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FINANCIAL INTERMEDIATION AND REGIME SWITCHING

IN BUSINESS CYCLES

Costas Azariadis and Bruce Smith

ABSTRACT

We study a variant of the one-sector neoclassical growth model of Diamond in which

capital investment must be credit financed, and an adverse selection problem appears in

loan markets. The result is that the unfettered operation of credit markets leads to a one-

dimensional indeterminacy of equilibrium. Many equilibria display economic fluctuations

which do not vanish asymptotically; such equilibria are characterized by transitions between

a Walrasian regime in which the adverse selection problem does not matter, and a regime

of credit rationing in which it does. Moreover, for some configurations of parameters, all

equilibria display such transitions for two reasons. One, the banking system imposes

ceilings on credit when the economy expands and floors when it contracts because the

quality of public information about the applicant pool of potential borrowers is negatively

correlated with the demand for credit. Two, depositors believe that returns on bank

deposits will be low (or high): these beliefs lead them to transfer savings out of (into) the

banking system and into less (more) productive uses. The associated disintermediation (or

its opposite) causes banks to contract (expand) credit. The result is a set of equilibrium

interest rates on loans that validate depositors' original beliefs.

We investigate the existence of perfect foresight equilibria displaying periodic

(possibly asymmetric) cycles that consist of m periods of expansion followed by n

periods of contraction, and propose an algorithm that detects all such cycles.
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1. INTRODUCTION

Monetary economists have frequently expressed the view that the financial system is

an important source of -- and propagation mechanism for -- cyclical fluctuations. Indeed,

Keynes (1936), Simons (1948), Friedman (1960) and many others have argued that the free

and unregulated operation of financial markets can lead to indeterminacy of equilibrium

and "excessive economic fluctuations," even in the absence of shocks impinging on the rest

of the economy. In modern terms, this argument claims that the financial system itself is a

source of endogenously arising economic volatility.

This view has a long empirical foundation. Most of the pre-World War II recessions

were associated with substantial transfers of resources out of the banking system and into

other assets. For instance, most of the pre-World War II recessions described by Friedman

and Schwartz (1963) were associated with increases in the currency-deposit ratio.

Particularly severe recessions were associated with particularly sharp increases in this ratio

(that is, with bank panics). And even in the last three decades, several recessions have

been accompanied by phenomena termed "disintermediation" or "credit crunches." In all of

these episodes the volume of bank-extended credit declined, and "credit crunches" have

often been associated with the increased incidence of non-price rationing of credit.'

Why do we observe sharp fluctuations in the volume of intermediated credit? Can

these fluctuations "cause" business cycles, or are they merely a symptom of them? Is credit

market activity a potential or (as many have argued) a necessary source of endogenously

arising excess fluctuations? Are there economic configurations which dictate that credit

market activity must be associated with endogenous economic volatility?

This paper considers the relationship between credit and production in a simple

model of dynamic general equilibrium, namely the non-monetary overlapping generations

economy with production introduced by Diamond (1965). 2 We modify that economy in

only two respects: we introduce some intra-generational heterogeneity, and we force some

kinds of capital investment to be credit financed. Under complete public information
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about the characteristics of potential borrowers, we show that both of these modifications

are purely cosmetic, and make no qualitative difference to the properties of competitive

equilibria. Specifically, given any positive initial capital stock, the economy monotonically

approaches a non-trivial steady state equilibrium, which is unique under our assumptions.

Thus there is no scope either for indeterminacy of equilibrium, or for endogenous

fluctuations.

Heterogeneity makes a lot of difference when there is private information about

borrower characteristics (here ex ante information about loan repayment probabilities). In

the presence of an adverse selection problem, lenders will seek to elicit from borrowers

information regarding loan repayment probabilities. Lenders will do so by structuring the

loan contracts they offer -- which specify both loan quantities and interest rates -- in order

to induce potential borrowers to self-select or, in effect, to reveal their type. Thus all loan

contracts offered must be incentive compatible. Incentive compatibility can be attained in

two distinct ways. In one, the full-information exchange of credit may be consistent with

self-selection in the loan market, in which case it can be duplicated under private

information by appropriately chosen loan contracts. Alternatively, the exchange of credit

that occurs under full information may not be incentive compatible, in which case self-

selection constraints will bind on the choice of loan contracts. In this case lenders will use

credit rationing as a means of inducing self-selection.

Interestingly, there is a range of values for the current capital stock (equivalently, for

factor prices) under which the full information allocation of credit is incentive compatible.

Here it is feasible for the equilibrium law of motion of the capital stock to coincide with

that which obtains under perfect information. There is also a range of capital stocks for

which incentive constraints necessarily bind; here credit must be rationed and the law of

motion of the capital stock yields lower values relative to the situation of complete

information. In addition, under conditions we describe, there is a non-trivial closed interval

of current capital stocks for which either binding or non-binding incentive constraints are
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consistent with equilibrium in the loan market. When this happens, the economy can be in

either of two regimes: a Walrasian regime in which competitive markets allocate credit in

the standard way, and a regime of credit rationing. If credit is rationed, resources leave

the banking system and the allocation of investment becomes less efficient in a manner we

will make precise. Since each of these regimes is consistent with equilibrium, equilibrium is

indeterminate: the economy can follow either the full information or the private

information law of motion for the capital stock. Moreover, as we will demonstrate, the

economy can switch from one law of motion to the other in either a deterministic or a

stochastic manner. The result is that there will be fluctuations in output and the capital

stock, and these fluctuations need not dampen over time. Thus both indeterminacy of

equilibrium and "excessive" fluctuations can be observed when agents are privately

informed about loan repayment characteristics.

Perhaps more interestingly, our model economy generates endogenous reflective

barriers, a floor below which incentive constraints cannot bind in equilibrium, and a ceiling

above which Walrasian credit allocations cannot be incentive compatible. We then use the

presence of these barriers to examine two possible configurations of equilibria.

Since our model economy generates two distinct laws of motion for the capital stock

(one corresponding to Walrasian allocations in the credit market, and one corresponding to

credit rationing), it may possess two distinct steady state equilibria: one corresponding to

Walrasian outcomes and another corresponding to credit rationing. If these two steady

states lie inside the reflective barriers they are both equilibria, as are various paths that

approach either of them monotonically. In addition, there is a large set of equilibria in

which the economy endogenously switches between the two laws of motion. Indeed, we

demonstrate the existence of equilibria in which m periods of expansion are followed by

n periods of contraction (and so on) for every pair of integer values (m,n). Moreover, all

such equilibria are asymptotically stable, so that the economy generates a high dimensional

multiplicity of equilibria displaying asymmetric cyclical fluctuations when m n.
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It is also possible that the two steady state equilibria lie outside the reflective barriers,

in which case neither one constitutes a legitimate equilibrium. In this case, the economy

does not admit any equilibrium with monotonic time paths in the capital stock or output:

all equilibrium sequences have turning points, and fluctuations must be observed along

every equilibrium path. We derive necessary and sufficient conditions for the existence of

deterministic (m,n) cycles (m periods of expansion followed by n periods of

contraction). We also propose an algorithm which identifies all such periodic cycles, and

isolate the largest pair (m,n), which we associate with the maximally persistent periodic

orbit. Asymmetric cycles with m > n (expansions are longer and shallower than

contractions) are found to exist if the "floor" of the economy is tighter than its "ceiling".

What happens when these fluctuations occur? When the economy transits from an

expansion phase to a contraction phase, resources leave the banking system and are

allocated to less efficient uses. This occurs because depositors (correctly, as it turns out)

conjecture that rates of return offered by the banking system will be low. As banks lose

depositors, less credit is available, and banks are forced to ration it. Hence contractions

are associated with disintermediation and "credit crunches." Moreover, when steady state

equilibria lie outside the economy's reflecting barriers, these phenomena cannot be

avoided. For economies with this property, indeterminacy and excessive fluctuations are

not merely possible but actually unavoidable.

To summarize, dynamic equilibria with adverse selection satisfy an unusual, set-valued,

discontinuous difference equation which contains two well-defined, partially overlapping

domains with distinct structural regimes. At intermediate values of economic activity the

two regimes overlap, permitting the economy to switch between them. The resulting

indeterminate equilibria may be indexed by a stochastic process that governs an unob-

served regime-switching variable in the manner proposed by Hamilton (1989, 1990). The

economic interpretation of this state variable is to regard it as an index of savers'

expectations about credit market conditions. An expanding body of evidence 3 suggests
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that such nonlinear mechanisms accord with the behavior of many aggregate time series.

