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Explaining coexistence of noninterest-bearing money and interest-bearing default-free

securities is arguably the crucial and challenging problem for monetary economics. It is

crucial because such coexistence is necessary for imperfect substitutability between money

and default-free securities. It is challenging because, despite having been identified by

Hicks more than 50 years ago, as the main challenge facing monetary theory, no one

argues that a suitable model is in hand. The main difficulty is that models with complete

markets are inconsistent with such coexistence-- unless, of course, there is resort to

assumptions like money-in-utility or money-in-production functions. This paper explores

the possibilities for such coexistence in a model with random matching and bilateral

bargaining, one closely related to Shi (forthcoming) and Trejos-Wright (forthcoming), but

in which, in addition to an asset that has the properties of a fiat money, there are payable-

to-the-bearer, pure discount, default-free, small denomination claims to fiat money in the

future.1

There are at least two reasons why it is interesting to explore the possibility of coexistence

of noninterest-bearing money and interest-bearing default-free securities in a random-

matching model. First, as already suggested, there is agreement that a suitable explanation

requires a departure from complete markets. A random-matching model is a simple,

although admittedly extreme, specification of market incompleteness. Second, random-

matching models were not devised to explain such coexistence. They were devised to

represent absence-of-double-coincidence, which, in almost all writings on money, has been

considered an important ingredient for giving rise to a medium-of-exchange. Therefore,

exploring whether random-matching models are consistent with coexistence is in the spirit

of discovering additional implications of such models.

The basic model of the paper assumes a continuum of agents and a finite number of types

of agents, where type determines both the kind of good consumed by the agent and the

kind of good produced by the agent so that there is a potential for trade, but no double

coincidence of wants. Goods are divisible, but not storable. In Shi and Trejos-Wright,

there is only one storable object indivisible units of fiat money. Moreover, in order to limit

the state space, each agent is assumed able to store at most one unit of such money. The

value of money or the price level is determined by bargaining in meetings between agents

with money and those without money who can produce the good consumed by the money

l Instances in which governments isssued such securities include the U.S. during the Civil War (see Gherity
1993) and World War I (see the discussion of Liberty Bonds in Wallace (1988)), and France, 1915-27 (see
Makinen and Woodward (1986)).
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holder. We adopt all these assumptions, except that we add securities to the model. As in
A iyagari-Wallace (1994), we introduce a class of "government" agents whose behavior is
exogenous. Their role is to issue and redeem pure discount securities. In addition, they
sometimes reject trades involving securities that have not yet matured.2

Our results, in a sense, provide two explanations of coexistence of noninterest-bearing
money and interest-bearing default-free securities. One explanation is a steady state in
which matured securities and fiat money are perfect substitutes-- have the same value in all
trades. We demonstrate that some exogenous rejection of unmatured securities (by
government agents) is necessary and sufficient for such a steady state to display a discount
on unmatured securities. The other explanation is a steady state in which matured securities
and fiat money are imperfect substitutes in that matured securities trade at a discount in
trades among private agents. In this steady state, which exists for some parameters, the
post-maturity discount on securities induces a deeper pre-maturity discount even if there is
no exogenous rejection of securities that have not matured.

Both explanations, of course, rest on the specific assumptions that we have made-- random
pairwise meetings and the accompanying informational restrictions noted below, indivisible
assets, and a unit upper bound on asset holdings. Although these assumptions constitute

an extreme departure from complete markets, our formulation has one important virtue not

found in most models of money: the same transaction frictions are applied to all the assets

in the model, fiat money and securities. This contrasts with most existing monetary theory:

the positing of a demand for "money" (a special case being the quantity theory equation),

"money" in the utility function, "money" in the production function, transaction costs that

are relatively low for trades involving "money" (if there are even trades), or "cash"-in-

advance constraints. Those models provide trivial solutions to the problem of coexistence

because the modeler must specify which assets yield utility, enhance production, have low

transaction costs, or meet cash-in-advance constraints. Our explanations are less trivial

because the common transaction frictions are permitted to interact with the intrinsic

differences among the assets in our model. One consequence is that our model makes new

predictions about episodes in which governments issued securities which resemble those in

our model.

20thee models of credit in search models include, Diamond (1990), Hendry (1992) and Shi (19%).
Although credit in these models is a substitute for fiat money, the substitution is limited because credit
instruments in those models are liabiliities of individuals and, therefore, cannot circulate.
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The paper is set out as follows. In section 1, we describe the model. In section 2, we

study a simple variant, one with two distinct fiat monies and no securities. This variant

provides the ingredients for the results in the more complicated setting with money and

securities, because matured securities can be regarded, for most purposes, as a distinct fiat

money. In particular, the distinction between our two explanations, which rests on

whether or not matured securities are treated as perfect substitutes for fiat money, is

analogous to whether or not two distinct fiat monies are treated as perfect substitutes. In

section 3, we present the two steady states which constitute our two explanations for

coexistence in the money-securities model. In section 4, we discuss the robustness of our

results to the assumptions that assets are indivisible and that each agent can hold at most

one unit of one asset. We conclude in section 5 with the predictions of our model for

historical episodes in which governments issued payable-to-the-bearer, default-free, small

denomination securities. Proofs appear in the appendix.

1. The Model

We begin with the underlying discrete-time environment. We then introduce the assets and

government agents. Then we describe how agents bargain in pairwise meetings.

1.1. The environment.

Time is discrete and the horizon is infinite. There are N distinct goods, actually services, at

each date and there is a [0,1) continuum of each of N types of agents, where N Z 3. Each

type is specialized in consumption and production in the following way which rules out

double coincidences: a type i agent, where i runs over integers from 1 to N, consumes

service i and produces service i+1 (modulo N).

Each type i agent maximizes expected discounted utility with discount factor [3 E (0,1),

where utility in a period is a function of the amount of service i consumed in the period and

the amount of service i+1 produced in the period, u(x) - y, where x is the amount of service

consumed and y is the amount of service produced. 3 The function u is defined on [0,03) ,is

increasing and twice differentiable and u(0) = 0, u" < 0, u'(0) = co, and u'(co) = 0.

3The assumption that the disutility of production is equal to the amount produced is without loss of
generality. If we start with a different disutility, say, d(y) with d strictly increasing and convex, and a
utility of consumption given by u*(x), then our specification results from letting z = d(y), u(z) us[d-1(z)]
and having agents bargain over the disutility to the producer.

4
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Agents meet pairwise at random and each agent's trading history is private information to

the agent. Together, these assumptions rule out all but quid pro quo trade for optimizing

agents. Services cannot be stored. The only storable objects are indivisible assets. Each

agent has a storage capacity of one unit of some asset.

Notice that types are identical except as regards what they consume and produce; that is, is

and u, the measure of each type, the matching process, and asset storage capacity are

identical for all types. We have assumed such symmetry so that it makes sense to look for

equilibria that are symmetric among types. In fact, those are the only kind of equilibria we

consider in this paper.

1.2. Fiat money, securities, and government agents.

There are two types of assets in our model: indivisible units of fiat money and finite

maturity claims to fiat money in the future, the securities. In order for there to be such

securities in a steady state, they have to be created and retired. To accomplish that, we use

a version of a device used by Aiyagari-Wallace. For each agent type, we let the subinterval

[0,G], with G E (0,1) consist of a class of agents, called government agents. The

government agents of type i are like the other type i agents, called private agents. Despite

this, we impose the behavior of government agents, which, therefore, is not motivated by

their preferences or those of private agents. Among other things, this exogenous behavior

permits securities to be issued and redeemed, while the random matching feature of the

model is retained.

