
Exact Maximum Likelihood Estimation of

Observation-Driven Econometric Models

Francis X. Diebold

Department of Economics
University of Pennsylvania
3718 Locust Walk
Philadelphia, PA 19104-6297

Til Schuermann

AT&T Bell Labs
600 Mountain Avenue

Room 7E-530
Murray Hill, NJ 07974

Revised, October 1995

Abstract: The possibility of exact maximum likelihood estimation of many
observation-driven models remains an open question. Often only approximate
maximum likelihood estimation is attempted, because the unconditional density
needed for exact estimation is not known in closed form. Using simulation and
nonparametric density estimation techniques that facilitate empirical likelihood
evaluation, we develop an exact maximum likelihood procedure. We provide an
illustrative application to the estimation of ARCH models, in which we compare
the sampling properties of the exact estimator to those of several competitors.
We fmd that, especially in situations of small samples and high persistence,
efficiency gains are obtained.
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1. Introduction

Cox (1981) makes the insightful distinction between observation-driven and

parameter-driven models. A model is observation-driven if it is of the form

and parameter-driven if it is of the form

yt = h(4,,

(kt	 g(4.0-1),
 m)'

where superscripts denote past histories, and e t, vt and it are white noise. If,

moreover, the relevant part of

observation-driven model finite-ordered, and similarly if the relevant part of

•ri) is of finite dimension, we will call a parameter-driven model fmite-

ordered.

Of course the distinction is only conceptual, as various state-space and

filtering techniques enable movement from one representation to another, but the

idea of cataloging models as observation- or parameter-driven facilitates

interpretation and provides perspective. The key insight is that observation-

driven models are often easy to estimate, because their dynamics are defined

directly in terms of observables, but they are often hard to manipulate. In

contrast, the nonlinear state-space form of parameter-driven models makes them

easy to manipulate but hard to estimate.

A simple comparison of ARCH and stochastic volatility models will clarify

the concepts.' Consider the first-order ARCH model,

' This example draws upon Shephard's (1995) insightful survey.

y 0-1) is of finite dimension, we will call an



Yr= otet

e, - N(0,1)

2	 2
at	 ao

so that

-NO ao	 alYt2-1).
The model is finite-ordered and observation-driven and, as is well-known (e.g.,

Engle, 1982), it is easy to estimate by (approximate) maximum likelihood.

Alternatively, consider the first-order stochastic volatility model,

yt = alv,

v, - N(0,1)

Ina2, = 80 + S ias +

nt - N(0,1),

so that

Yr' atd	 N(0, exp(60 + 8 1 0,2_ 1 +

The model is finite-ordered but parameter-driven and, as is also well-known, it is

very difficult to construct the likelihood because a, is unobserved.

In this paper we study finite-ordered observation-driven models. This of

course involves some loss of generality, as some interesting models (like the

stochastic volatility model) are not observation-driven and/or fmite-ordered, but

finite-ordered observation-driven models are nevertheless tremendously important

and popular. Autoregressive models and ARCH models, for example, satisfy the

requisite criteria, as do many more complex models. Moreover, observation-



driven counterparts of parameter-driven models often exist, such as Gray's

(1995) version of Hamilton's (1989) Markov switching model.

Observation-driven models are often easy to estimate. The likelihood may

be evaluated by prediction-error factorization, because the model is stated in

terms of conditional densities that depend on only a finite number of past

observables. The initial marginal term is typically discarded, however, as it can

be difficult to determine and is of no asymptotic consequence in stationary

environments, thereby rendering such "maximum likelihood" estimates

approximate rather than exact. Because of the potential for efficiency gains,

particularly in small samples with high persistence, exact maximum likelihood

estimation may be preferable.

We will develop an exact maximum likelihood procedure for finite-ordered

observation-driven models, and we will illustrate its feasibility and examine its

sampling properties in the context ARCH models. Our procedure makes key use

of simulation and nonparametric density estimation techniques to facilitate

evaluation of the exact likelihood, and it is applicable quite generally to any

fmite-ordered observation-driven model specified in terms of conditional

densities.

In Section 2, we briefly review the exact estimation of the AR(1) model,

which has been studied extensively. In that case, exact estimation may be done

using procedures more elegant and less numerically intensive than ours, but those

procedures are of course tailored to the AR(1) model. By showing how our

procedure works in the simple AR(1) case, we provide motivation and intuitive



feel for it, and we generalize it to much richer models in Section 3. In Sections 4

and 5, we use our procedure to obtain the exact maximum likelihood estimator

for an ARCH model, and we compare its sampling properties to those of three

common approximations. We conclude in Section 6.

2. Exact Maximum Likelihood Estimation of Autoregressions, Revisited

To understand the methods that we will propose for the exact maximum

likelihood estimation of finite-ordered observation-driven models, it will prove

useful to sketch the construction of the exact likelihood for a simple Gaussian

AR(1) process.

The covariance stationary first-order Gaussian autoregressive process is

Yt = PYt- I +

et - N(0, a')

where I p l<1, t = 1, ..., T. The likelihood may be factored into the product of

T-1 conditional likelihoods and an initial marginal likelihood. Specifically,

L(6)	 0) IT-OT-11(2T-2; 0) - 1021R ; 0) 11(y1; 0),

where 0 = (p, o2)' and Q = (yr ..., y1 }. The initial likelihood term 1 1 (y1 ; 0)

is known in closed form; it is

1(y; 0) = (2 7c)'  1 - P2 exp [- 1 - P2
a2	2 02

The remaining likelihood terms are
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ii(Yt i Ot_f, e) = ( 2 n '32 )- ex1 2 1  (Y, - PYt_021 ,

t = 2, ..., T.