The remainder of the paper proceeds as follows. Section 2 lays out the environment

and the nature of trades, and describes the equilibrium conditions that obtain when credit

is and is not rationed. Section 3 shows how the economy can transit between Walrasian

regimes and regimes of credit rationing, while Sections 4 and 5 examine the existence of

cyclical equilibria which display undamped oscillations. Section 6 contains a variety of

numerical examples of such equilibria, and Section 7 concludes.

2. GROWTH WITH ADVERSE SELECTION

A. Environment

We consider a simple variant of Diamond's one-sector neoclassical growth model. In

particular, at each date t = 0,1,... a new set of two period lived, overlapping generations

is born.4 Each generation is identical in composition, and consists of a continuum of

agents of measure one.

At each date there is a single consumption good, which is produced using a standard

constant-returns-to-scale production function with capital and labor as inputs. A capital

input of Kt combined with a labor input of Lt permits F(Kt,Lt) units of this good to

be produced at t. We let k t Kt/Lt denote the capital-labor ratio, and f(k t) F(kt,l)

denote the intensive production function. We assume that f(0) = 0, that f , (k) > 0 >

f"(k) Vk 0,	 and that f satisfies the usual [nada conditions. We also assume that the

consumption good can be stored: one unit of the good stored at t returns a units of the

good at t+1. Throughout we think of a as being relatively small, so that storage is a

relatively unproductive activity. Finally, the consumption good can be used to produce

capital; one unit of consumption placed in a capital investment at t returns one unit of

capital at t+1.

Within each generation, agents are divided into two types. A fraction y > 0.5 of

young agents are of type 1. These agents are endowed with one unit of labor when young,

and are retired when old. In addition, they have access to the storage technology just
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described, but they have no access to the technology for converting current goods into

future capital. A fraction 1-y < 0.5 of each generation is of type 2. Type 2 agents

cannot work when young, but are endowed with one unit of labor when old. In addition,

we assume that type 2 agents have no access to the goods storage technology, but that they

are endowed with the technology for converting current consumption into future capital.

Thus, in many respects, type 1 and 2 agents are mirror images of one another. Finally, we

assume that all agents care only about old age consumption, and are risk neutral. 5 In

particular, labor generates no disutility.

Notice that type 1 agents are natural lenders at any interest rate because they need to

provide for old age consumption. Type 2 agents are natural borrowers who need credit to

finance capital investments. Between borrowers and lenders stand financial intermediaries,

or banks, which accept deposits and extend loans. Their cost of doing so is zero.

Finally, there is a set of initial old agents who are endowed with a per capita capital

stock of ko > 0. We assume that capital depreciates at the rate 6 E [0,1].

B. Full Information

In this section we describe a competitive equilibrium of this economy under the

assumption of full information, and in particular that all allocations and the type of each

agent are publicly observable. We also assume throughout, without loss of generality, that

each type 2 agent (recall that these agents own capital) runs one firm and works for

himself.

At date t each young type 1 agent supplies one unit of labor inelastically, earning the

real wage rate w t. All of this income is saved, to be allocated between storage and bank

deposits. We let s t be per capita storage at t, so ywt - st is per capita deposits.

Deposits earn the competitive/gross return R t +1 between t and t+1, which both banks

and depositors treat as parametric.

Each young type 2 agent (firm) borrows b t, and uses it to produce a per firm capital

stock of Kt+1 at t. Loan market clearing, then, requires that
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(1-y)bt + s t = ywt

In addition, there will be a positive supply of deposits if, and only if, these weakly dominate

storage in rate of return, so that

a < R Vt

	

t'	 '

Old type 2 agents at t have the inherited (per firm) capital stock K t, which they

combine with their own labor plus N t units of young labor in order to produce output. In

addition, these agents have an inherited interest obligation of r tbm = rtKt, where rt is

the gross loan rate of interest, between t-1 and t, charged by banks. Then old type 2

agents have an income (consumption) level of

F(Kt,l+Nt ) - wtNt - r tKt + (1-6)Kt,

which they maximize with respect to N t. Hence if total labor input for the firm is L t = 1

+ Nt' we have

= F2(Kt,Lt)	 f(kt ) - k tf' (kt )	 w(kt); t > 0.	 (3)

Note that w'(k) > 0 holds for all k, and in addition we will assume that

w(k) is a concave function.

Assumption (a.1) holds if, for instance, F is any CES function with elasticity of

substitution no less than one.

We assume that there is free entry into banking, so that

	

rt = Rt	(4)

7

(1)

(2)

holds for all t 0. In addition, competition among banks for borrowers implies that banks

must offer type 2 agents at t the loan quantity which maximizes their lifetime utility:

F(bt, I +Nt+ 1 ) - wt + 1 Nt + 1 - Rt+ lbt + (1-6)bt . Hence
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Rt+1 = Fi (b t,Lt+i) + 1-6 = F1(Kt+1'/-1+1) + 1-6

fi(kt+1) + 1-6; t � 0.	 (5)

Finally, since a fraction 1-y of the population is firms and y is workers at each date,

clearly Nt = y/(1-y), and Lt = 1 + Nt = 1/(1-y). Thus

kt = Kt/Lt = (1-y)Kt = (1-y)bt.1 ; t > 1.	 (6)

It is now straightforward to describe the equilibrium law of motion for the capital

stock. Equations (1), (3) and (6) imply that

kt+ 1 = 7w(kt) -	 (7)

Suppose that f'	 + 1-6 > a. Then s = 0 holds, and (7) becomes(kt+1)

kt+ 1 = yw(kt) .	(7')

Under our assumptions, (7') describes an increasing, concave locus that passes through the

origin, as depicted in Figure 1. If yw 1 (0) > 1 holds, then there is a unique non-trivial

steady state equilibrium, denoted k° in Figure la.6 Given the initial per capita capital

stock ko, there is a unique sequence {k t } that monotonically converges to the steady

state. Thus, under full information, this economy can display neither indeterminacy nor

economic fluctuations.

C. Credit Rationing

Next we introduce private information and examine what occurs when incentive

constraints bind. Then, in Section 3, we examine a full general equilibrium in which

incentive constraints may or may not bind in an endogenous way.

We work with a simple structure of information; household type and storage activity

are private information, while all markets (both labor and credit markets) transactions are

publicly observed. These assumptions imply that young type 2 agents cannot credibly claim
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to be type 1 when young, since they are unable to supply labor at that age. Type 1 agents,

however, can borrow when young. If they do so, they must borrow the same amount (bt)

as type 2 agents, and they cannot work. In addition, type 1 agents are unable to produce

capital, and hence cannot function as producers in old age. Thus any type 1 agent who

borrows will be discovered as having misrepresented his type. In order to avoid punish-

ment, we assume that a dissembling type 1 agent will simply store what he borrowers and

"go underground" or abscond with his loan. Thus a loan made to a type 1 agent will never

be repaid.?

Given these circumstances, bank behavior must be modified in two respects. First,

loan contracts must earn non-negative profits. Let g t denote the fraction of type 1 agents

who claim to be of type 2. Since such agents never repay their loans (and all borrowers

borrow the same amount), banks earn non-negative profits iff

r	 > R	 { 1+u [A/(14.)]}; t 0.t+1	 t+1	 t

Equation (8) requires that type 2 agents, who actually repay loans, pay enough to cover the

defaults associated with loans to type 1 agents. Second, if A t < 1 holds, 8 type 1 agents

must do at least as well by working when young and saving as they would by claiming to be

of type 2. Working when young and saving generates a lifetime utility level of R t+ iwt at

t, while claiming to be of type 2 generates a lifetime utility level of ab t . Hence loan

contracts must satisfy the incentive constraint (or self-selection condition)

R	 w > ab • t >- 0.t+1 t	 t' 

Following Rothschild and Stiglitz (1976), we assume that intermediaries are Nash

competitors in loan markets; taking the deposit rate R t and the announced loan contracts

of other banks as given. As in Rothschild and Stiglitz, it is easy to show that any Nash

equilibrium contract earns zero profits, so that (8) holds with equality. In addition, it is

possible to show that any non-trivial equilibrium (that is, any equilibrium with kt > 0 Vt)

has At = 0 Vt. In particular, contracts induce self-selection, and pooling is not a

(8)

(9)
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possibility. 9

Thus, if an equilibrium with credit rationing exists, it continues to satisfy equations (3)

and (6). Therefore (9) reduces to

R	 w(k ) > ak	 /(1-y)t+1	 t	 t+1	 •
	

(9')

In addition, it is necessary that type 2 agents be willing to borrow; it is easy to show that

they are iff the marginal product of capital, inclusive of depreciation, exceeds the loan rate.

In short, the inequality

f '(kt+l) + " Rt+
	 (10)

must hold. If (10) holds as a strict inequality borrowers would like to borrow arbitrarily

large amounts; in this case the incentive constraint (9) [or (9')] holds as an equality and

determines the equilibrium loan quantity. Thus, when credit rationing obtains, (9') holds as

an equality.