In all but two respects, a type i government agent emulates exactly the actions of type i

agents as described below. These two respects involve the issue and redemption of

matured securities, and trades involving unmatured securities.

(1) Government agents sometimes "issue" securities and standy ready to "redeem"

securities. At any date t, if a type i+1 government agent with a unit of money meets a type i

private agent, then with probability q (for quantity of securities) the government agent

offers a two-period pure discount bond, rather than the money held and, in effect, destroys

the money held. This could be accomplished by having the government agent write on the

money held "this matures at t+ 2", thereby converting it into a security. At maturity-- that

is, at t+2 and thereafter-- a private agent holding this security who meets a government

agent, can, if he or she wishes, exchange it for a unit of money. In effect, any government
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agent stands ready to erase what was written on the money, thereby turning it back into a

unit of money. This rule about how securities are issued and redeemed implies an

unchanging total amount of assets. We assume that the total amount of assets per type is

positive and less than one.

(ii) Government agents sometimes reject securities that have not matured. At any date t,

government agents reject offers of securities that have not matured with probability r (for

reject). That is, with probability r, they simply refuse to trade when offered a security that

has not matured.

We assume that government agents issue securities which mature in two periods, because

two periods is the shortest maturity that permits a discussion of the interesting possibilities

and because longer-term securities complicate the presentation without affecting the

conclusions. In particular, the conditions which produce a discount on newly issued two-

period securities would produce a discount on longer-term securities whenever they have at

least two periods until maturity, and the conditions under which newly issued two-period

securities trade at par imply par values at all dates for longer-term securities. The rejection

probability, r, is the crucial policy parameter that produces a discount on securities in the

steady state in which matured securities trade at par. Instead of a rejection probability, it

could have been assumed that government agents exogenously give less service when

offered an unmatured security than when offered a unit of money. This too would produce

a discount on newly issued securities.

1.3. The sequence of actions in a period and bargaining.

The sequence of actions within a period occurs as follows. Each agent, including a

government agent, begins a period holding either one unit of one asset or nothing. Then

agents meet pairwise at random. Agents in pairwise meetings bargain. If the outcome of

bargaining involves the provision of a service, then consumption occurs. Then agents

begin the next period.

In a symmetric equilibrium, any trade among private agents must involve the provision of a

service. That is, it never pays to simply exchange one asset for another. Trade involving a

service can occur only when a type i agent meets a type 1+1 agent. In such a meeting, the

type i agent, the potential producer, can supply what the type i+1 agent, the potential

consumer, consumes but, since there are more than two types, the latter cannot supply
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what the former consumes. Given the upper bound of unity on asset holdings, there are
two potential trading situations: when the consumer has an asset and the producer does not,
and when the consumer has a more valuable asset than the producer has. In the former
situation, the asset may be traded for some amount of service. In the latter situation, the
more valuable asset may be traded for some service and the less valuable asset.

We assume throughout the paper the following very simple bargaining rule: in a meeting
between a consumer and a producer, the consumer makes a take-it-or-leave-it offer and the
producer accepts if made no worse off by accepting. A consequence is that the producer of
the service does not benefit from the exchange.

Except for the redemption of matured securities, which occurs at the behest of the holder of
the matured security in a meeting with any government agent, all trades between
government agents and private agents also involve the provision of a service. Each
government agent either starts a period with a unit of money or nothing. (A (=sequence
of our rules about security issue and redemption imply that a government agent never
begins a period with a one-period security or with a matured security.) When the
government agent can supply a service to a private agent (the government agent has nothing
and has met a potential producer with an asset), we assume that the government agent has
the same reservation value as a private agent of the same type, except that with probability r
the government agent rejects an offer of a one-period security. When the government agent
can consume a service provided by a private agent (the government agent has a unit of
money), it makes the same take-it-or-leave-it offer that would have been made by a private
agent with two exceptions: with probability q it offers a two-period security instead of the
money and gets as much service for it as possible; if the private agent has a one-period
security, then with probability r the government agent refutes to trade.

Before we define and present results for symmetric steady states for the above model, we
discuss a simpler model with two fiat monies. This discussion serves two purposes. It
provides the main ingredients for the results for the money-securities model and, because it
is simpler, provides an introduction to the workings of the money-securities model.

2. Symmetric steady states with two fiat monies

As noted in the introduction, we study two monies because of the similarity between a
matured security and a distinct kind of money. We begin by assuming that there are no
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government agents and that there are given outstanding stocks of two kinds of money,

money A and money B. These are distinguished by nothing but color. We let pp> 0 be

the per-type amount of money A and pg > 0 the per-type amount of money B, where pA +

pg c 1. We make all the assumptions made above. In particular, the monies are

indivisible, each agent can hold at most one unit of one money, and bargaining is assumed

to take the form of take-it-or-leave-it offers by potential consumers.

Since the labelling of monies is arbitrary, in this section we adopt a notation which

presumes that money B at least as valuable as money A. We let cj be the maximum amount

of service that would be provided by someone who has no money in exchange for a unit of

money j and we let cgp be the maximum amount of service that would be provided by a

holder of money A who is offered a unit of money B. We also let y j be the discounted

utility from beginning a period with a unit of money j. Notice that a consequence of the

bargaining rule we use is that the discounted utility from beginning a period with no

money, or, more generally, with no asset, is zero; a person with no asset must be

indifferent between accepting a trade and not accepting a trade and not accepting implies a

zero current period return (since u(0) 0) and beginning the next period with no asset. To

conserve on notation, we simply embed that zero value in all our definitions. We also let a

a (1 - pp - pg)/N, the probability of meeting an agent of a particular type holding no

money. Using this notation, we have the following definition of a symmetric steady state

(in this case also a constant equilibrium).

Definition 1. A symmetric steady state in which money B is at least as valuable as money

A is (cp,cg,cBA) and (Vp,Vg) such that

(1) VA = amaxfu(cp), PVid + (1-a)13VA

(2) VB = ama4Mc13), 13V13] + (PA/N)maxki(cBA)+PVA, 13V131 + fl-a-PAIN) VB

(3) cj = fIN/j, j = A,B

(4) cBA= f3(V8 - VA)	 •

In this definition, equation (1) includes the implication of the bargaining rule that suppliers

of a service do not gain in a trade and the convention that money B is at least as valuable as

money A. In equation (1), a is the probability of meeting a service supplier with no
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money. Such a meeting gives the holder of money A the option between, on the one hand,
a current period utility u(cA) and beginning next period with no money (which, as noted

above, has discounted expected utility zero) and, on the other hand, choosing not to trade.
With the remaining probability, a holder of money A gels the payoff from not trading.
Although a holder of money A may also trade if he or she meets a holder of money B who
consumes what the holder of money A produces, such a trade leaves the holder of money A
indifferent. Therefore, in terms of expected utility, such a trade is equivalent to not trading.
Equation (2) describes the probabilities and respective options for a holder of money B.

Equations (3) and (4) are implications of take-it-or-leave-it offers by buyers; each expresses
the condition that the disutility of performing the amount of service is equal to gain in
discounted expected utility from changing asset positions.

2.1. Steady states in which the two monies are not distinguished.

There are exactly two steady states in which the two monies are not distinguished-- one
with no trade and one with trade.

