2 ALIAS(ACC,ACCP)

3

4 ACRONYMS QUADO QUADRATIC PENALTY FUNCTION

5	 RESID SAM VALUE IS RESIDUAL;

6

7 TABLE SAMO(ACC,ACC) INITIAL UNBALANCED SAM ESTIMATES

8	 LABOR HOUSE) HOUSE2 PROD1 PROD2

9 LABOR	 15	 3	 130	 80

10 HOUSE)

11 HOUSE2

12 PROD1	 15	 130	 20

13 PROD2	 25	 40	 55

14

15 TABLE SPEC(ACC,ACC) FUNCTIONAL FORMS OF PENALTY FUNCTION

16	 LABOR HOUSE) HOUSE2 PROD1 PROD2
17 LABOR	 QUADO	 QUADO QUAD() QUADO

18 HOUSE1 RESID

19 HOUSE2 RESID

20 PRODI	 QUADO QUADO	 QUADO

21 PROD2	 QUADO QUADO	 QUADO

22

23 TABLE VAR(ACC,ACCP) VARIANCE OF UNBALANCED ESTIMATES

24	 LABOR HOUSE) HOUSE2 PROD1 PROD2

25 LABOR	 0.167	 0.833 0.038 0.063

26 HOUSE)

27 HOUSE2

28 PROD)	 0.167	 0.019	 0.071

29 PROD2	 0.400	 0.063 0,091

30

31 PARAMETER TOTAL(ACC) ESTIMATES OF ACCOUNT TOTALS /

32	 LABOR = 220, PROD1 = 190, PROD2 = 105 /

33	 WEIGHT(ACC) WEIGHTS OF ESTIMATED ACCOUNT TOTALS /

34	 LABOR = 22, PRODI = 38, PROD2 = 21 /;

35

36 SET ACCA(ACC) ACCOUNTS WITH ESTIMATES OF ACCOUNT TOTALS

37	 ACCN(ACC) ACCOUNTS WITHOUT ESTIMATES OF ACCOUNT TOTALS;

38 ACCA(ACC) = YES $ TOTAL(ACC);

39 ACCN(ACC) a YES ; ACCN(ACCA) = NO;

40

41 PARAMETER CT(ACC,ACC, •) CELL DESCRIPTION TABLE

42	 AT(ACC,•)	 ACCOUNT DESCRIPTION TABLE;

43

44 CT(ACC,ACCP,'TINIT')	 = SAMO(ACC,ACCP);

45 CT(ACC,ACCP,'TFUNC')	 = SPEC(ACC,ACCP);

46 CT(ACC,ACCP,'TWEIGHT .) = VAR (ACC,ACCP);

47

48 AT(ACCA,'YINIT') = TOTAL(ACCA);

49 AT(ACCA,'YFUNC') = QUADO;

SO AT(ACCN,'YFUNC') = RESID;
51 AT(ACCA,'YWEIGHT') = WEIGHT(ACCA);

52

53 MODEL BALANCE / ACC, AT, CT /
54

55 SOLVE BALANCE USING SAMBAL;

Figure 1: The GAMS/SAMBAL statement of a simple model for estimating
a Social Accounting Matrix

17

References

[1] Bisschop and A. Meeraus. On the development of a general algebraic
modeling system in a strategic planning environment. Mathematical
Programming Study, 20:1-29, 1982.

[2] A. Brooke, A. Drud, and A. Meeraus. High level modeling systems and
nonlinear programming. In P.T. Boggs, R.H. Byrd, and R.B. Schnabel,
editors, Numerical Optimization 1984. SIAM, 1984.

[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User's Guide,
Release 2.25. The Scientific Press, 1992.

[4] H. Dahl, A. Meeraus, and S.A. Zenios. Some financial optimization
models: I. risk management. In S.A. Zenios, editor, Financial Opti-
mization, pages 3-36. Cambridge University Press, 1993.

[5] G. B. Dantzig. Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, 1963.

[6] S. Dirkse, M. Ferris, P.V. Preckel, and T. Rutherford. The GAMS
callable program library for variation and complementarity solvers.
Working paper, Computer Science Department, University of Wiscon-
sin, Madison, WI, 1992.