Finally, in order for announced loan contracts (bt'rt+ 1 ) to constitute a Nash

equilibrium, it must be the case that no intermediary can offer an alternative contract

(1;t,ft+i ) which is preferred by type 2 agents, and which satisfies (8) for some p t. It is

straightforward to show that, if there is such a contract, it must be a pooling contract (iit

= 1) with ft+, Rt+ 1/(11) in order to satisfy (8). Moreover, a pooling contract will

attract type 2 agents iff R t÷i/(1-y) f (kt+i ) + 1-5 holds. 1° Since it is impossible to

observe a pooling contract in a non-trivial equilibrium, the existence of an equilibrium with

credit rationing requires that there be no pooling contract which type 2 agents prefer to

the contract (beRt+i) = (Rt+ 1

f t (kt+1 ) + 1-6	 Rt+1/(1-y).	 (11)

To summarize: in a regime of credit rationing, equations (3), (4) and (6) hold, as

does (9') at equality. Equations (10) and (11) must hold as well; these may (and typically

will) be inequalities. It follows that

wt/a,Rt+i ). This is so if
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Proposition 1: If credit is rationed at t, then R t+t = a holds.

Proposition 1 is proved in Appendix A. It has the immediate implication that, if credit is

rationed at t, equation (9') becomes

kt+ = (1-Y)w (kt).
	 (12)

Substituting (12) into (7) yields

s t = (2y-1)w(kt) > 0.	 (13)

Thus, credit rationing is accompanied by savings leaving the banking system (here to be

used for storage). This justifies why R t+1 = a must hold if credit is rationed at t.

When credit rationing does exist at t, equation (12) governs the evolution of the

capital stock. (12), of course defines an increasing, concave function (as depicted in Figure

2) which has a unique non-trivial intersection with the 45° line iff (1-y)w' (0) > 1. We

denote this intersection by k l . Since y > 0.5, the law of motion defined by (12) lies

everywhere below the law of motion defined by (7) -- so that credit rationing impedes

capital formation -- and k° > k 1 necessarily holds. Finally we note that, when credit is

rationed, (11) reduces to

( kt +i) -5- [9/( 1 -Y)] - (1-6).
	 (14)

Thus (14) must hold at any t for which there is credit rationing.

If credit is rationed at every date, then (12) gives the equilibrium sequence of capital

stocks starting from Ito. Clearly this sequence will monotonically approach k 1 , so that

again equilibria are unique and display monotone dynamics. Multiple equilibria and

endogenous fluctuations are associated with transitions between Walrasian regimes and

regimes with credit rationing. Such transitions are the focus of the next section.
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3A. ENDOGENOUS REGIME SWITCHING MECHANISMS

Suppose that, given the inherited capital-labor ratio k t at t, the value of kt±i

from (7') satisfies f' (kt+1) + 1-6 > a, and in addition that (kt'kt+1) satisfies (9').

Then the full information allocation is incentive compatible, and constitutes an equilibrium

at t. Alternatively, suppose that, given k t, equation (9') gives a value kt+l satisfying

both f' (kt+1 ) + 1- � a and (14). Then credit rationing is consistent with an equilibrium

outcome at t.

These two possibilities define two distinct regimes for each time period; in regime 0,

the incentive constraint is slack and borrowers are rationed by prices alone; in regime 1,

the incentive constraint is tight and borrowers are rationed by a combination of prices and

quantities. A brief description of equilibria in each regime follows.

Regime 0: Assume that the parameters of the economy satisfy

ay/(1-y)	 1-6.	 (15)

Equation (15) implies that there are some full information capital stocks that satisfy the

incentive compatibility condition, as well as some that do not. 11 Then we define two

critical values (k,k°c ) for the capital stock from the equations

P(k) = ay/(1-y) - (1-6) 	 (16a)

k = yw(k°c ).	 (16b)

k is the largest "full information capital stock" that can satisfy the incentive constraint, and

k° is the capital stock that maps into k under (7'). Given these values, it is easy to

check that any sequence (k rs t ,Rt) conforming to the initial condition k0 is an

equilibrium without credit rationing if, for each t,

kt+ = yw(kt)	 (17a)

st = 0
	

(17b)
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R t = 1 - 5 + f (kt) > a	 (17c)

kt+1 < k or k < k°t	 c (17d)

Equation (17) defines equilibrium sequences for which borrower characteristics are

effectively public information. Solution sequences of (17a) converging to k° will be com-

petitive equilibria for regime 0 if they are bounded above by the critical value k oc defined

in equations (16a) and (16b) and shown in Figure 1.

This figure explains why, for any initial capital stock, equilibria without credit rationing

are more likely to be viable if the critical value k°c is large relative to the fixed point k°

as in panel la; less likely to exist if, as in pane] lb, k°c is relatively small. The definition

of k° reveals that the critical value is large when either of the parameters a and 6 is

itself small, that is, if the unobservable storage technology is much less productive than the

observable neoclassical production technology at k°.

We conclude that equilibria in this regime are more likely to exist when two

conditions are met:

i. the level of economic activity is not too high; and

ii. the investment projects available to low-quality borrowers (type-1 agents) are

sufficiently less productive than those open to high-quality borrowers (type-2 agents).

Regime 1: Again we define two critical values (k,k 1 ) from the equations:

f' (k) = a/(1-y) - (1-6)
	

(18a)

= (1-y)w(k
	

(18b)

Thus k is the smallest capital stock consistent with the existence of a separating Nash

equilibrium under private information [see equation (14)1, and k1c is the capital stock that

maps into k under (9'). From (16a) and (18a) we obtain

< k
	

(18c)
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Any sequence (kt,st ,Rt ) that starts from a given initial condition k0 is a competitive

equilibrium with credit rationing if, for each t, it satisfies the following conditions:

kt+i = (1-7 )w(kt)

s t = (2y-1)w(kt)

Rt = a < 1-6 + f'(kt)

kt+1 > k or k > k 1
t	 c

(19a)

(19b)

(19c)

(19d)

As previously, the locus defined by (19a) in Figure 2 lies entirely below the locus defined

by (17a), and its fixed point, k 1 lies below k°.

Figure 2 also depicts the domain of definition, [k 1 co) for equation (19a) and"

depicts two possible cases: the unique positive fixed point, k ' , of this equation is in that

domain when panel 2a obtains, but not when panel 2b does. Given any initial value k 0 of

the capital stock, separating competitive equilibria with credit rationing are more likely to

exist if the critical value k 1 is low relative to the fixed point k 1 , i.e., if:

i. the level of economic activity is not too low; and

ii. the investment projects available to low-quality borrowers are not much less

productive than the ones open to high-quality borrowers.

3B. REGIME TRANSITIONS

This section discusses somewhat informally how and why an economy may shift from

a Walrasian regime of slack incentive constraints to one of credit rationing and tight

incentive constraints. Sections 4 and 5 treat the same issues more formally and in greater

depth. We start by amalgamating Figures 1 and 2 into the top two panels of Figure 3.

Figure 3a contains the fixed point of each regime in the domain of its definition, or in

other words, it assumes that

(20a)
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Figure 3b, on the other hand, excludes the fixed point of each regime from its domain by

assuming that

k l < kl < k c < ko
	

(20b)

We also draw in panels 3c and 3d two other cases in which one of the fixed points is within

the relevant domain of definition and the other is outside. Intuitively, inequality (20a)

holds when the storage technology is much less productive than the neoclassical technology

at Ic0, while at k 1 banks are able to offer contracts separating high-quality borrowers

from low-quality ones. Inequality (20b) on the other hand, means that the storage

technology is only a little less productive than the neoclassical technology at k°, and

banks are completely unable to offer contracts permitting them to distinguish low from

high quality borrowers at k 1 .

Dynamic equilibria are solutions to the discontinuous, set-valued difference equation

represented by the solid lines in each panel. To ensure that equilibria exist we require that

the critical values (k c
o 'k1c) satisfy

k1 < ko	 (21)

Otherwise the solid graph in panel 3b will contain a hole, and a deterministic k t+ I will

be undefined 12 if kt were to lie in the interval [ko k 1 ] Appendix B shows that ac'	 '

necessary and sufficient condition for (21) is

ric < (1-1)k
	

(22)

where	 are defined in equations (16a) and (18a).

Given this assumption, it is easy to see that each economy in Figure 3 has an

invariant set, that is, a subset in its state space which traps all solution sequences that start

in it. That set is the interval [k 1 ,ko] in Figure 3a, and the interval (k,k) in Figure 3b.