Lemma I. There is a no-trade steady state with (V A,V B) = (0,0) and exactly one steady
state with cA = CB = c* > 0, e lm= 0, and V A=VB = V* > 0,

The proof, which appears with all others in the appendix, consists of showing that
equations (1)-(4) have solutions of the asserted kind.

2.2. Steady states in which money B is more valuable than money A.

There is always a steady state in which both monies are valuable and money B is more
valuable.

Lemma 2. There exists at least one steady state in which both monies arc valuable and
money B is more valuable than money A.

In a lemma 2 steady state, the less valuable money, money A, necessarily exchanges for
some amount of service because otherwise it could not have value. In fact, its value must
be the same as in a lemma 1 steady state with valued money-- that is, (V A , cA) = (V*,e*)--
because, under the assumed bargaining rule, the option of giving up money A for money B
does not enhance its value. It is also the case that in any lemma 2 steady state, money B



exchanges for money A plus some service, because otherwise money B would function

just like money A, and, then, by lemma 1 would have to have the same value if both are

valuable. It follows that there are only two possible trading patterns, which differ

according to whether money B is given up solely for some amount of service. For some

parameters, money B is not traded solely for services, while for others it is. For some

parameters both kinds of steady states exist.4

Notice that a lemma 2 steady state is Pareto superior to a lemma 1 steady state. Those

holding nothing or money A are equally well off, while those holding money B are better

off in a lemma 2 steady state. An analogue of this result will carry over to the money-

securities model.

Although we are primarily interested in steady states in which both monies are valuable and

money B is more valuable than money A, for the sake of completeness, we note that there

is a steady state in which money A is not valuable and money B is valuable. The argument

is essentially the same as that for lemma 1.

2.3. Steady states consistent with government transactions.

Although we will not present a formal analysis of government agents and their trades in the

version with two monies, it is instructive to describe government trades that are analogous

to those in the money-securities model and their consequences for steady states. The

analogue of the issue of new securities is having a government agent, with probability q,

offer a unit of money A instead of a unit of money B. The analogue of redeeming matured

securities is standing ready to turn a unit of money A into a unit of money B. For any G >

0, the only steady state consistent with both monies being held by private agents and

having different positive values is one in which money B is traded directly for services.

In particular, there is no steady state in which money B is traded only for money A and

some service, because such a trading pattern implies that government agents never acquire

money B. That being so, the only steady state consistent with their trading rules is one in

which private agents hold only money B. In the money-securities model, this would

4Shi (forthcoming) also displays steady states with two fiat monies with different values. However, such
steady states are due to the existence in his model of multiple steady states with a single valued money.
Ours are due to the possibility of trading the more valuable money for the less valuable money, a trade
which Shi does not consider.
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correspond to a steady state in which no securities are outstanding, which is not of interest

to us.

Since we will be appealing, by way of a limiting argument in which G approaches 0, to

existence of a steady state in which money B is more valuables than money A and money B

is traded directly for services, we want a sufficient condition on parameters to assure that

such a steady state exists. The following lemma, an easy consequence of lemma 2,

provides such a sufficient condition.

Lemma 3. if ( 1 -0)/f3 z pA/N, then there exists exactly one symmetric steady state in which

money B is more valuable than money A, both are traded solely for services, and money B

is traded for money A and some service.

The hypothesis of the lemma 3 is that the discount factor is not too close to unity. It is not

surprising that sufficient impatience gives rise to a steady state in which the chance to trade

the valuable money directly for some service is not passed up. It can also be shown that

for discount factors sufficiently close to one, any lemma 2 steady state is such that money

B is not traded solely for services.

3. Steady states in the money-securities model

We begin by defining a symmetric steady state. Here, since the distribution of asset

holdings can potentially be changing through time, we have to include in the definition the

condition that the distribution is constant. We begin with our notation, which presumes

that (i) all matured securities, independent of vintage, are treated identically, (ii) there is

symmetry over types of agents, and (iii) a unit of money is at least as valuable as a security.

At the start of a period, each private agent is either holding a security with one-period until

maturity or a matured security or a unit of money or nothing. Therefore, the state of the

system at the start of a period can be described by 4 fractions. We let pj be the fraction of

each type who are private agents and hold a unit of asset j, where j = 1 means a one-period

security, j = 0 means a matured security, and j = m means a unit of money. We also let

pgm be the fraction of each type who are government agents and who hold a unit of
money. 5 We continue to let a denote the probability of meeting a particular type with no

5Sincc we assume that government agents never offer a matured security, ppn is also the fraction of each
type who are government agents and who hold an asset.
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asset; that is a = [1- (p i + pp+ pm+ pgm)]/N. As noted above, the total amount of assets

per type is a parameter between 0 and 1. Since this total, in terms of a, is 1 - Na, it

follows that a is a parameter and that 0 < a < 1/N.

We distinguish 5 amounts of services. There are 4 possibilities for trades of an asset for

services alone. We let ej be the amount that would be supplied for a unit of asset j, where j

= 0,1,2, m and where j = 2 means a 2-period security and we let cm0 be the amount of

service that would be supplied for a unit of money when the supplier of the service starts

with a matured security. We also let Vj be the discounted expected utility of starting a

period with a unit of asset j where j = 0,1,m.

We first describe the conditions that assure that the asset distribution is constant. These

conditions are

(5) Pi+ PO+ Pm+ Pgm = 1 - Na

(6) p i = (1 - G - Pl - pp - pm)(pgm/N)q

(7) pgmf(1-bm)q + Om X 1 - G - - po - pm)/N =

- Pgm)D50(1-r)P1 + Om(PO+Pm)YINI

(8) POG = pi{1 - (1- r)[60(0 - pgm) + Om0Pgm]/NI

where Om= 1 if n(cm)> PVm and 0 otherwise; Sri= 1 if u(c0) > pV0 and 0 otherwise; and

elm0 = 1 if u(cm0)+PV0 > PVm and 0 otherwise.

Equations (5)-(8) are steady state versions of the law of motion, The first two are simple.
Equation (5) expresses the constancy of per type holdings of assets in terms of a, the

probability of meeting a particular type with no asset. Equation (6) equates the outflow and

inflow into the measure of each type who are private agents and who hold a security with

one-period until maturity. Since one-period securities mature in the next period, the
outflow is equal to the measure at the last date, pi in a steady state. The inflow equals the

measure of private agents of that type who were holding nothing at the previous date, (1-0-

p i - pp - pm), and who met a potential government consumer who offered a security, the

probability of such a meeting being (pgm/N)q.
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Equation (7) equates the outflow and inflow into the measure who are government agents

of each type holding money. The outflow equals the measure of such agents in the last
period who met and traded with a private potential supplier. We are assuming that
government agents never offer matured securities; they either offer a two-period security or
money. With probability q they offer a two-period security. With probability 1-q, they
either offer a unit of money (tim = 1) or nothing (bm = 0). If bm = 1, then they always give

up their asset; if O m = 0, then they give it up with probability q. Put differently, with

probability (1-q), they emulate private agents with money. The inflow occurs from
meetings in the last period between government agents holding nothing and private agents

who are potential consumers and hold an asset. An inflow occurs from private agents
holding one-period securities only if two conditions are met the government agent accepts,
which it does with probability 1-r, and the offer is made, which occurs if by = 1; that is, if

the private agent would rather consume what can be obtained for a matured security than
not trade, matured because the one-period security is equivalent to a matured security to the
recipient. If the private agent holds a matured security or money, then there is an inflow if
that agent prefers giving up money for cm to entering the next period with money.