[7] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear
optimization problems. Mathematical Programming, 31:153-191, 1985.

[8] A. Drud and D. Kendrick. HERCULES: a system for large economy-
wide models. Technical report, Development Research Department,
The World Bank, 1986. Technical report.

[91 R. Fourer. Modeling languages versus matrix generators for linear pro-
gramming. ACM Transactions on Mathematical Software, 9(2):143-
183, June 1983.

[10] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling
Language for Mathematical Programming. The Scientific Press, 1993.

[11] A. M. Geoffrion. Introduction to structured modeling. Management
Science, 33(5):547-588, 1987.

18

[12] L.S. Lasdon, A.D. Waren, A. Jain, and M. Rather. Design and testing of
a generalized reduced gradient code for nonlinear programming. ACM
Transactions on Mathematical Software, 4:34, 1978.

[13] 0. Morgenstern. On the accuracy of economic observations. Princeton
University Press, Princeton, New Jersey, 1963.

[14] F. Van Der Ploeg. Reliability and the adjustment of sequences of large
economic accounting matrices. Journal of the Royal Statistical Society,
145:169-194, 1982.

[15] G. Pyatt and J. I. Round, editors. Social Accounting Matrices: A Basis
for Planning. The World Bank, Washington, D.C., 1985.

[16] T. Rutherford. Extensions of GAMS for complementarity problems
and variational inequalities with examples arising in economic equilib-
rium analysis. Working paper, Department of Economics, University of
Western Ontario, 1992.

[17] M. H. Schneider and S. A. Zenios. A comparative study of algorithms
for matrix balancing. Operations Research, 38:439-455, 1990.

[18] J. Singhal, R.E. Marsten, and T.L. Morin. Fixed order branch-and-
bound methods for mixed-integer programming: the ZOOM system.
ORSA Journal on Computing, 1(1):44-51, 1989.

[19] S. A. Zenios. Incorporating network optimization capabilities into a
high-level programming language. ACM Transactions on Mathematical
Software, 16:113-142, 1990.

[20] S.A. Zenios, A. Drud, and J.M. Mulvey. Balancing large social account-
ing matrices with nonlinear network programming. Networks, 17:569-
585, 1989.

19

file: math.tex: processed 1/12 at 10:48a.m.

Mathematica for Economists

Hal R. Varian University of Michigan January 1994

■ Introduction

Mathematica is a computer program that can help you do mathematics. You can use it to do symbolic, numeric and
graphical analysis. Mathematica is sold by Wolfram Research. Inc and runs on a variety of computers including
MS-Windows, Macintosh, and Unix platforms. The cost of Mathematica depends on the version and the platform: it
ranges from about $200 for a student version to several thousand for a multiple-user workstation version. You can
contact Wolfram Research, Inc. by sending e-mail to info@wri.com, or calling them at 217-398-0700.

■ Design of Mathematica
There are two parts to the Mathematica program: the kernel and the front end. The kernel is the basic computational
engine and is more-or-less platform independent; the front-end is slightly different for each platform. These two
programs can be run separately: the front end can run on a lowly Macintosh while the kernel executes on a remote
workstation or a supercomputer. This allows you to do your computations on whatever size computer you choose and
still work in exactly the same user environment.

Wolfram Research has developed a set of protocols known as MathLink that allow the :Mathematica kernel to
communicate with other programs running on a given machine. This feature allows the user to combine functionality
of various programs in a convenient way. For example, you can manipulate numbers in a spreadsheet and then send
them to Mathematica for further processing. Or you can process Mathematica output in TEX or some other
formatting system. You can also send parts of Mathematica computations off to a special-purpose computer package
such as IMSL or S. Various packages are available from third party suppliers that make this kind of inter-process
communication very easy to implement.

You load packages into Mathematica using<< < as in the following examples.