Examples of sequences trapped within the former invariant set are regime-0 equilibria

converging to k° from below, regime-1 equilibria converging to k 1 from above, as well



16

as the periodic two-cycle depicted in panel 3a.

As we will show, in economies having the configuration of panel 3a, there is in fact a

very large set of equilibria displaying deterministic cycles. Hence both indeterminacy of

equilibrium and undamped fluctuations are a very real possibility in such economies. In

economies having the configuration of panel 3b, there are no monotone equilibrium

sequences (k t): all equilibrium sequences must display transitions between regimes 0

and 1. Hence, all such economies necessarily display fluctuations despite the absence of

any variations in economic fundamentals.

The top panels of Figure 3 suggest how regime switches occur. For example, if

depositors pessimistically (optimistically) expect that banks will (will not) ration credit to

borrowers, then deposit yields are expected to fall below (to equal) the net marginal pro-

duct of capital. This makes bank liabilities less (more) attractive relative to autarkic

storage, leading to a shortage (surplus) of deposits and validating the original belief about

credit rationing. Figure 3a shows how the switching of expectations may force a regime

change even if "objective" conditions permit the present regime to continue. In Figure 3b

the mechanism is the same, but regime transitions necessarily occur because some capital

stocks will be inconsistent with the ability of banks to separate low from high quality

borrowers.

Key among objective conditions is how well informed intermediaries are about the

quality of their loan portfolios. At low levels of economic activity, the price mechanism is

successful in separating low-quality borrowers from high-quality ones, and adverse selection

does not pose a serious information problem for lenders. At high levels of activity,

however, the price system cannot prevent low-quality borrowers from claiming loans meant

for high-quality producers 13 unless it is supplemented by quantity rationing of credit.

We can easily define measures of a "temptation to lie" when credit is not rationed at

time t by either the yield differential a - R t+i between storage and bank deposits, or by

the differential income bt - wt between ill-gotten bank loans and honestly performed
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labor. From equations (17a), (17c) and (6) we obtain

a - Rt+1 = a + 6-1 - P (kt+1) = a ÷ 6-1 - fqyw(kt)]
	

(23a)

bt wt	 kt+1/(11) - w(kt) = [y/(1-y)-11w(kt)
	

(23b)

In each case, a high current stock of capital raises the differential and strengthens

incentives for borrowers to misrepresent themselves. When these incentives are strong

enough, banks respond by rationing credit. This is why the price-rationing equilibria of

regime 0 do not exist above a critical value ec of the capital stock.

As the composition of the pool of potential borrowers shifts, financial intermediaries

respond with loan contracts whose collective outcome is the erection of reflective barriers

for the entire economy. An upper bound or ceiling is set up when credit is restricted to

discourage applications by low-quality borrowers. A lower bound or floor results from the

lifting of credit restrictions that occurs when the price system by itself provides sufficient

incentives to keep undesirable borrowers from applying for loans.

As this discussion suggests, it is important whether or not the positive steady states

(k I,ko) of the two regimes fall outside the interval (k 1 ko) defined by the reflective'

barriers. Accordingly, we arrange our investigation around reflective barriers: we study

economies with no binding barriers in Section 4, economies with two binding barriers in

Section 5.These discussions will also illustrate what would happen in economies with the

configurations depicted in Figures 3c and 3d.

4. ECONOMIES WITH STEADY STATE EQUILIBRIA

When equation (20a) is satisfied, equilibrium sequences (k t) evolve according to the

set-valued difference equation

k	 = yw(k	 k < t+1	 t '	 t	 k c

{ yw(kt),(1-y)w(kt)}; k 1 s kt k°kt+1

(24)
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kt+1 = (1-y)w(kt); k t > k°c.

We are particularly interested in periodic solutions, that is, in fixed points of iterated maps

derived by repeated application of (24) to describe how today's state variable is related to

its value n	 1,2,3,..., periods hence. Because the map is set valued, iterates of a given

order n depend very much on which branch is chosen at each iteration. For instance,

always choosing the lower branch (1-y)w of the map will produce a smaller iterate than if

we always choose the upper branch yw.

To simplify the mathematical structure, we endow the economy with logarithmic

utility and production functions which reduce the map (24) to a piecewise linear difference

equation in the logarithm of the capital stock. We assume, in particular, that

f(k) = (A(u)ks; A > 0, 0 E (0,1)
	

(25)

This implies the following wage, marginal product of capital, and inverse marginal product

of capital functions:

w(k) = [A(1-0)/0]lce, 	 (26a)

f'(k)	
Aik 1-0

,	 (26b)

h(z) = (A/z)
1/(1-0)	 (26c)

Defining x = log k, we may rewrite equation (24) in its linear form:

xt+1 = fo(xt) e 0(xt-x°) + x0; x t < xlc

xt + e {fo(xt),ti(xt)}; x 1c xt x°c

= f i (x t) 8(xt-x l ) + x1. x > x°xt + 1 	 t	 c'

This map is drawn in Fig. 4a. Here fixed points of regimes 0 and 1 are

xo = [1/(1-0)] log[y(1-0)A/0]

(27)

(28a)



19

x l = [1/(1-0)] log[(1-y)(1-0)A/0]
	

(28b)

Computing critical points for the two regimes requires some algebra. The end results are:

xoc = (1/0) log
{ 	 0	 A(1-y)	 11/(1-0)1

y(1-0
)

A lay-(1-8)(1-y)l

x l = (1/0) log) 	  [ 	 A(1-y)11/(1-0)1

( (1-y)(1-0)A [a-0-6)(1-y)]

(29a)

(29b)

To ensure that the map (27) contains no holes and that deterministic equilibria exist, we

assume x1 < ox or, equivalently,c

Y	 -)1 0
(1-6)(1-y) + [ay-(1-6)(1-y)]	

-y)
< a	 (30)

1-

Storage is an inferior asset if it yields less than the net marginal product of capital at all k

k°, that is, if f' (k°) + 1-6 > a. This proves to be equivalent to the restriction

0/(1-0)

Finally, an economy has no effective reflective barriers if the map (27) contains in its

domain of definition the fixed points (x°,x 1 ) of each regime. This inclusion means that

1	 o	 ox l < x1 < x < xc

or, equivalently, that

[y/(1-y)llay-(1-6)(1-y)] < 0/(1-0) < a - (1-6)(1-y)	 (33)

In the remainder of this section we study solutions to equation (27) maintaining inequalities

(30)-(33) as restrictions on the economy's parameter space (a,y,6,0,A). Inequality (32), in

particular, means that there are no binding floors or ceilings; the steady state of each

regime is an equilibrium and, hence, this economy does not have to switch regimes.

Whatever switching is done will be due to market beliefs, that is, to self-confirming

expectations by depositors about the behavior of intermediaries and the yields on bank liabilities.

<
max(0,a-(1-6)}

(31)

(32)
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We are now prepared to establish the main result of this section, which indicates that

this economy can display very strong indeterminacies and excessive fluctuations in perfect

foresight equilibria. It is an almost immediate implication that there is also a wide variety

of equilibria where the economy experiences stochastic shifts between regimes 0 and 1

in a Markovian manner, with the probability of regime transitions depending potentially on

time, history, or the state of the system.

We define an (m,n) cycle to be a deterministic cycle of m periods spent in regime

0, followed by n periods spent in regime 1 (and so on). We can now demonstrate the

following proposition.

Proposition 2: For all positive integers m and n, there exists an asymptotically stable

(m,n) cycle.

Proposition 2 specifies the sense in which this economy displays a high dimensional

indeterminacy, and in which there is a wide variety of perfect foresight equilibria that

display undamped oscillations. Moreover, these equilibria can be attained starting from a

variety of initial capital stocks.

In order to prove Proposition 2 we begin by looking at iterates of the maps f o and

f1 defined in equation (27). It is easy to compute the iterates fm and fn. these are1'

given by:

t o (x) = Omx + (1-em)x°
	

(34a)

f7(x) = Onx + (1-1311 )x 1 	(34b)

Compound iterates of the form fin (fn(x)1 and (ln [fm(x)I) describe orbits that spend no 	 1 o

periods in regime 1 (m periods in regime 0) followed by rn periods in regime 0 (n

periods in regime 1). For given (m,n), these iterates are

.om )xo erno_on)xlfino [fni (x)1	 0m±nx + (1	 (34c)
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fnilfmo(x) , = om+nx on(penxo (i_en)xl	 (34d)

Figure 4b graphs these maps. Since x° > x l , we have

fino(fno > frli (fmo) vx	 (35)

Finally, we may compute double compound iterates that change regime twice, starting with

m-q periods in regime 0, continuing with n periods in regime 1 and ending with q

periods in regime 0 again. Alternatively, there may be (m,n) orbits that start with n-p

periods in regime 1, continue with m periods in regime 0, and finish with p periods

in regime 1 again.