Equation (8) equates the outflow and inflow from the measure of private agents of each
type holding matured securties. The outflow is equal to that measure in the previous period
who met a government agent, a meeting which occurs with probability G. That is, any
meeting between a private agent holding a matured security and a government agent results

in a decrease in private holdings of matured securities since, at worst, the government agent
turns the matured security into a unit of money. The inflow, the right-hand side, is equal to
the per type stock of one-period securities except for those traded to government agents.
For a private agent of type i, there are two potential sources of trades with government
agents: meetings with government agents who are type i-1 and who are not holding an asset

and, hence, are potential suppliers, the probability of which is (G-pg,m)/N; and meetings
with government agents who are type i+1 and who are holding money and, hence, are

potential consumers of i's service, the probability of which is pgm/N. Trades with the
former occur if the government agent accepts securities prior to maturity and if it is in the
interest of the private agent to offer the security, be= 1. Trades with the latter occur if the

government agent accepts unmatured securities and if it is in that agent's interest to make
the trade, Om° = 1.
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We now define a steady state. We list the conditions in the definition in an order that

facilitates identifying matured securities and money in this version of the model with money

A and money B of the two money version of section 2, respectively.

Definition 2. A symmetric steady State in which a unit of money is at least as valuable as a
matured security is a list (P0,131,Pagm,co,ci,e2,cm,cmo,Vo,V1,Vm) that satisfies (5)-(8)
and:

(9) Vo = [(1-G - pi - PO - Prn)/N)max[u(co), pVo] +

[(G-pgm)/1■1jmax[u(cm), 13Vm1 + [G - (G-pgm)/1■1]13Vm +

[1 - G -(1-G - p1 - PO - Pm)/1`1]P0

(10) vm= amax[u(cm), P	 + RAO+ PI)Thilmax[u(cm0)+PV0, P VmJ +

[1- a - (Po + p0/N]f3Vm

(11) cj = pVj, j = 0,m

(12) cin0 = 13(Vm - Vo)

(13) VI = [(1-G - P1 - PO - Pm) /Isi + (1–r)(G - pgm)/N)max[u(c0), PV0) +

[1 - (1-G - P1 - Po - Pin)/N - (1–r)(G - pgm)/N1I3Vo

(14) ci = co

(15) o2 = f3Vi •

Although this definition contains a long list of conditions, they split up into what will be

effectively three recursive blocks of equations: (5)-(8), (9)-(12), and (13)-(15). That is,

when we apply our guess and verify procedure by guessing at a trading pattern and then

verifying that there is a steady state with that trading pattern, we will first solve equations

(5)-(8) for the steady state asset distribution. Then, given that asset distribution, we will
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solve (9)- (12), which do not involve V I , c 1 , or c2. Then finally, we will solve (13)-(15),

which determine what happens in trades involving securities prior to maturity.

Equations (9)-(12) correspond closely to (1)-(4) provided we identify matured securities

with money A and money with money B. That is, (10)-(12) correspond exactly to (2)-

(4), respectively, provided we use the result, embedded in our definition, that the recipient

of a one-period security is indifferent between it and a matured security because the one-

period security becomes a matured security before it can be retracted. As for (9), it differs

from (1) only because government agents treat matured securities as money. In particular,

the first term on the right-hand side of (9) is the probability of meeting a potential private

supplier with no asset times the payoff from such a meeting; the second term is the

probability of meeting a potential government supplier with no asset times the payoff from

such a meeting (the government supplier can be regarded as first redeeming the matured

security and then possibly supplying a service for the money), the third term is the

probability of meeting any other government agent times the payoff, which is beginning the

next period with money; the last term is the probability of any other meeting times the

payoff, which is equal to that of not trading.

Equations (13)-(15) not only form a recursive sub-block, but can be solved one equation at

a time. in (13), we again use the fact that a one-period security becomes a matured security

for the person who accepts it or who holds onto it. The first term is the probability of

meeting a potential supplier who has no asset and, if a government agent, does not reject

securities prior to maturity. With the remaining probability, the payoff is that of no trade.

Notice that the right-hand side of (13) is determined by the solution to the other blocks of

equations. Equation (14) says that the offer of a one-period security in a private trade is

equivalent to an offer of a matured security. Equation (15) determines the amount of

service that a government agent gets when it issues a two-period security.

If we compute the yield until maturity in the usual way and with current asset prices taken

from trades of assets for services only, then the yield of one-period securities is (cm/cl) - 1,

while the yield of two-period securities, our main concern, is [(cm/c 2) - 1] 1/2 . The former,

by (14), is positive if and only if matured securities trade at a discount (co< cm); the latter,

by (11) and (15), is positive if and only if V I < Vm.
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We first describe a steady state in which matured securities and money are treated

identically. Then we describe a steady state in which matured securities trade at a discount
in private trades.

3.1. Matured securities exchange at par.

One would expect there to be a steady-state in which matured securities and money are

treated identically. To show that there is, we begin by noting that there is a constant asset

distribution under the trading pattern implied by identical treatment of money and matured

securities. That trading pattern implies that both money and matured securities exchange
for services alone; that is, Om So = 1 in equations (5)-(8). Moreover, since with such

identical treatment, it is not necessary to distinguish between holdings of matured securities

and money, we need only find p i , po + pm, and pgm. The following lemma, which uses

the fact that po and pm appear in equations (5)-(7) only as a sum, shows that those
equations have a unique solution.

Lemma 4. If 5m = so. 1, then there exists a unique solution to (5)-(7) with
3

(131,P0+Pm,Pgm) E R ++. Moreover, the solution for p gm is strictly decreasing in r, strictly

decreasing in q if r> 0, and satisfies pgm< G; while the solution for pi is strictly
decreasing in r and q.

Our main result for steady states with matured securities trading at par is as follows.

Proposition 1. A necessary and sufficient condition for existence of a steady state in which

matured securities exchange at par (co = cm) and newly issued securities exchange at a

discount ( 0 < Q < co) is r > 0. Moreover, if r = 0, then there is a steady state in which
securities always exchange at par (0 < Q = co= cm).

The necessity part of this proposition is established by contradiction. In particular, to

prove it, we assume r = 0 and co= cm > 0 and show that a consequence is c 2 = cm. The

argument is straightforward backward induction. If a security will be equivalent to money

at t+1, then a private potential supplier treats it as money at t, because t+1 is the earliest date

at which it will be retraded; and, with r = 0, government agents, by assumption, have the

same reservation value as private agents.
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The sufficiency part, including existence for r = 0, involves showing that definition 2 can
be satisfied by the kind of steady state described. This is done in three simple steps using
the recursive structure of equations (9)-(15). The first step, already accomplished in lemma
4, is to show that there is a constant asset distribution under the hypothesized strategies,
which imply Om by = 1. Then, this solution is used in (9)-(12), which under the
hypothesized strategies have a solution, the valued money solution in lemma 1. The third
step is simply to read off the solutions for V I , e l , and c2 from (13)-(15). In this solution, r
> 0 implies c2 < cm, a discount on newly issued securities, because the potential supplier
who accepts a newly issued security may meet a government agent at the next date who will
reject a trade with probability r.

The necessity part of proposition 1 says that if matured securities are perfect substitutes for
money, then so are unmatured securities unless there is exogenous nonacceptance by some
agents. In other words, if matured securities are trading at par, then the belief that other
agents will not accept unmatured securities at par is not an equilibrium belief unless
supported by exogenous nonacceptance by some agents.