Inr1]:= «Statistics'DescriptiveStatistics'
<CArsers/hal/Papors/Mathematicednash.m

■ The front end

Mathematica keeps a record of a session in a format known as a Notebook. This is an ASCII file and is essentially
machine independent. It allows the input and output of Mathematica (including graphical output) to be organized in a
convenient way. A Notebook has an outline structure that allows parts of the session to be hidden or open as the user
desires. A Notebook can serve as an "audit trail" to ensure that calculations or manipulations of data can be easily
reproduced.

Notebooks can themselves be used as inputs to other programs. For example. WRI distributes a package that will
convert Notebooks to TEX format so that the material in the Notebook can be typeset. Several books have been
produced using this technique. In fact, this article has been produced using this system.

1

file: math.tex: processed 1/12 at 10:48a.m.

2	 Mathematica for Economists

■ Programming

Mathematica contains a complete programming language that can be used to automate various kinds of computations.
The language is based on the philosophy of "functional programming." This means that the fundamental operation
in the language is the application of a function.

Adherents of functional programming argue that it is a very efficient way to program. Functional programming allows
you to build up small pieces of a program, interactively debug them, and string them together to achieve a desired
end. Other functional languages are APL and Lisp. People who have used these languages will find Mathematica
programming to be quite congenial.

Mathematica also has tools for procedural programming, which is the style of programming used in Fortran, Pascal
and C. However, these tools--DO loops, WHILE loops, and the like--are normally not the best way to program
in Mathematica. One advocate has gone so far as to proclaim "If you aren't programming functionally, you're
programming disfunctionally!"

■ An example

The operation of the Mathematica programming language is best illustrated by an example.

Suppose that you want to compute the square root of 3 using Newton's method. The difference equation that you want

to iterate is:

1	 3
zr+i = 2 (xr + —xt) •

In order to write a program to calculate this expression using C or Fortran you would need to declare the variables,
construct a DO or a for loop, and output the results. In Mathematica you simply declare the function:

In(1):= newton[:_] 1(1/2 (it + 3/z)]

The expression on the left is the function declaration. x_ defines the dummy variable that will be the argument to the
function, and NC J indicates that you want the expression inside the bracket to be converted to a real number.

Once the function has been defined, you then apply the built-in function NestList to calculate the first 5 terms
starting from x = 1:

Int2.1:■ II•stList [nerton,1.0,5]

Outnja (I., 2., 1.75, 1.73214, 1.73205, 1.732051

If you want to iterate until the result no longer changes, simply use the FixedPoint function.

In(3j:a FixecIPoint [newton 4 .0]

Out W. 1.73205

■ Defining functions

Mathematica contains a number of functions that operate on lists of objects. You can also write your own functions.

math.tek: processed 1/12 at 10:48a.m.

Programming	 3

For example, Mathematica contains a derivative function that will calculate the symbolic derivative of an expression:

In (1]:= Igen, x]

Outrria	 -1 + n
n

You can define a gradient and Hessian function as follows:

In[23:= Grad[f.,x_] := Magraf,alk,x]
Hessian[1_,xi := Grad[Grad[2,4,4

Here the # symbol is a placeholder that will take on the values in the list x. The definition of Grad "maps" the
D(f,#] over the list x={x1,x2) to produce a new list {D[f,x1],D[f,x2]}. The definition of Hessian applies Grad
to Grad. Here are some examples.

In[3]:= Grad[x1-a x2 -b, {x1,x2}]
Outr33=	 -1 + a b	 a -1 + b

{a x1	 x2 , b xl x2	 }

In[4]:= MatrixForm[Hassian[xi-a x2'b, {x1,x2}]]

Out[4] . 	 -2 + a b	 -1 + a -1 + b
(-1 + a) a xl	 x2	 a b x/	 x2

-1 + a -1 + b	 a -2 + b
a b x1	 x2	 (-1 + b) b xi x2

Similarly the following definition will produce the first-order conditions for optimizing a function:

FOCtI_,x_] := Nap[(1)(f,$]==0)4,4

In[6]:= FOC[xi-a x2'b,{xi,x2}]

Out[6]=	 -1 + a b	 a -1 + b
{a xi	 x2 == 0, b xi x2	 == 0}

■ Programming constructs

Mathematica contains a number of programming constructs for iterating, branching, etc. However, in general it is
best to avoid iteration and indices if possible. Often there is a built in function that will do some particular sort of
manipulation of a list of values. For example, recently I had a list of price vectors, (pt) and associated consumption
bundles (x t) fort = 1, T. I wanted to calculate the matrix (ps x t) for t, s = T for some revealed preference
calculations. This is simple to do using iteration and indices of course, but that is quite inelegant. After a short
search through the Mathematica book and a bit of experimentation I came up with the following solution that uses
Mathematica's generalized inner product function.