The following lemma will prove useful. Its proof appears in Appendix C.

Lemma 1: The compound iterates of the maps fo and ff. satisfy

11?(fmo ) < lcol [17(fmo (1 )] < fmo(f7)

V(m,n,q,x), q < m

fni(fino) < fc /fmo(fri-i-p )i < to(fl)

V(m,n,p,x), p < n

(36a)

(36b)

It should immediately be apparent that, for given m 1 and n > 1, the sequence

(R1,k2,...,gm,km+1,...,km+n) constitutes an (m,n) cycle if

zi E [x
1 ,xa] Vi = 1,...,m+n, and

R. f i-1fn
I	 o	 1	 o	 1)

for i = 1,...,m, 14 and R. = fkm+11 ° fm fn+m+	 x(
1-i,_

)
.

for i = m+1,...,m+n.1	 o	 1

Thus the values	 aree fixed points of the appropriate compound maps, and inequalities

(37a) and (37b) reveal that 5i f is the smallest of these fixed points while m+1 is the

largest. From (34c,d) it is easy to establish that (k i ,5cfn+i) are both convex combinations

of the steady states xo and x 1 . In particular:

(i)

(ii)
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[1-r(m,n)]x° + r(m,n)x l	(37a)

Rm+1 = [1-6mr(m,n)]x° + Om r(m,n)xl,	 (37b)

where

r(m,n) e (1-0n)/(1-0m+n)	 (37c)

These equations imply that, for any (m,n), both of the extreme periodic points ki

and 5(m+1 lie within the invariant interval [x°, x 1 ]; hence the remaining fixed points

(x2,...,xm_1, in„ rn+n) will also lie in that interval.

It only remains to show that the (m,n) cycle is asymptotically stable. But this

follows immediately from 0 < 1.

Proposition 2 demonstrates how private information in the credit market spawns

indeterminate equilibria in an overlapping generations economy which otherwise lacks all

the features we normally hold responsible for indeterminacy: 15 there is one sector, no

paper assets, no large income effects, no nonconvexities in production or preferences, no

monopolistic competition or any other significant departures from the key assumptions of

Arrow and Debreu -- except private information.

The difference equation (27) has two overlapping branches but history specifies only

one initial condition. The resulting indeterminacy is particularly strong and does not vanish

asymptotically unless the economy develops rules to choose unequivocally between regimes.

Indeed, a countable infinity of periodic attractors exists, each of which corresponds to an

equilibrium displaying cycles of different periodicity and amplitude. Amplitude and

periodicity move together: a measure of the amplitude of a deterministic (m,n) cycle is

the distance, d = [X i - ilm+1 II, between the largest and smallest periodic points. From

(37a) and (37b) we obtain the following expression for the amplitude of an (m,n) cycle:

d(m,n) = (x°-x1)(1-0m)(1-0n)/(1-6111±n)	 (38)

For any fixed n, this amplitude is an increasing function of m, and d satisfies the
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following relations:

d(0,n) = 0 (39a)

d(n,n) = (x°-x 1 )(1-1311)/(1+8 11 ) (39b)

d(co,n) = x° - x 1 (39c)

By the same token, d is an increasing function of n for any fixed m with properties

exactly analogous to those contained in equations (39a)-(39c). As periodicity goes up, the

amplitude of the resulting cycles approaches the distance, x ° - x 1, between the steady

states of the two regimes.

It is also straightforward to construct equilibria in which transitions between the two

regimes occur stochastically. In particular, let li t E {0,1} index the regime, and let

71. 00	 prob(4) t± 1 =0 I cD t. = 0) (40a)

t = prob@t+1=711	 1	 = 1) (40b)

Then the sequence of matrices

roo	 1-voo
'It =-- (41)

t	
7r111-711

induces a (possibly non-stationary) Markov process on the regime index 4) t. Moreover,

t	 t
competitive equilibria exist for arbitrary sequences (	 and the elements of these,1roo'vlln

sequences can depend in essentially any fashion on the history of the economy.

To summarize, in an economy where the steady state equilibria of each regime lie

within the economy's reflective barriers, the expectations of depositors become paramount

in determining the type of equilibrium that will be observed. In particular, depositors must

form expectations about yields on bank liabilities. Optimistic expectations of high yields

lead to Walrasian regimes without credit rationing, and the absence of rationing validates
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depositors' expectations. Pessimistic expectations of low yields lead to regimes of disinter-

mediation, which forces banks to ration credit. This credit rationing again validates

depositors' beliefs. Periodic cycles correspond to alternating, self-confirming waves of

optimism and pessimism.

In Section 5, we consider economies where the steady state equilibria of the two

regimes lie outside the economy's reflective barriers. When this occurs, the existence of

these barriers limits the scope of depositors expectations by ruling out persistently optimis-

tic or persistently pessimistic rational expectations equilibria. The result is that all

competitive equilibria must display endogenous volatility, and that this volatility cannot

vanish asymptotically.

5. BINDING REFLECTIVE BARRIERS

We next take up the issue of equilibrium when neither steady state lies within the

economy's reflective barriers. Therefore, in this section we assume that

0
X

1 < xc < xc < x0

Evidently, then, neither steady state constitutes a legitimate competitive equilibrium, nor do

any monotonic sequences (x t) that converge to one of the steady states. We now

describe what kinds of equilibria can be observed here.

In order to do so, we define two values, xF and	 by the relations

xF 84 + (1-6)x 1 fl(4)

(No + (1-0)x° f (xo).c	 c	 o c

It follows from these definitions that xF is simply the point that succeeds 4 in regime

1, while ic is the point that succeeds x° in regime 0. These two points represent a

floor or ceiling, respectively, on the value of xt that can be attained in each regime.

From equations (28) and (29) it is possible to obtain the following closed form expressions

for zF and ic :

(42)
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XF =

xC

1 log[ 	
A(1-y)

1-0	 a-(1-6)(1-y)j

1 iogi 	A(1-y)
1-0	 jay-(1-6)(1-y)j

(43a)

(43b)

An examination of Figure 3b should now convince the reader of the following

proposition.

Proposition 3: (i) Every equilibrium sequence of this economy has an upper and a lower

turning point, and (ii) both turning points lie inside the invariant set 11Ficcl, which

attracts all equilibrium sequences in finite time.

In view of the proposition, we now focus our attention on the potential existence of

equilibria displaying (m,n) cycles. Such equilibria are defined exactly as in Section 4,

except that the invariant interval is now [xF,ic] rather than [x 1 ,xo].

As in Section 4, an (m,n) cycle exists if, and only if, the fixed points of the

compound maps f om (f in ) and fl(to) both fall within the invariant set or, in other words,

if and only if

	

F < 1 < Rm+ 1 < c'
	 (44)

Using equations (37a) and (38), it is straightforward to show that (44) holds iff the

following two conditions are satisfied:

	

en � Ai/[1-(1-Adeni]
	

(45a)

	

0m (1-A0)/(1-A00n)
	

(45b)

where the parameters Ao and Ai are defined by the relations

(46a)
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A 1	 F -x
1 )/(xo-x 1 ).	 (46b)

As is evident from these definitions, 16

0 < A1 < Ao < 1 '
	 (46c)

Periodic cycles with m periods of expansion and n periods of contraction will exist

iff, given the parameters (0, Ao, A 1 ), we can find positive integers (m,n) that satisfy

inequalities (45a) and (45b). In order to investigate the existence of integers satisfying

these conditions, we depict them in Figure 5. Here two cases must be distinguished,

corresponding to panels (a) and (b): A o + Al < 1 holds, or Ao + A1 > 1 holds.

In either case, both inequalities (45a) and (45b) hold iff the point (0m,6n) lies

within the shaded region; the frontiers that define this region are upward sloping and inter-

sect the 45° line at O m = A 1 1(1-A 1 ) and em 1 in panel (a), and at 6m = (1-A0)/A0

and 0m = 1 in panel (b).

When (0m,6n) lies within the appropriate shaded region, an (m,n) cycle exists.

Evidently symmetric cycles lead to values (0 m,0m) lying along the 45° line, while points

above (below) the 45° line correspond to asymmetric cycles with longer (shorter) periods of

expansion than contraction. Longer periodicities are associated with points that lie closer

to the origin. Finally, in each panel of Figure 5, point H denotes the smallest intersection

of the 45° line with the relevant region. In panel (a) [panel (b)] this intersection occurs at

Om = A 1/(1-A 1 ) [0m = (1-A )/A ]. It will be useful to defineo o

z max{Ai/(1-A 1),(1-A0)/Ad.	 (47)

The following proposition should now be apparent.