Although not germane to our main message, some features of the steady state displayed in
the sufficiency part of proposition 1 deserve comment. In that steady state, a unit of money
always exchanges for the same amount of service, the c* of lemma 1, since (10) reduces to
(1) when matured securities and money are perfect substitutes. It follows that in a
proposition 1 steady state, the value of a unit of money depends only on a, the total

amount of assets and not the composition of assets. This feature can be attributed partly to
the absence of taxes in the model; if there were taxes in the model, then the value of money
could depend on the composition of assets, as well as on the details of the tax system.

The policy parameters q and r affect the steady-state distribution of asset holdings as
between government agents and private agents, the composition of private asset holdings as
between one-period securities, on the one hand, and money and matured securities on the
other hand, and, by way of those effects and directly via (13), the discount on newly
issued securities. Since, by (13), and the argument in the proof, Vt = a tu(c*) + (1-
a 1)(3V*, where, a' = a - r(G - pgm)/N, and since pgm is decreasing in r and q (see lemma

4), it follows that V 1 is decreasing in r and q. This implies that the two-period nominal
interest rate, (c*/c2) - 1, is increasing in r and, for any r> 0, is increasing in q.
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3.2. Matured securities exchange at less than par.

Here we assume r 0; that is, we now assume that government agents emulate private

agents except that they sometimes issue two-period securities and stand ready to redeem

matured securities. Proposition 1 implies that with r = 0 any steady-state in which

securities trade at a discount has to be one in which matured securities do not exchange at

par in trades between private agents. Therefore, we now explore that possibility. Notice

that if there is a steady state in which matured securities trade at less than par in private

transactions, then the value of securities when issued will be less than their value in private

trades after maturity because it is only after maturity that government agents redeem

securities.

The conjecture that there is a steady state in which matured securities exchange at less than

par for some parameters is plausible because of the results for two monies in section 2. We

now show that that conjecture is true, at least for some parameters. We begin by

presenting some necessary conditions for a steady state in which matured securities trade at

a discount.

Lemma 5. In any steady state with Vm> 0 and Vo � Vm, (i) Vm � V* and (ii) V 0 >_ V*,

where V* is the lemma 1 solution for valued money.

Conclusion (i) is obtained by noting that under the hypothesis, the worst that happens for

money is that it plays the role of valued money in lemma 1. Conclusion (ii) is the same

conclusion for matured securities. In particular, matured securities cannot be worthless if

money has value, because a matured security can be redeemed with positive probability.

One consequence of lemma 5 is that there is not a steady state in which money is valuable

and matured securities play approximately the role of a distinct kind of money that has no

value.

Lemma 6. In any steady state with Vm> Vo > 0 and p i + po > 0, (i) u(cm0) f3Vo > l3Vm,
(ii) u(co) > f3V0, and (iii) u(cm)> fiVm.

Conclusion (i) is established by contradiction. The idea is that if it does not hold, then the

only positive value for money is its positive value in lemma 1, V. But, then, the

conclusion of lemma 5 contradicts the hypothesis. Conclusions (ii) and (iii) say that both

matured securities and money trade for services alone. If not, then government agents

(41
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would never acquire money and there could not be a steady state in which securities are

outstanding.

A consequence of lemma 6 is that there is only one possible trading pattern consistent with

a steady state in which money has value, matured securities trade at a discount, and private
agents hold securities. It is a steady state with bm = Nno = 1. In particular, since bm

= bo = 1, the solution to (5)-(7) given in lemma 4 applies. Moreover, since we are now

assuming r = 0, that solution takes a simple form which we now record along with some of

its consequences.

Lemma 7. If Om= bo = Oino= 1 and r = 0, then the unique positive solution to (5)-(8)

satisfies: (i) pgm = G(1-Na); (ii) p i+ po= qa(I-Na)(1-G)[1 + G(1-N-1)]., (iii) p 1 + po,

as given in (ii), is continuous and decreasing in G, with limit qa(I-Na) as G –• 0 and limit

OatG–• I.

Conclusion (i) says that with r = 0 and both matured securities and money being traded for

services only, the fraction of government agents with an asset is equal to the fraction of

private agents with an asset. Conclusion (iii) describes the behavior of private holdings of
one-period and matured securities. Notice that although p / –• 0 as G –0 0, po does not

because on average securities remain outstanding for a number of periods that approaches
infinity as G –• 0. The limiting behavior as G 	 0 plays a role in proposition 2 which

establishes existence of a steady state when G is sufficiently close to zero. The limiting
behavior as G –• 1 plays a role in the subsequent discussion.

Proposition 2. Assume r = 0 (government agents treat one-period securities as do private
agents). If G is sufficiently close to 0 and (1-13)/13 Z qa(1-Na)/N, then there exists a

steady state with matured securities exchanging at less than par (co <cm and cmo > 0) and

with newly issued securities valued at less than matured securities (c2 <co) and with

money traded for services only, and for securities and services.

The proof proceeds by verifying that there is a solution to the conditions in definition 2 that

satisfy the inequalities hypothesized in lemma 6. It uses the recursive structure of the

conditions in definition 2 that we noted above, and, therefore, has three steps. The first

step, the solution for the asset distribution under the conditions in lemma 6, is

accomplished in lemma 7. The second step is to show that equations (9)-(12) have a

solution with cm > co > 0, a solution that is consistent with (i)-(iii) in lemma 6. That is
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done.via the implicit function theorem using the correspondance between (9)-(12) and (1) -

(4). In particular, taking into account the dependence of pgm and of pj + po on G as given

in lemma 7, the right-hand sides of (9) and (10) are easily shown to be continuous in G and

to approach the right-hand sides of (1) and (2), respectively, as G 0. The third step

amounts to noting obvious properties of the solutions to (13)-(15).

The other general result we have concerning steady states in which matured securities trade

at a discount is that the discount, if it exists, approaches zero as either G 	 1 or q	 0. It

follows from lemma 7 that p 1 + po –• 0 as either G	 1 or q –3. 0. But, then by, (10), it

follows that Vm V*. Therefore, by lemma 5, Vo V*, which implies that the discount

on matured securities, if one exists, approaches zero as either G --0 1 or q –0. 0.

We are not, of course, making any claim of necessity for the hypotheses of proposition 2.

Indeed, as regards G, we have computed examples in which the conclusions of proposition

2 hold for all G's-- although, consistent with the claim just made, the discount on matured

securities in these examples gets smaller as G gets larger. As regards the discount factor,

some bound away from unity seems to be necessary to assure that money trades for

services alone, which, as noted above, is necessary for a steady state with securities
outstanding. Letting 7E = Na, the fraction of each type without an asset, the sufficient

condition on the discount factor in proposition 2 can be written as (143)43 a qa(1-31)/N2 or

13 s 1/[1 + qn(1-3t)/N2] s 1/[1 + 1/2N2] = 2N2/[1 + 2142]. Hence, the stringency of that

condition varies inversely with N2. Since N = 3 is the smallest N we permit, p 518/19 is

sufficient.

There is a sense in which proposition 2 provides a welfare rationale for securities.