In(11:s	 vMatrix(p_,x_] := Inner[Times,p,Transpose[x],Plda]

To verify that this works, define some vectors and apply the function:

In[2.7:s p.({pil,p12},{p21,p22},{p31,p32});
x=“x11,x12},{x21,x22},1x31,x3211:

file: math.tex: processed 1/12 at 10:48a.m.

4 Mathematica for Economists

//1633:a

Our[3]=

MatrixForm[vMatrix[p,x)]

pll x11 + p12 :12	 pit x21 + p12 x22

p21 :11 + p22 :12	 p21 x21 + p22 x22

p31 x11 + p32 x12	 p31 x21 + p32 x22

p11 x31 + p12 :32

p21 x31 + p22 x32

p31 :31 + p32 x32

This example illustrates a nice point about Mathematica programming: if you know the formula for what you want,
you can apply your function to symbolic values to see if it produces the right thing. Once it does, you can switch to
numbers.

■ Pattern matching

At the most fundamental level, Mathematica operates by replacing patterns of expressions with other expressions.
This means that Mathematica has a sophisticated, built-in pattern matching engine. This pattern matching facility is
also available to the user.

For example, economists often want to solve systems of equations that have a "Cobb-Douglas" structure:

,e11,012 — b 1 1

4 21 422 = b2.

An easy way to do this is to take a log transform to construct the linear system

a ll log xl + a i2 log z 2 = log bi
a21 log r i + a22 log x 2 = log ba.

Mathematica won't do this kind of transformation automatically, nor should it this particular transformation is only
valid for positive real numbers. On the other hand, it would be nice to automate this sort of thing. Here' \s how to do
this in Mathematica.

First we define the rules that translate the pattern x° yb = c into a log r +Hog y log c and the reverse transformation.
(The semicolon at the end of the expression inhibits the output which, in this case, is uninteresting.)

InD.7: a Clear [x]

111(22:* lognules•fx_- a- y_-b_ as c_ -> a Log[x] + b Log[y]amLogIcil;

In[3j:= eaulessMaexi -> (a_ eLagbi + c_sLog[d_])/ei ->
(x -> 0-(a/e) c-(00));

Now let's apply this to solving the following system of equations.

In(4.1: a eqns.{xl - all x2 -a21 se b1,11-1.12 x2 - a22 2.4 b2}

Out (4.7°	 ail	 a21	 a12	 a22
(xi	 x2	 == bl, xi	 x2	 == b2}

In(5):= logqns=eqns/.1ogiules

Ole: math.tex: processed 1/12 at 10:48 a.m.

Books, magazines and newsletters 	 5

OutC5J= (all Log[xl] + a21 Log(x2] == Log[b1],

.12 Log[xl] + a22 Log[x2] == Log[b2]}

112 [6.1:= ans=Simplify[SolvellogEons,(Logx1],Log(x2]}]]

Out(61=	 -(a22 Log[151]) + a21 Log(b2]
({Log(xl] ->

	

	
a12 a21 - all ei22

-(a12 Log[b1]) + all Log(b2]
1}Log(x2] ->

	

	
-(a12 .21) + all a22

Ing]:= ans/.eltules

Outrn=

	

	 b2/(a12 a21 - all a22)
.21

{{xi -> 	
a22/(a12 a21 - ail a22)

b1

b2/(-(aI2 a21) + all .22)
all

x2 - >
a12/(-(a12 .21) + all .22)

bl

This particular set of rules is pretty minimal. A really useful set of rules for doing and undoing log transforms
should be more sophisticated. Nevertheless, this example illustrates some of the power of the pattern
matching capabilities.