Proposition 4: A symmetric periodic equilibrium [that is, an (m,m) cycle] exists if, and

only if, there is an integer m 	 1 that satisfies the inequality

Am > z.	 (48)
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When (48) holds, there exists a vector (0 111,811n ) lying along the 45° line in Figure 5, and

lying to the northeast of point H. Hence an (m,m) cycle exists. Moreover, as the steady

states (x 1 ,xo) draw closer to the corresponding reflective barriers @ Fry, Ao(Ai) will

become closer to one (zero). In the limit, z 0, and symmetric cycles will necessarily

exist. It is straightforward to show that z lies near zero when the yield on the storage

technology is neither very close to nor very far from the productivity of the neoclassical

technology.

There is also an immediate corollary of Proposition 4: if a symmetric cycle exists,

then so does every other symmetric cycle of shorter periodicity. Thus the existence of an

(m,m) cycle implies the existence of an (m-k,m-k) cycle for all integers k = 1,...,m-1.

Apparently the values Ao and A1 govern the periodicity that can be observed for

symmetric cycles. In order to investigate the relationships between these values and the

underlying structural parameters, we use equations (28), (44) and (46) to derive

log 10/(1-0)[ay -(1-6)(1 -y)11
log [y/(1-y)]

A l =
log { 0/(1-0 )[a -(1-6)(1 -y)] }

log [y/(1 -y)]
(49b)

Proposition 4 states that no symmetric deterministic equilibrium cycles exist if

inequality (48) fails for all integers m 2 1. Appendix C shows that the same event rules

out all (m,n) cycles, both symmetric and asymmetric. We therefore have:

Proposition 5: A deterministic (m,n) cycle exists if, and only if 8 > z holds.

Proposition 4 establishes conditions under which symmetric cycles exist, and

Proposition 5 establishes that asymmetric cycles exist only if symmetric cycles do. We now

wish to discuss what kinds of asymmetric (m,n) cycles exist when 6 z holds. Panels (c)

and (d) of Figure 5 depict what is necessary for the existence of a symmetric cycle to imply

the existence of an asymmetric cycle. In each panel (0 s ,0s) lies in the appropriate shaded

Ao = (49a)
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5+1 5+1	 (c) (050s+1.region while (6	 ) does not. In panel (c	 ) lies in the shaded region as

well, as does (es+ 1 0s) in panel (d). Notice that, in each case, the existence of the

asymmetric cycle implies the existence of a symmetric cycle. This result is, in fact, general,

and Appendix C proves the following proposition

Proposition 6: (i) Suppose that Ao + A 1 1. Then the existence of an (m,n) cycle

with m > n implies the existence of an (n,n) cycle. (ii) Suppose A o + A 1 � 1. Then

the existence of an (m,n) cycle with n > m implies the existence of an (m,m) cycle.

We now turn our attention to the existence of what we term maximally persistent

periodic cycles; these are cycles that display a maximal periodicity m+n. Such cycles are

of interest for two reasons. First, maximally persistent cycles correspond to least volatile

rational depositor expectations. Second, if (m,n) is a maximally persistent cycle, and if m

> n (m < n), all cycles (m-k,n) [(m,n-k)] exist for k = 1,...,m-n (k = 1,...,n-m); these

cycles correspond to more volatile depositor expectations.

Figures 5c and 5d contain a geometric code that identifies maximally persistent

(m,n) cycles. First we find the symmetric cycle with the longest periodicity, that is, the

largest integer that satisfies inequality (48). This (s, ․) cycle corresponds to point S on

the diagonal of panels 5a and 5b; the next largest cycle (s+1,s+1) is indexed by point g

which lies outside the shaded area.

Maximally persistent periodic cycles have longer contractions than expansions when

Ao + A 1 < 1 (because x1 is closer to the floor than xo is to the ceiling); shorter cont-

ractions than expansions when Ao + A 1 > 1 (for precisely the opposite reason). Given

the longest symmetric cycle (s, ․), s is the length of the shorter of the two equilibrium

regimes in the maximally persistent cycle. In other words, for A o + A 1 < 1, the

maximally persistent periodic equilibrium is (s,n) and the length n s of the contraction

is the largest integer solution to (45a) when we set m = s. By the same token, if A o +

A 1 > 1, s is the length of the contraction regime; the duration m _� s of the expansion is

the largest integer solution to (45b) when n = s.



29

Figures 5c and 5d describe this procedure: in 5c we seek the smallest O n that lies

directly south of the symmetric cycle S and within the shaded region; in Figure 5d we

seek the smallest allowable A m in a direct westerly direction from S. The outcome is

point S in each case.

We give below a compact, formal description of the algorithm used to identify

maximally persistent cycles:

Proposition 7: (i) Suppose that Ao + A 1 1 and that	 1 is the largest integer

solution to Os > A 1 /(1-A 1 ). Then there exists a unique periodic equilibrium (rh, g) of

maximal periodicity th + § in which ill > g is the largest integer solution to Om (1-

A )/(1-A 0g).o	 o

(ii) Suppose that Ao + A 1 _� 1 and that g � 1 is the largest integer

solution to Os � (1-A )/A . Then there exists a unique periodic equilibrium (§,n) ofo o

maximal periodicity g + ñ in which h >	 is the largest integer solution to An Ai/[1-

(1-A1)0g].

In addition to (m,n) cycles, this economy may have other deterministic periodic

equilibria as well. For example, there may be equilibria with m periods of expansion

followed by n periods of contraction, p periods of expansion again, and then q periods

of contraction (and so on), with m * p and ri * q. Indeed, such equilibria may exist even

if 8 < z holds. In addition, stochastic equilibria of the type described in Section 4 will

typically exist. What does not exist here are equilibrium sequences that converge to steady

states.

To get a better feel for what sorts of deterministic cycles are possible for the

economies described in this section, we calculate some numerical examples in Section 6.

6. NUMERICAL EXAMPLES

In this section we apply Proposition 7 to identify maximally persistent periodic

equilibria for a number of economies indexed by the parameters (e,A0,A 1 ). We choose
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1/3 throughout to represent capital's share of output, and allow (A, ) to vary on
o' 1

a coarse grid in Table 1, and on a finer grid in Table 2. 17
 Each box in either table has

an entry of either NC or of two integers (m,n). NC means that no deterministic period-

ic equilibrium exists for the corresponding parameter values (1/3,A0,A1); other

equilibria -- aperiodic or stochastic -- may or may not exist. Finally, a two integer entry

(m,n) means that the maximally persistent cycle has m periods of expansion and n

periods of contraction.

As we expect from Section 5. periodic cycles exist in economies with reflective

barriers when Ao is near 1 and A l is near zero. Maximally persistent cycles tend

to be symmetric if Ao + A1 is near one; expansions tend to be longer than contractions

if Ao + A 1 » 1, while contractions tend to be longer than expansions if A o + A 1 «

1.

A. The Roles of a and y

The parameters 0 and 6 of the model have obvious empirical real world

counterparts. This connection is less transparent for a and y. Therefore, this section

explores in more detail how some aspects of equilibrium depend on the latter two parame-

ters. To do so we set 0 = 1/3, as before, and set 6 = 0.1. In addition, given these

parameter values, we choose a and y > 0.5 so that y i/y0 = 0.8, where yi is steady

state per capita output in regime i, inclusive of output from storage. This puts an upper

bound on the amplitude of output fluctuations over any cycle: per capita output at a

"trough" cannot be less than 80 percent of per capita output at a "peak" in any (m,n)

cycle. This bound is consistent with the amplitude of the largest recession observed in the

U.S. in this century.

Since st 0 in regime 0, we have that

y° f(k°) = (A/e)(ne	(50a)

y 1 = f(k1 ) + as 1 e f(k 1 ) + akt(2y-1)/(1-y)
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= (A/e)(69 + ak 1(2y-1)/(1-y)	 (501D)

Equations (28a,b) describe the logarithms of k° and k 1 . We set e = 1/3 in these

equations as well as in (50) to obtain	 = y 1/y° as a function of a and y:

A(a,y) e [1 + (2a/3)(2y-1)] [(1-y)/y11/2
	

.80	 (51)

In addition, we insist that a and y be chosen to satisfy the following maintained

assumptions of our analysis:

MA1: A deterministic equilibrium exists for all initial values of the capital stock. This is

equivalent to the inequality (30) being satisfied

MA2: Storage is dominated in rate of return by claims on capital. This is equivalent to

the inequality (31) being satisfied

MA3: The steady states (x°, x 1 ) of the two regimes are not competitive equilibria. This

is equivalent to the inequality (42) being satisfied.