Although the consumption and production of government agents varies across steady

states, which in general implies that we should not ignore what happens to them in different

steady states, what happens to them is not important if G is near zero. Ignoring

government agents, the steady state of proposition 2 is Pareto superior to that of

proposition 1. And, since with r = 0, the proposition 1 steady state is the same as a steady

state with one money and no securities, we have the conclusion that there is a steady state

with securities outstanding that is Pareto superior to any steady state with only one kind of

money outstanding. Moreover, those steady states are comparable in the sense that the

asset distribution of the proposition 2 steady state is the steady state asset distribution of

proposition 1.
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4. The role of asset indivisibility and the bound on asset holdings

Among the many extreme assumptions made in our model, perhaps the mast troubling is

the combination of asset indivisibility and the upper bound of unity on holdings of assets.

Those assumptions seem to preclude direct choice among assets; for example, no one is

ever in the position of choosing between offering a unit of money or a matured security for

services. Here we discuss our suspicions about the consequences of weakening the upper

bound on asset holdings and the indivisibility of assets.

It is straightforward to formulate versions of the model with indivisible assets and a general

integer upper bound or no upper bound on individual asset holdings or a version with

divisible assets and no bound on individual holdings. However, for such versions, we

have not been able to describe and establish existence of steady states in which trade

occurs. Nevertheless, we have some suspicions about the robustness of propositions 1

and 2 to such generalizations of the model.

As regards proposition 1, we suspect that the necessity part of that proposition will survive

such generalizations of the model. That is, we suspect that the following is true: if there is

a steady state in which matured securities and money are perfect substitutes, then absent

exogenous nonacceptance, they are perfect substitutes prior to maturity. The sufficiency

parts are more problematic, because they require existence arguments. That r> 0 is

sufficient to generate a discount on matured securities could, in a sense, be explored

without a general existence argument by considering the following conjecture: if there is a

steady state in which matured securities and money are perfect substitutes and if r> 0, then

newly issued 2-period securities necessarily sell at a discount. However, even such a

limited claim does not seem easy to prove. This result in our version was easy to prove

because the upper bound on asset holdings implies that someone with an unmatured

security could meet a government agent and have only that asset to offer. With more

general portfolios allowed, the conclusion about the discount will follow if portfolios and

trades are such that r> 0 will be binding in some trades with government agents, but that

will depend both on the portfolios and on the trades, both of which are endogenous. The

result that r = 0 implies existence of a steady state in which securities and money are always

perfect substitutes is simply the claim that the corresponding one money world has a steady

state with valued money. Although that seems simple enough, it is not easy to prove.

Nevertheless, despite these difficulties, we suspect that the essence of proposition I will

survive weakening the upper bound on asset holdings and the indivisibility of assets.
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We are less confident about proposition 2. Since proposition 2 rests on the results for two

distinct kinds of money, let us consider a two money setting, but with divisible assets and

no bound on each agent's holdings. If the initial condition is such that each agent holds the

two monies in the same proportion, then we know that there is exchange rate indeterminacy

in the following sense: if there is an equilibrium in which the two monies have value and

are not distinguished, then for any arbitrary relative value between the two monies that is

constant through time there is an equilibrium whose real aspects duplicate those of the

equilibrium in which the two monies are not distinguished. Given this indeterminacy, we

suspect that no analogue of proposition 2 is true if securities and money are divisible and

there is no bound on individual portfolios. One basis for this suspicion is our finding that

there is no money-securities approximation to a two money steady state in which one

money is valuable and the other is not. A second basis is that indeterminacy of exchange

rates is local nonuniqueness in the two money version, which precludes the kind of implicit

function theorem argument we use to prove proposition 2.

We do not mean to suggest by these remarks that the limiting case of asset divisibility is the

only case of interest. Most assets are to some extent indivisible. Although asset

indivisibility can be ignored when markets are complete because the completeness permits

assets to be shared, an appeal to sharing, using intermediation or some other credit device,

is not available under the assumptions that imply that trade is quid pro quo in pairwise

meetings. Therefore, results for the case of divisibility in such pairwise meeting models

are of interest primarily as a limiting case of what happens as indivisibilities get less

important

Notice that the necessity part of proposition 1 provides, in a sense, two alternative

necessary conditions for coexistence of noninterest bearing money and interest bearing

default-free claims to money in the future. One is the exogenous nonacceptance of

unmatured securities or some equivalent rule. The other is a discount on matured securities

in private transactions. In accord with the discussion of proposition 1 above, these

necessary conditions are almost certainly robust to weakening the upper bound on

individual asset holdings and the indivisibility of assets.
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5. Conclusion

The model described in this paper is one particular model in which there are transaction

frictions that are not connected to particular assets. The frictions are random pairwise

meetings, private information about trading histories, indivisible assets, and a unit storage

capacity for assets. Although our model is extreme in many respects, it has some obvious

virtues relative to most other models. We noted in the introduction that it gives a less trivial

solution to explaining coexistence between noninterest-bearing money and interest-bearing

default-free securities than models which simply posit that some assets overcome some

explicit or implicit transaction frictions. Also, although our explanation that relies on

exogenous nonacceptance by government agents is a form of legal restriction, it is a more

appealing form of legal restriction than those that have been used in models of complete

markets. In models with complete markets (for example, Sargent-Wallace (1982) or

Bryant-Wallace (1984)), the legal restrictions have to directly limit the forms in which

people can hold wealth. Here, because of the pairwise-meeting feature, we get coexistence

from a much weaker and, therefore, more plausible form of legal restriction-- namely, non

acceptance by the government of securities prior to maturity. Such non acceptance does not

suffice in models with complete markets, because the price of securities adjusts to make the

marginal holder, a private agent if both money and securities are outstanding, indifferent

between the two.

Finally, our model makes some new predictions about historical episodes in which

governments issued securities with features that made them suitable as forms of currency:

securities which were in small denominations, were payable-to-the-bearer, and were

default-free. Such securities were issued by the U.S. during the Civil War (see Gherity

(1993)) and during World War I (see the discussion of Liberty Bonds in Wallace (1988)),

and, most notably, in France during the years 1915-27 (see Makinen and Woodward

(1986)). The French experience is notable because the government made widely available,

at prices that implied roughly 5% yields until maturity, small denomination, pure discount,

seemingly default-free, bearer securities with maturities of 3 months, 6 months, and 1 year.

In all these instances, the evidence seems to be that such securities did not trade at prices

that implied zero nominal yields at all times. Therefore, our model makes the following

predictions about these and other such episodes. The proposition I explanation of a

discount predicts the existence of rules dictating that the government did not accept

securities prior to maturity, or accepted them only at a pre-set positive price implying a
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positive yield prior to maturity. The proposition 2 explanation predicts that matured

securities traded at a discount in private transactions. So far as we know, these predictions

have not been considered in existing discussions of episodes of coexistence between

noninterest-bearing money and interest-bearing default-free, payable-to-the-bearer, small

denomination securities.
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Appendix

Lemma I. There is a no-trade steady state with (V A ,V B ) = (0,0) and exactly one steady

state with cA = CB c* > 0, cBA= 0, and VA=VB -2-- V* > 0.

Proof. We use a guess and verify style of argument. We solve equations (1)-(4) under the
assumption that 9 c, Vi = V and u(c) �:13V and then verify that the solutions satisfy this

inequality. Under the conjecture, equation (4) is satisfied and (2) reduces to (1).
Therefore, we have only to find pairs (c, V) that satisfy V = au(c)+ (1-a)(3V and c = V.

Upon eliminating V, we get [a + (1-13)/(31c = au(c). The assumptions about u imply that

there are exactly two solutions: c = 0, the no-trade solution, and a positive solution,

denoted c*, which satisfies c* < u(c*). The corresponding V's can be found from (3).