■ Packages

Sets of Mathematica commands can be collected together into Packages. These are plain ASCII files that can be
input into other Mathematica programs to do specific calculations. The Mathematica distribution comes with a
number of Packages designed for specific sorts of calculations such as combinatorics. linear algebra, statistics, and so
on. Many authors have produced Packages and Notebooks that for various uses that they have made available to other
users through articles, books and on-line systems.

■ MathSource

Wolfram Research maintains a repository of contributed Mathematica materials that are available via e-mail and
ftp. This repository is known as MathSource. The easiest way to start using MathSource is to send e-mail to
mathsource@wri.com that contains the message help intro. MathSource will return some documents that
explain how to retrieve files.

■ Books, magazines and newsletters

The standard reference book for Mathematica is written by Stephen Wolfram and titled Mathematica. The
ISBN number is 0-201-51502-4. The basic journal is The Mathematica Journal, located at 600 Harrison Street,
San Francisco, CA 94107. There is also a nice newsletter called Mathematica in Education available from the
Department of Mathematics, Sonoma State University, 1801 East Cotati Avenue, Rohner Park, CA 94928. Finally,
Variable Symbols, 2161 Shattuck Avenue, Berkeley. CA 94705-1313 publishes some useful Mathematica materials.

flle: ma:113ex: processed 1/12 at 10:48a.m.

6	 Mathematics for Economists

III Applications in economics

In the following sections I describe some applications of Mathematica in economics. Obviously the list is not
complete, but I hope to give the reader some idea of potential uses. Many further examples can be found in Varian
(1993).

■ Comparative statics

Economists spend a lot of time analyzing optimization problems using the techniques of comparative statics. Although
these computations are very simple, they can be quite tedious. Mathematica can help to automate this process.

For example, here is a calculation that derives the comparative statics for a profit maximizing firm with two
inputs. First we define the objective function:

In[1]:= profit = f[xl,x2) - vi xi - v2 x2

Cutr/j= -(vi xi) - v2 x2 It fist, x2]

Next we calculate the first order conditions for profit maximization and the Hessian using the functions that
we have defined earlier.

In (2] :•• focanFOC[profit,{xl,x22]

Out (23= 	(1,0)	 (0,1)

(-vi + f	 [xi, x2] =it 0, -v2 + f	 [xi, x2] =a 0)

In (3,7	 Hess = Hessiart[profit, Ott , x2}]

Out (3j=	 (2.0)	 (1,1)
{{t	 [xi, x2], f	 c23),

(1,1)	 (0,2)
(f	 [xi, x2], f	 Ex', x2]).}

Note Mathematica's notation for derivatives: Pij) is the ith derivative of argument 1 and the ith derivative of
argument 2.

Next we totally differentiate the first-order conditions.

In (43:=

OutRis
tottallarivativ• • Dt [rocs]

(1,1)
{-Dt[el] + Dt [X2] f	 [xi, x2] +

(2,0)
Dt [xl] f	 x2] =is 0,

(0,2)
-Dt[v2] + Dt[x2] f	 [xl. x2] +

(1,1)
Dt[xI] f	 x2] ==

■

Note that Mathematica uses the notation of Dt[xl.] for the differential element dr i . Now we simply solve the system
of equations and substitute out for the determinate of the Hessian:

file: math.tex: processed 1/12 at 10:48 a.m.

Applications in economics	 7

Mai: a Simplify[Solve Ct otalDerivative ,{Dt Cx17 ,
Dt Cx27 17 7 / .{Det Ness] ->dHees).

Out tun	 (0,2)	 (1,1)

	

Dt Cv17 f	 C:1, x2] - Dthi27 I	 Cr/ , x2]
{{Dt C:17 ->

	

	
dHess

Dt Cx27 ->

	

(1,1)	 (2,0)
- (Dt Co1.7 f	 Cx1, :27) + Dt Cv21 f	 [x1, :27
	 H.

dHess

In standard notation, these expressions say

hzdtut + indw2dr i =
dHess

dx 2 = hidw2-1- f2idu;1

dHess

These conditions contain all of the normal comparative statics conclusions about cost minimization.