Table 3 reports results for economies satisfying these assumptions over a fairly coarse

grid for a and y. The first two columns of the table report values of a and y which

satisfy (51). The next three columns indicate whether maintained assumptions MA1, MA2

and MA3 are satisfied (by an entry of +) or not (by an entry of -) for the given values

of (a,y). The next two columns denote the presence (+) or absence (-) of a binding

floor or ceiling; the following two columns compute the values of A o and A 1 implied by

the (a,y) combination chosen. Finally, the last two columns show the number of

contraction and expansion periods in the maximally persistent periodic cycle.

It turns out that binding ceilings cease to exist for y .6868, as do floors for y

.6920. We recall that Proposition 2 asserts that equilibrium expansions and contractions of

arbitrary length can be observed for economies with non-binding reflective barriers.

Finally, deterministic (m,n) cycles do not exist when y > 0.703. It remains to be seen if

a finer parameter grid or slight perturbations of the values (8,6,y 1/yo) can produce

longer-lasting expansions or contractions.
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The outcomes seem to conform to expansions and contractions that last from 1 to 4

periods. It remains to be seen if a finer parameter grid and/or slight changes in the

assumed values of the parameters (8,e,y 1/yo) can produce longer-lasting expansions or

contractions. Also, Proposition 1 states that equilibrium expansions and contractions of

arbitrary length may be observed in economics without binding reflective barriers.

7. CONCLUSIONS

A long tradition in monetary economics holds that the unrestricted operation of

financial markets can lead to indeterminacies and excessive fluctuations relative to

fundamentals. Previous models that deliver this result, however, have typically depended

on the existence of nominal assets, large income effects, non-convexities, monopolistic

competition, or multiple sectors. 18 We have examined a one-sector neoclassical growth

model with none of these features, but in which capital investments must be credit

financed, and in which credit markets are characterized by the presence of an adverse

selection problem. In this model we have shown that the existence of two equilibrium

regimes is possible: a Walrasian regime in which incentive constraints are non-binding, and

a regime of credit rationing in which this rationing is necessary to induce self-selection in

loan markets. For some range of current capital stocks either regime is consistent with the

existence of an equilibrium; therefore, it is possible to observe equilibria in which

deterministic or stochastic transitions occur between regimes. Many of these equilibria will

display oscillations that do not die out. Moreover, for some configurations of parameters

(those considered in Section 5), the only equilibria that can be observed display

fluctuations that do not vanish asymptotically. In such economies excessive fluctuations are

not only possible, but indeed are a necessary feature of any equilibrium.

These results have clearly been obtained under a variety of fairly strong assumptions.

Some of them are not conceptually hard to generalize. For example, the utility function

u(c i ,c2) = c2 is easily replaced with the more general Cobb-Douglas utility function

1- 13 gc 1	c for lor any g E (0,1] with the only modifications being that the savings rate will be



33

1, and the incentive constraint would also require some modification. Generalizing

the utility function beyond this further would cause us to lose the linearity of equation (27),

and would lead to a more complicated incentive constraint of the form

v(kt+ 1/(1-y ),a) S v(w,Rt+

where v(y,R) is the indirect utility of an agent with income profile (y,0), who faces the

intertemporal terms of trade R.

Another possible extension is to allow random disturbances to affect the fundamentals

of this economy, for example, the neoclassical technology F(K,L). The outcome we would

hope for is that the deterministic piecewise linear difference equation (27) would general-

ize to a similar stochastic difference equation. If this more general dynamical system is

tractable, it may yield quantitative insights about the process by which financial markets

amplify exogenous disturbances, both close to and far from cyclical turning points. This is

a key concern in the nonlinear time-series research of Hamilton, op. cit., Diebold and

Rudebusch, op. cit., Durlauf and Johnson (1992), Pesaran and Potter, (1994), and many

others.

An easier task is to introduce money into the economy of this paper. Indeed, a

monetary version of our economy is considered by Azariadis and Smith (1994), who

demonstrate how inflation can tighten incentive constraints and slow down capital accumul-

ation in economies with nominal assets. As a result, secular improvements in the

functioning of credit markets may come about from a reduction in distorting inflationary

taxation.

Another issue that we intend to explore in future work is the occurrence of financial

deepening. Here it is possible that advances in financial intermediation may also spring

from technological progress that favors investments that require intermediation over invest-

ments that do not. Imagine, for example, that total factor productivity advances faster in

the publicly observed neoclassical technology of our economy than in the privately

observed storage technology. Over a long time span, returns to storage will fall relative to
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bank deposits, reducing the incentives which exist to misrepresent one's type, and reducing

in a completely endogenous manner the severity of the adverse selection problem banks

face. If this occurs, it will raise the ceiling associated with regime 0, and hence will

permit the existence of progressively longer periods of expansion. As a result, economic

growth could -- in part -- be traced to a less frequent occurrence of periods of credit

rationing and disintermediation.
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ENDNOTES

'See, for example, Schreft (1990) or Schreft and Owens (1993).

2Azariadis and Smith (1994) study the role of fiat money or national debt in a

neoclassical growth model with adverse selection.

3See, for instance, Hamilton (1989), Boldin (1990), Potter (1994), Beaudry and Koop

(1993), and Diebold and Rudebusch (1994).

4We do not take the two-period lifecycle assumption literally, but, rather, as a shortcut

to multi-period lifecycle growth models of the sort employed by Auerbach and Kotlikoff

(1987) and others. Given enough gross substitutability, we know from Kehoe and Levine

(1985) that overlapping generations economies with perfect markets have determinate

equilibria for an arbitrary deterministic lifecycle. We conjecture that, if markets are

complete, the equilibrium dynamics of any OLG growth model along the stable manifold

may well be first order even if the lifecycle has arbitrary deterministic length T 2.

5The assumption that agents are risk neutral precludes lotteries from playing a useful

role under private information. The assumption that agents care only about old age

consumption allows us to abstract from consumption/savings decisions. Both are inessential

simplifications.

6This, of course, assumes that 1' (k°) + 1-6 > a.

7The hallmark of any model of credit rationing based on adverse selection or moral

hazard [for example Bencivenga and Smith (1993) or Stiglitz and Weiss (1981)] is that

some borrowers have a higher probability of repayment than others, and hence care more

about the interest rate dimension of the loan contract. Our specification is simply the most

extreme (and simplest) version of this possibility: type 1 agents default on loans with

probability one, and type 2 agents repay with the same probability. There is no conceptual

difficulty associated with allowing type 1 and 2 agents to have loan repayment probabilities
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strictly between zero and one. However, this merely adds complexity without bringing any

additional substantive issues into the analysis.

8If	 = 1, no young agents work at t, no savings are supplied, and k/+1 = 0. The

economy jumps to the autarkic steady state.

9See Azariadis and Smith (1994) for a proof in this particular context. Parenthetically,

the argument they give depends on banks treating the deposit rate II / parametrically.

See Kreps (1990), Ch. 17, for the strategic foundations of this formulation.

10Again, see Azariadis and Smith (1994) for a formal proof. Since this condition is

important in what follows, Appendix B sketches the main elements of the proof.

11/f ( 15) is reversed, then all values of k satisfy (9').

12A stochastic equilibrium may exist for k f+1 even if the deterministic map is

undefined in some region. This solution may require mixed loan strategies from banks,

e.g., stochastic credit rationing.

13A more realistic interpretation of this process, and one that would require a richer

menu of borrowers than the one we are using, is to focus on the quality dispersion of loan

applicants through the business cycle. In a business expansion, poorly managed firms

expand along with better firms, and poor investment projects become marginally profitable.

The resulting high dispersion in the quality of loan applications raises the riskiness of

intermediary loan portfolios. Banks respond by rationing credit because they lack accurate

information about the risk characteristics of individual projects.

14Here ta denotes the identity map.

15See Azariadis (1993), Ch. 26, Farmer (1993), and Guesnerie and Woodford (1993)

for recent surveys of indeterminate equilibria.

16The parameters Ao and A1 measure, respectively, the relative distance of the

ceiling and floor from the nearest steady state and, hence, reveal how tight reflective
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barriers are. As Ao -■ 1 and A/ 0, floors and ceilings become less tight, permitting

equilibria to approach the steady states x° and x 1 more closely before reversing

direction.

17Corresponding to each pair of values (A 0,A 1 ) is a set of underlying parameters a,

E [0,1], and y > 0.5 that produce these values via the formulas in equation (49).