That for c = 0 is zero, while that for et , which we denote V*, is positive. Obviously, the
no trade solution satisfies u(c) Z V. And, since c* < u(c*), it follows from (3) that u(c*)

> (3V*. •

Lemma 2. There exists at least one steady state in which both monies are valuable and

money B is more valuable than money A.

Proof. As in lemma 1, we use a guess and verify style of argument. We show that

equations (1)-(4) have a solution satisfying cB > cA > 0.

Equation (1) and equation (3) for j = A involve only cA and V A. Therefore, as

demonstrated in the proof of lemma 1, they have a unique positive solution, (c*, V*),
which satisfies u(c*) > f3V*. Our next task is to show that with (cA ,VA) = (c*,V*),

equations (2), (4), and (3) for j = B have a solution for VB, CB, and cBA that satisfies the

conclusions in the lemma. After imposing that money B is traded for money A and some

services and (cA,VA) = (c*,V*), equation (2) can be written as

(A1 ) (l–p)vB = arnax[u(cB) - PVB, OH- (pAn• )[u(cBA) - 13(V 13 - V*)1

Then, letting x • p(Vti - V*) and using (3) and (4), the indifference conditions, we can

rewrite (A I), solely in terms of x, as F(x) = H(x), where F(x) = [(1-(3)/(3)(x + (3V*) and

H(x) amax[u(x +13V*) - (x + PV*), 01+ (PAM)RI(x) - x]. Since F(0) = H(0)-- in

effect, the lemma 1 valued money solution-- and 1-1 1(0) = cc , it follows that F(x) < 1-1(x) for

x > 0 and x sufficiently close to O. If x" is the unique positive solution for x to u(x) - x =

1
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0, which exists.given the assumptions about u, then H(x") = 0. Therefore, F(x") >

H(x"). Since F and H are continuous, it follows that there is at least one x E (0,x") that

satisfies F(x) = G(x). Let x* denote such an x. Since, by definition of x", u(x*) > x*, the

trade of money B for money A and the service amount x* is, in fact, optimizing. •

Lemma 3. If (1-(3)/fi pA/N, then there exists exactly one symmetric steady state in which

money B is more valuable than money A, both are traded solely for services, and money B

is traded for money A and some service.

Proof. Let x' be the unique nonnegative solution for x to u(x + p V*) - (x +13V*) 0.

This solution exists and is positive because u(131/*)> I3V*. Then F(x') - H(x') = [(1-

R)/13](x' +	 - (pA/N)[u(x') - x'] = K1-43)/(31u(x'fi3V*) - (PA/N)u(x') + (pA/N)x' > 0,

where F and H are as defined in the proof of lemma 2 and where the inequality follows

from the hypothesis. Therefore, using the facts about F(0) and H(0) noted in the proof of

lemma 2 , there is a solution to F(x) = H(x) with x E (0,x'). By construction, this is a

solution where the max term in (A1) is positive. Moreover, since H is strictly concave for
x E (0,x'), there is only one such solution. •

Lemma 4. If Om = So= 1, then there exists a unique solution to (5)-(7) with

(131,1,o+pm,pgm) E R
3++. Moreover, the solution for pgm is strictly decreasing in r, strictly

decreasing in q if r> 0, and satisfies pgm< G; while the solution for pi is strictly

decreasing in r and q.

Proof. Letting A s 1- Na and p .5; pc+ pm and using the hypotheses, (5)-(7) become,

respectively,

(A2) pi+ p+ pgm= A,

(A3) P1= (1 - G - p - pi)(pgm/N)q,

(A4) pgm(1 - G - p - p i) = (G - pgm)[(1-r)pi + p]

We begin by obtaining a single equation in pgm that must be satisfied by any solution to

(A2) - (A4). Solving (A2) for p i+p and substituting the result into the right-hand side of

(A3), we get
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(A5) p i = (I - G - A + pgm)qpgm/N

Then substituting this expression for p i into (A2) and solving for p, we get

(A6) p = A - pgm[l + (q/N)( 1 - - A + pgm)]

Now substituting from (A5) and (A6) into (A4), we get a single equation in pgm (x from

now on) which we write as	 •

(A7) h(x) = f(x)

where

(A8) h(x) x(I- G - A +x)

(A9) 1(x) a (G-x)(44 - x - r(q/N)x(1- G - A +x)]

Let xo= max(0, G + A - 1) and let xi = min(A, G). It follows that xo < x i . We will show

that there is no solution to (A7) with x E [0, xo], and that there is a unique solution with x

E (xo,x i ). Finally, we will show that that unique solution implies positive solutions for pi

and p.

If x E [0, x0], then h(x) s 0 and f(x) z (G-x)(A-x) > 0. Hence, there is no solution to

(A7) with x E [0, xo]. As regards existence, we already have h(xo) < fixo). Obviously,

h(x > 0. As for f(xi), if G s A, then f(xi) = 0; while if G > A, then f(xi) < O.
Therefore, h(x > f(x i). Therefore, by continuity of f and g, there exists at least one x E

(xo, xi) that satisfies (A7). As regards uniqueness, straightforward calculation of first

derivatives of h and f establishes that h is strictly increasing and f is strictly decreasing on

(xo, xi). Let x*(q,r) denote the unique solution to (A7). Since h(xo) = 0, it follows that

h[x*(q,r)] > 0.

The last step is to show that pgm= x*(q,r) implies positive solutions for p i and p. Since,

by (A5), p i = (q/N)h[x*(q,r)] and h[x*(q,r)] > 0, the solution for pi is positive. We next

show that x*(q,r) + (q/N)h[x*(q,r)] <A, which, by (A2); assures a positive solution for p.

Since for any given x E (xo, x i ), f is decreasing in r, it follows that x*(q,r) and h[x*(q,r)]
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are decreasing in r. Therefore, if x*(q,0) + h[x*(q,0)] < A, then x*(q,r) + (q/N)h[x*(q,r)]

< A. It is immediate from (A7) that x*(q,0) = GA and x*(q,0) + h[x*(q,0)] = GA(2 - G -

A + GA) = A[2G - G 2 - AG( I - G)]. Straighforward calculation shows that [2G - G 2 -

AG(1 - G)] is strictly increasing in G for G E [0,1] and equals 1 at G = 1. Therefore,

x*(q,0) + h[x*(q,0)] < A, as required.

The claims about the dependence of the solutions for pgm and p i on r follow from the fact
that f is decreasing in r. Since f is also decreasing in q for x E (xo, xi) and r> 0, x*(q,r)

and h[x*(q,r)] are also decreasing in q for r> 0. This and the fact that x*(q,0) = GA imply

the claims about the dependence on q. •

Proposition I. A necessary and sufficient condition for existence of a steady state in which

matured securities exchange at par (co = c, and newly issued securities exchange at a

discount ( 0 < c2 < co) is r > 0. Moreover, if r = 0, then there is a steady state in which

securities always exchange at par (0 < c2 co= cm).

Proof of necessity. (If there exists a symmetric steady state with co = cm > 0 and c2 < cm,

then r > 0.) We do a proof by contradiction. In particular, we assume r = 0 and co = cm >

0 and show that a consequence is c2 = cm. By (15) and (11), we have only to show that
V i = Vm. With r = 0, the right-hand side of (13) becomes amax[u(co), (3V0l + (1-€)13VO.