■ Dynamic programming

Dynamic programming is another calculation that is straightforward but tedious. Consider, for example, the
problem of allocating consumption over time. The optimal solution can be characterized through the use of
the Bellman value function:

Vt (w) = max u(c) a 14+1 ((w — c)r).

For certain classes of u(c) it is possible to find closed-form solutions for Vt (w). Solving the Bellman recursion
numerically or symbolically is simple using Mathematica. For example. here is how you would write the Bellman
equation for the case of log utility and a five-period time horizon:

InCII:= V Cy_ ,57 :a Log [v]
V De_
Module [{c},
Log [c] + alphaMT [(v-c)•11,t+1]/ • Solve CD CLog[c]

+ elpha*V [(v-c) •It,t+17 ,c] n0,c7 CI1777

The first definition gives the boundary condition. The second definition gives the recursion.

The Module construction declares c to be a local variable. Subsequently, we have the recursive definition of the
value function; the notation a/.b means "substitute b into a." In this case b contains the optimal solution and a is
the objective function.

Calculating V(w, 2), for example. gives us:

InC27: . SimplifyU[11,27]

file: math.tex: processed 1/12 at 10:48 a.m.

a	 Mathematics for Economists

Out we
Log 	 +

2	 3
+ alpha + alpha + alpha

alpha It w
alpha Log[

2	 3
+ alpha + alpha + alpha

2 2
2	 alpha a w

alpha Log[+
2	 3

1 + alpha + alpha + alpha

3 3
3	 alpha B. w

alpha Log[
2	 3

1 + alpha + alpha + alpha

The optimal consumption in period 2 is given by

Int?) := Solve [D [Log [c] + alphas!, [(w-c)•r ,3] ,clew0 	[
Out (31=

-> 	 }
2	 3

1 + alpha + alpha + alpha

■ Nash equilibria

In a two-person game with a finite number of strategies, calculating all Nash equilibria is a straightforward but tedious
enumeration of Kuhn-Tucker conditions. Dickhaut and Kaplan (1993) have written up a Mathematica package that
automates this calculation. For example, here are all Nash equilibria in the Battle of the Sexes.

Intl] :• srathEft(2,1),(0.034,((0,0),(1,2)}))

Out Ea.	 2 1	 1 2
(((0, 0, (0, II), ({-, -}. {-,	 ((I, 0), (1, 0))1

3 3	 3 3

■ Econometrics and statistics

One of the most promising and comparatively underexploited areas for applications of Mathematica is in econometrics
and statistics. Mathematics can serve as a computational engine for special-purpose calculations, as a symbolic
engine for deriving expressions , and as a tool for data analysis.

Symbolic expressions

Mathematics can simplify various statistical calculations. As an example, let us define a Normal distribution:

In[1]”1 NormalDisto [x_ on_ ,
ExPE-((x-ta) /s) 	/	 / (s Sort [2*P1])

Consider the problem of choosing a forecast y so as to minimize some expected loss involving x and y. The
LINEX loss function (see Varian(1975) and Zellner (1986)) has the form:

math.tex: processed 1/12 at 10:48a.m.

Applications in economics	 9

In(2)	 Linextossla_a_,y_1	 Exp[a•(y-x)] - a•(y-x)

We are interested in the expected loss. The easy way to calculate this is to recognize that the first term is just the
moment generating function for the Normal distribution. But if we don't recognize this, we can easily calculate the
expected loss between - ao and +oo using Mathematica:

In[3] ExpectedLosalaTogether[Poserapand[
Int estate CLinexLosa (a , x , y] •

lormalDistn[x,m,s],{x,-Intinityjntinity}]n

Out(33=	 2
(a (-2 m + a s + 2 y))/2

(2 5	 +2am-2ay-

a
(a - --) a

2	 2
(a (-2 m + a s + 2 y))/2

Sqrt [2]

(-a + --) a
2	 2

(a (-2 m+ a a + 2 y))/2
Sri[]) / 2

Sqrt [2]

In Mathematica notation, Erf[z] =	 f; e-`2 dt. From the definition it is easy to see that Erf[-r] =
order to get Mathematica to make this substitution, we use the function ExpandAll.