18Large income effects are considered by Azariadis (1981) and Azariadis and

Guesnerie (1986). Models with nominal assets and production include Bernanke and

Gertler (1989), Azariadis and Smith (1994), Boyd and Smith (1994), or Schreft and Smith

(1994). Non-convexities and monopolistic competition are examined by Gali (1993) and

Benhabib and Farmer (1994). Kiyotaki and Moore (1993) study a multi-sector economy.
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APPENDIX A

Proof of Proposition 1 

In a regime of credit rationing, the full information allocation is not incentive

compatible, or in other words

[fi(kt+1) + 1-6]w(kt ) < akt±i/(1-y)
	

(Al)

Moreover, s t = 0 holds under full information, so that [from (7)] k t+i = yw(kt).

Substituting this into (Al) gives

ii(kt+1 )	 1-6 < aY/(1-y)
	

(A2)

Now suppose, for the purpose of a proof by contradiction, that credit is rationed at t

and that Rt+1 > a. Then st = 0 holds, as before, and so does k t±i = yw(kt).

Therefore (9'), which must hold with equality, becomes

Rt+1 = ay/(1-y)
	

(A3)

It is also the case that

fi(kt+i) + 1 -6 Rt+i
	 (A4)

must hold in any equilibrium. But (A3) and (A4) contradict (A2), delivering the desired

result.	 Q.E.D.

APPENDIX B

1. A Proof That Separating Equilibrium Loan Contracts Exist iff f' (kt + + 1-6 � 

Rt +11(1-y)•

Given Kt units of capital inherited from period t-1, old agents of type 2 will

choose the size of their labor force in period t to maximize profit, that is, to equate the

wage rate, wt, to the marginal product of labor, f(k t ) - ktf'(kt). Let Rt be the cost of

capital to these producers under a separating loan contract, and use Euler's Law to
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compute their net income, which is,

IT t = wt +	 (k t )-Rt ]
	

(B1)

If type-2 agents were to pool with type-1 agents, the lowest possible cost of capital under a

pooling contract would be R t/(1-y). Accordingly, the net income of type-2 producers who

borrow Kt from intermediaries under the best possible pooling contract would be

wt + tp(kt )-Rt/(1-y)]
	

(B2)

The capital-labor ratio in (B1) and (B2) is identical because the market wage rate is the

same in both situations.

If the incentive constraint binds, type 1 agents prefer a pooling contract to a

separating contract whenever type 2 agents do. Type 2 agents prefer the best pooling

contract to the candidate separating equilibrium iff there exists a value It t such that

[f'(kt) - Rt/(1-y)]1tt > [f'(k t ) - Rt]Kt	(B3)

Thus the existence of a separating contract requires that there exists no It t for which (B3)

holds, given Kt. Since f' (kt) Rt, the absence of such a value It t clearly requires that

f'(kt) Rt/(1-y) holds. Moreover, since Rt = a whenever the incentive constraint

binds, we have that f'(kt ) a/(1-y), as claimed. 	 Q.E.D.

2. Proof That (22b) Is Equivalent to (22a) 

We start with the fact that the wage function w(k) is increasing for any concave

production function f(k). Thus (22a) is equivalent to w(k 1
c) < w(k°) and, hence, to k/y

< 1</(1-y) once we consult equations (16b) and (18b). 	 Q.E.D.

APPENDIX C

1. Proof of Inequalities (36a) and (36b)

Combining equations (34a) and (34b), we obtain
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tcol [fil(fino q(x))] = fcol [f7(13m-qx + (1-0/11-q)x°)]
	 fcoi[onom-qx	 9n(1-9m 	 (l_en)x1]

egtorn+n-qx	 e°(1_em-q)xo	 (i_on )x l i	 oq[em+n-qx	 e°(1_em-q)xo

(1_eq )xo	om+nx	 ion+q(i_om-q)	 (1_eq
)]x

o	 eq(i_on)xl

From this equation and equations (34c) and (34d), it follows that (36a) is equivalent to

on(1_em )xo	(l_on )x l < ten+q(i_om-q)	eq(i_en)xl <

(1-e m)x° + Om(1-0 1-1 )x l	(Cl)

The first inequality in (C1) is equivalent to

i_oq)(i_en)xl <	 +q en + i_eq)xo

that is, to

(1.0q)(1_on)xo	 (C2)

This inequality holds for all (x,m,n) and q < m because x 1 < x0 .

The second inequality in (Cl) is established similarly, as is the set of inequalities in

(36b).

2. Proof That No Asymmetric Deterministic Cycles Exist if Inequality (48) Fails

Failure of (48) implies no symmetric cycle (m,m) exists for any m 1. If an

asymmetric cycle (m,n) existed for m 	 then a symmetric cycle would also exist by

Proposition 5, which is a contradiction. 	 Q.E.D.

3. Proof of Proposition 6

We shall prove part (a) only; part (b) is completely analogous. Let Ao + A 1 1

and suppose an (m,n) cycle exists with m > n. This means there are values (m,n) for

which inequalities (45a) and (45b) hold, i.e.,
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O n A1/[1-(1-Ad6m]
	

(C3)

O m � (1-A0)/(1-A0011)
	

(C4)

We need to prove that a similar pair of inequalities holds for (O n,On) as well, namely

O n A1/[1-(1-A 1 )On ]	 (C5)

O n ?. (1-A0)/(1-A00n)	 (C6)

Clearly, (C4) implies (C6) since O n > em for any n < m. By the same token, (C4)

implies that en > Om (1-A0)/(1-A00°) > Al/[1-(1-A1)01]. The last inequality is

equivalent to (1-A0-A 1 )(1-e n) > 0 which holds if 1 > Ao + Al . This proves (C5) and

Proposition 6(a) as well.	 Q.E.D.



TABLE 1: EXISTENCE OF CYCLES

A 1 .40 .60 .70 .80 .85 .88 .91 .94 .96 .98

.01 NC NC NC 1,3 1,3 1,3 2,4 2,4 2,4 3,4

.02 NC NC NC 1,3 1,3 1,3 2,3 2,3 2,3 3,3

.05 NC NC NC 1,2 1,2 1,2 2,2 2,2 2,2 3,2

.10 NC NC NC 1,1 1,1 1,1 2,2 2,2 2,2 3,2

.15 NC NC NC 1,1 1,1 1,1 1,1 2,1 2,1 3,1

.20 NC NC NC 1,1 1,1 1,1 1,1 2,1 2,1 3,1

.25 NC NC NC 1,1 1,1 1,1 1,1 2,1 2,1 3,1

.35 NC NC NC NC NC NC NC NC NC NC

.50 NC NC NC NC NC NC NC NC NC NC

TABLE 2: PERSISTENCE OF CYCLES

Ao/
Al .880 .900 .920 .940	 .960 .980 .985 .990 .995 .997 .998	 .999

.001 1,5 2,6 2,6 2,6	 2,6 3,6 3,6 4,6 4,6 5,6 5,6	 6,6

.002 1,5 2,5 2,5 2,5	 2,5 3,5 3,5 4,5 4,5 5,5 5,5	 6,5

.003 1,4 2,5 2,5 2,5	 2,5 3,5 3,5 4,5 4,5 5,5 5,5	 6,5

.004 1,4 2,4 2,4 2,4	 2,4 3,4 3,4 4,5 4,5 5,5 5,5	 6,5

.006 1,4 2,4 2,4 2,4	 2,4 3,4 3,4 4,4 4,4 5,4 5,4	 6,4

.010 1,3 2,4 2,4 2,4	 2,4 3,4 3,4 4,4 4,4 5,4 5,4	 6,4

.015 1,3 2,3 2,3 2,3	 2,3 3,3 3,3 4,3 4,3 5,3 5,3	 6,3

.020 1,3 2,3 2,3 2,3	 2,3 3,3 3,3 4,3 4,3 5,3 5,3	 6,3

.030 1,2 2,3 2,3 2,3	 2,3 3,3 3,3 4,3 4,3 5,3 5,3	 6,3

.050 1,2 2,2 2,2 2,2	 2,2 3,2 3,2 4,2 4,2 5,2 5,2	 6,2

.080 1,1 2,2 2,2 2,2	 2,2 3, 2 3,2 4,2 4,2 5,2 5,2	 6,2

.120 1,1 1,1 1,1 1,1	 2,1 3,1 3,1 3,1 3,1 4,1 5,1	 5,1



TABLE 3: EQUILIBRIUM CYCLES

y	 a MA1 MA2 MA3 Floor Ceiling Ao	 A	 m	 nI

.6870 .7428 + + + + + .9954 .1029 4 2

.6874 .7457 + + + + + .9787 .0939 3 2

.6880 .7499 + + + + + .9541 .0807 2 2

.6890 .7569 + + + + + .9142 .0591 2 2

.6900 .7639 + + + + + .8757 .0382 1 3

.6910 .7709 + + + + + .8386 .0180 1 3

.6918 .7765 + + + + + .8098 .0022 1 3
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