However, by (11), co= cm implies Vm = V0, which, by (12), implies cmo= 0. It follows

that the right-hand side of (10) is also equal to a[u(c0), I3Vo] + (1-c)13V0. •

Proof of sufficiency. (If r> 0, then there exists a (symmetric) steady state with 0 < c 2 < et

= co = cm. Moreover, if r = 0, then there is a steady state in which securities always

exchange at par (0 < c2 = co= cm).) The conjectured trading pattern is very simple. Since

one-period securities are equivalent to matured securities to potential recipients, which, in

turn, are by hypothesis equivalent to money, there are no trades involving securities on

both sides of the transaction. Moreover, we must have Om = SO = 1. Given this trading

pattern, Lemma 4 shows that equations (5)-(7) have a unique positive solution for (pi,

PO+Pm, pgm), a solution that satisfies pgm < G.

We next show that (9)-(12) have a solution that satisfies the conclusions. If co = cm and
Vo = Vm, then the right-hand side (9) can be written amax[u(co), pV0] + (1-a)8Vo. But,

then, (9)-(12) correspond exactly to (1)-(4). Therefore, lemma 1 implies that there is a
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unique positive solution with co = 	 = c* and with V 0 = Vm = V. It remains only to

examine the expression for V i in (13).

If r = 0, then the right-hand side of (13) is cx[u(co), Voi + (1-a)[%Vo, which implies that

there is steady state with securities always at par. If r > 0, then the right-hand side of (13)

can be written alu(co), I3V 0] + (1-a 1)[1V 0, where a' < a. Since, as shown in lemma 1,

u(c*) > 8V*, it follows that if r> 0, then V i < V*. By (15), this implies that if r> 0, then

C2 < C*. •

Lemma S. In any steady state with V.> 0 and Vos V m , (i) V. a V* and (ii) Vo a V*,

where V* is the lemma 1 solution for valued money.

Proof. By (10), V.a au(c. )+ yl3V.+ (1- a - y)/3V. = au(c..)+ (1-a)(3V., where y=

(p i + P0)/N. Therefore, by (11), [a + (1-(3)/81c. a.u(c.). However, this implies that

cm a c*, which by (11) gives conclusion (i). As for (ii), since, by hypothesis, V. a V 0, it

follows from (9) that V0 Z au(c0)+ (1-a)8Vo. Then, by (11), we have [a + (1-0)/f3]co

au(co). Since co = 0 is not consistent with V. > 0 (according to (9)), it follows that co a

c*. Then (11) implies (ii). •

Lemma 6. In any steady state with V.> Vo > 0 and p i + po > 0, (i) u(cm0) + PV0>
8V., (ii) u(co) > 8V0, and (iii) u(c.)> oVni.

Proof. Suppose that (i) does not hold. Then, by (10) and lemma 5, V.= V*. It follows

from lemma 5 that V0 Z Vm, a contradiction.

Conclusions (ii) and (iii) are established by showing that if either does not hold, then the

steady state of the law of motion does not have securities outstanding. Suppose, first, that

(ii) does not hold. Then, by (11), co � u(co). Since c.> co, it follows that DV.= cm >

u(cm). Thus, we have the conclusion that neither matured securities nor money are traded

for services only. However, that implies that government agents never acquire assets; that

is, the right-hand side of (7) is zero. It also implies, by (6), that the left-hand side of (7) is

equal to p i , which, therefore, is zero. Then, by (8), so is the stock of matured securities in

private hands. It follows that if (ii) does not hold, then there is no steady state with

securities in private hands. Suppose now that (iii) does not hold. Then 6. = 0. It follows

that the left-hand side of (7) is pi, while the right-hand side is a fraction of p i . Again,

there is no steady state with either pi or poor both positive. •
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Lemma 7. If bm bp = Nip = 1 and r = 0, then the unique positive solution to (5)-(8)

satisfies the following: (i) p gm = G(1-Na); (ii) p i + po= qa(1-Na)(1-G)[I + G(1-N-1));
(iii)	 po, as given in (ii), is continuous and decreasing in G, with limit qa(1-Na) as G

0 and limit 0 at G	 1.

Proof. Conclusions (i) and (ii) follow from results in the proof of lemma 4 and (8).
Conclusion (iii) is immediate from (ii). •

Proposition 2. Assume r = 0 (government agents treat one-period securities as do private
agents). If G is sufficiently close to 0 and (1-(3)/13 z qa(1-Na)/N, then there exists a

steady state with matured securities exchanging at less than par (co < cm and cmo > 0) and

with newly issued securities valued at less than matured securities (c 2 < co) and with

money traded for services only, and for securities and services.

Proof. Once again, we proceed by guessing and verifying. We conjecture that there is a

solution satisfying the conclusions and verify that there is. The proof uses the recursive

structure of the conditions in definition 2 that we noted above. We have already described,

in lemma 7, the solution for the asset distribution under the conjectured trading pattern.

The next step is to show that equations (9)-(12) have a solution with cm> co > 0, a

solution that is consistent with the conjectured trading pattern. To do that we rely on the

implicit function theorem, lemma 3, and the correspondance between (9)-(12) and (1)-(4)

with (co,cmicmo,Vo,Vm) corresponding to (c iei, ca, cBA,VA, VB)•

We first show that the right-hand sides of (9) and (10) are continuous in G and approach
the right-hand sides of (1) and (2), respectively, as G –• 0. Since pgm= G(1 - Na), the

right-hand side of (9) is continuous in G and approaches au(co) + (1 - a)13V 0, which is the

same as the right-hand side of (1). G appears in (10) implicitly by way of the sum p i + pp,
which is continuous in G and, as noted above, approaches qa(1-Na) as G 0. Thus, the

right-hand side of (10) is continuous in G and approaches the right-hand side of (2) as G
–. 0, provided we replace pA in (2) by qa(1-Na).

To apply the implicit function theorem to (9)-(12), we need two other conditions. First, the

solution at G 0 must be in the interior of the domain. Since the solution in lemma 3

satisfies 0 < c* = cA < cB, that condition is met. We also need to satisfy the nonvanishing

Jacobian condition (the local uniqueness condition) at G = 0. That condition is implied by
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two features of the solution in lemma 3: first, the solution for cA in lemma 3, which is c*,
satisfies [a + (1-13)//31 > (Jule*); second, the positive solution to F(x) = 1-1(x) in lemma
3, denoted x", satisfies P(x") > H'(x").

It follows, then, from the implicit function theorem applied to (9)-(12) under the
conjectured trading pattern that for G sufficiently close to zero those equations have a
solution in the neighborhood of the lemma 3 solution. We denote that solution
(cms(G).cos(G),crno*(G),V0*(G),Vin*(G)). Since, as established in lemma 1 the lemma
3 solution satisfies the optimization conditions with strict inequalities, it follows from
continuity of the solution to (9)-(12) in G that those inequalities hold for the solution to (9)-
(12) for G sufficiently close to zero.

The rest of the proof proceeds recursively to find V I and Q. Existence is immediate. The
properties of the solution follow from computing Vo - V I . By (9) and (13), Vo - V I = [(G
- pgm)/1•11[u(cm) - u(c0) .1 + [G - (0 - Pgm) /NOP( Vm- Vo). Since this is positive when

evaluated at the above solution to (9)-(12), it follows that the solution for V I , denoted
V 1 *(G), satisfies V i*(G) < V0*(G). It follows that the solution for c2, denoted Q*(G),
satisfies c2*(G) < co*(G). •
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