In[4] : a ExpectedLoss3=FapandAll[ExpectedLossl]

Out (4.1 a	2 2
-(a m) + (a s)/2 + a y

+am-ay

Finally we solve for the loss-minimizing estimate and use Simplify and PowerExpand to put it into a simple form.

InC5j	 ans=Solve CD [Expect edLoss3, y] ==0 ,y] [[1]]

OuttsJ=	 2 2	 2 2
a m - a s	 a II

Log[E	 Sqrt[E]]
{), ->

	

	 }
a

In(6)	 Simplify[PowerEapand [ana]]

Out (63=	 2
a s

-
2

The loss minimizing estimator is the mean, biased downwards by an amount that depends on the variance
of the distribution.

Special purpose calculations

file: mathsex, processed 1/12 at 10:48a.m.

10	 Mathematica for Economists

The bootstrap is a well-known tool for estimating the sampling distribution of an estimator. Implementing this in
Mathematica is trivial. Here is a function that resamples from a list.

In[1]:a ResanpleClistj :a Usti(
7able[RandomUnteger,{1,Lengthaisbl}3.
(Length[list]}]]]

To test this we apply it to a symbolic list:

in[2]:= Resanple((a,b,c,d,e,f,g,h})

Out[2ja {b, f, b, d, a, f, h. d)

In[3]:. Resample[(a,b,c,d,e,f,g,h)]

Out(3.7+ {e, f, c, c, e, d, h, h}

Now I generate a sample of 25 random numbers; the semicolon tells Mathematica not to print them out.

In(42:a theSampleaTableptandom[],(25)];

Here I resample from the list 10 times and compute the mean of each resample.

112[5]:r bootListaTabletNean[kaaample[theSample]),{10})

Outr5j= {0.529655, 0.473363, 0.62481, 0.586473, 0.543386,

0.547182, 0.387835, 0.464449, 0.593265, 0.633631}

We can write a function that will take a sample and a statistic and apply this statistic to resampled draws
from the original sample.

In[6]:s bootIt[sampla_,n_,statj 	 7ablarstat[Resaisplaisamplan,(}]

In(71:= bootIt[theSanplet,10,Nedian]

Out[71' {0.520299, 0.482829, 0.398446, 0.526447, 0.482829,

0.520299, 0.398446, 0.392464, 0.445672, 0.526447}

Data analysis

Mathematica comes with a number of standard statistical routines. Heisely (1993) has provided a number of additional
routines for classical econometric calculations. Ley and Steel (1993) have provided routines for Bayesian calculations.
Stine (1993) describes some methods for time series analysis.

It is also easy to write your own routines. For example, I recently used Mathematica to calculate "efficiency indices."
Suppose that you have a set of factor prices, factor choices, and output levels for n firms denoted by (x i , yi). The
efficiency index of firm i is given by

win
ei = min

—Yi>_Y1 Wirj

file: meth.tex: processed 1/12 at 10:48 a.m.

Applications in economics	 11

Here we look at each firm that produces at least as much output as firm i to see if it's production plan would cost less
than firm i's plan assuming both firms faced factor prices w;. Furthermore, I wanted to keep track of all the elements
over which the minimization was taken so I could see how many firms appeared to be more efficient than the firm in
question.

This is not a difficult calculation, but there is no ready-made package to do it.

In Mathematwa all I had to do was to write:

In(1.7;* eft	 j—vt_ ati	 Oat [Cjil .xt ([1.]])/(st [[j]] .xt [[j]])

eff Cvs_,xs_	 :=
Map [Union,

Table [If Cy[Cin	 r[[il]	 [efficitt ri • i pis , xsi 	 ,1].
I 'Length [y]}, ,1 ,Length[y]}]]

1n[23 . = effListrieff[va,Y];

InC3J:= minEff=Map[Min ,effList]

The first expression simply calculates the cost ratio. The second expression compiles a list of all the efficiencies
that are less than 1 for each firm. The third expression actually does the calculations, and the fourth
expression calculates the minimum efficiency. Once I had these efficiencies it was easy to look at a. histogram,
see how they changed when different inputs were used, and so on. Because the calculations were so flexible
it was much easier to experiment than it would be if I had used a Fortran or C program to do this.

■ Graphics

One of the most useful things that Mathematica can do is to produce plots. Here are a few economics graphs.

Revealed preference

This is the output of a function that takes as input a list of price-quantity pairs, plots them, and then
high ights the observations that violate the Weak Axiom of Revealed Preference.

20
	

40
	

60
	

80 100

file: math.tex: processed 1/12 at 10:48a.m.

12	 Mathematica for Economists

Cournot equilibrium

Here are the commands to generate the isoprofit lines and reaction curves depicting a Cournot equilibrium. Although
I've chosen a very simple example. Mathematica has no problem dealing with quite complicated profit functions---
including ones with kinks and discontinuities.

	

In(11:4, Prof it1 (xl_ ,s2_]	 (100-xl -S2)•X1
	Prof it2(x1_ ,x2_3	 (100-x 1-x2)*x2

Ina] • pr1=ContourPlot {Prof it1	 ,123 , {x1 ,G ,50} , (x2 ,0	 ,
CoutourSho.ding-)False,DisplayFunction->Identity]

Out (23= -ContourGraphics-

In (3): = pr2=ContourPlot [Prof it 2[xl , x2) ,{x1 ,0 ,501 , (x2 ,0 ,S0/ ,
ContourShading->Falsa,DisplayFunction->Identity]

Out (31= -ContourGraphics-

MN] :=1 Solve [D(Profitl[zl,x2] ,x0==0,x1] [[1]]

Out(4. •	100 - x2
{s1 -> 	 }

2

In[S]:= r1=ParametricPlot Ef (100-x2) /2,x21 ,{x2,0,50},
DisplayFunction->/dentity]

r2=ParametricPlot 	 , (100-x1)/2} , Or1
DisplayFunct ion->idantity]

In[6]: • Shoo [{pr1 ,pr2, r1 ,r2) ,DisplayFunct ion->$DisplayFunct ion]

0	 10	 20
	

30	 40
	

50
Dotal= -Graphics-

50

90

30

20

10

0

• Teaching

file: math.tex: processed 1/12 at 10:48a.m.

References	 13

I have used Mathematica to prepare problem sets for both graduate and undergraduate courses. It makes it easy to
get the graphs right and to make sure that the calculations come out in round and/or realistic numbers. Lately I have
realized that it is silly to compose problems on Mathematica and have the students do them by hand: they should have
access to the same kinds of tools the professor has access to. In the near future I hope to have some self-contained
economic exercises and examples available in Mathematica.

I have prepared a set of Notebooks that go through some of the calculations used in my textbook Microeconomic
Analysis. These are available via MathSource as items 0202-419. I have also experimented with a number of
undergraduate exercises. Since many universities are now introducing students to Mathematica and other symbolic
algebra systems in calculus courses, it should be easy to use these tools in more advanced undergraduate economics
courses.

■ References

Seisely, David (1993) "Econometrics.m: A Package for Doing Econometrics in Mathematica," in in Varian (1993).

Dickhaut, John and Kaplan, Todd (1993) "A Program for Finding Nash Equilibria," in Varian (1993).

Ley, Eduardo and Mark F. J. Steel (1993), "Bayesian Econometrics: Conjugate Analysis and Rejection Sampling,"
in Varian (1993).

Stine, Robert A. (1993) "Time Series Models and Mathematica," in Varian (1993).

Varian, Hal (1974) "A Bayesian Approach to Real Estate Assessment," in S. E. Fienberg and A. Zenner, Studies in
Bayesian Econometrics and Statistics, North-Holland Press, Amsterdam.

Varian, Hal (1993) ed. Economic and Financial Modeling with Mathematica, TELOS/Springer-Verlag, New York,
1993.

ZeLlner, A. (1986)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