Beach and MacKinnon (1978) show that small-sample bias reduction and

efficiency gains are achieved by maximizing the exact likelihood, which includes

the initial likelihood term, as opposed to the approximate likelihood, in which the

initial likelihood term is either dropped or treated in an ad hoc manner.

Moreover, they find that as p increases, the relative efficiency of exact maximum

likelihood increases.

Now let us consider an alternative way of performing exact maximum

likelihood. The key insight is that the initial likelihood term, for any given

parameter configuration, is simply the unconditional density of the first

observation, evaluated at y l , which can be estimated to any desired degree of

accuracy using well-known techniques of simulation and consistent nonparametric

density estimation.

We proceed as follows. At any numerical iteration (the j th , say) en route to

finding a maximum of the likelihood, a current "best guess" of the parameter

vector exists; call it 0 6) . Therefore, we can simulate a very long realization of

the process with parameter 9 0) and estimate its unconditional density at y l ; denote

it 11 (y1 ; 00). The estimated density at y l is the first observation's contribution to

6



the likelihood for the particular parameter configuration 0 6) . Then we construct

the Gaussian likelihood

men 1,(Y,,;en fl a-1 exit— Ott - py,_)21 ,
r=2	 202

and we maximize it with respect to 0 using standard numerical techniques. The

approximation error goes to zero — that is, li (yi ; 000)-11 (y1 ; 00), so we obtain

the exact likelihood function — as the size of the simulated sample whose density

we consistently estimate goes to infinity.

Obviously, it would be wasteful to adopt the simulation-based approach

outlined here for exact estimation of the first-order autoregressive model,

because the unconditional density of y l is known in closed form. In other

important models, however, the unconditional density is not known in closed

form, and in such cases our procedure provides a solution. Thus, we turn now to

a general statement of our procedure, and then to a detailed illustration.

3. Observation-Driven Models with Arbitrary Conditional Density

The observation-driven form

Yi = .fiY (`-", et)
usually makes it a simple matter to find the conditional density

D(y "-1); 0),
where the form of the conditional density D depends on f(.) and the density of et.

Many observation-driven models are in fact specified directly in terms of the

7



conditional density D, which is typically assumed to be a member of a convenient

parametric family. The likelihood is then just the product of the usual conditional

densities and the initial joint marginal De (which is p-dimensional, say),

L(yr,...yi; 90)) = D *(yi,...,yp; 00)) ñ D(y (t-1); 80)).
t4r1)

The difficulty of constructing the exact likelihood function stems from the fact

that the unconditional density D e is typically not known in closed form, even

when a large amount of structure (e.g., normality) is placed on the conditional

density D. In a fashion that precisely parallels the above AR(1) discussion,

however, we can consistently estimate D . from a long simulation of the model,

resulting in

MY7,...,y,; OW)	 C®) [f D(y0-1); 60)).
t=(p+1)

As in the AR(1) case, the approximation error is under the control of the

investigator, regardless of the sample size T, and it can be made arbitrarily small

by simulating a long enough realization.

A partial list of observation-driven models for which exact maximum-

likelihood estimation may be undertaken using the techniques proposed here

includes Engle's (1982) ARCH model, models of higher-order conditional

dynamics (e.g., time-varying conditional skewness or kurtosis), Poisson models

with time-varying intensity, Hansen's (1994) autoregressive conditional density

model, Cox's (1981) dynamic logit model, and Engle and Russell's (1995)

8



conditional duration model. Moreover, the conditional density needn't be

Gaussian, and the framework is not limited to pure time series models. It

applies, for example, to regressions with disturbances that follow observation-

driven processes.

4. Exact Maximum Likelihood Estimation of ARCH Models

Volatility clustering and leptokurtosis are routinely found in economic and

financial time series, but they elude conventional time series modeling

techniques. Engle's (1982) ARCH model and its generalizations are consistent

with volatility clustering by construction and with unconditional leptokurtosis by

implication; hence their popularity. ARCH models are now widely used in the

analysis of economic time series and are implemented in popular computer

packages like Eviews and PC-GIVE. Applications include modeling exchange

rate, interest rate and stock return volatility, modeling time-varying risk premia,

asset pricing (including options), dynamic hedging, event studies, and many

others?

Engle's (1982) ARCH process is a classic and simple example of a model

amenable to exact estimation with the techniques developed here. The known

conditional probability structure of ARCH models facilitates approximate

maximum likelihood estimation by prediction-error factorization of the

likelihood. Exact maximum likelihood estimation has not been attempted,

2 See Diebold and Lopez (1995).

9



however, because the unconditional density 1p is not known in closed form. The

prevailing view (namely, that exact maximum likelihood estimation is effectively

impossible) is well summarized by Nelson and Cao (1992), who assert that'

"...in practice (for example in estimation) it is necessary

to compute [the conditional variance] recursively ...

assuming arbitrary fixed values for {4	 e2„,,}•
(p. 232)

In short, the issue of exact maximum likelihood estimation is, without

exception among the hundreds of published studies using ARCH techniques,

skirted by conditioning upon ad hoc assumptions about Ip. Although the

treatment of 1p is asymptotically inconsequential, it may be important in small

samples, particularly when conditional variance persistence is high. With this in

mind, we construct the exact likelihood function of an ARCH process using the

procedure outlined earlier.

Consider the sample path {e,} 171, governed by the pth-order ARCH

process,

E, =

at2 = w + CC I et
2 

_i +	 + ape,2_p

iid
- N(0,1),

3 Their notation has been changed to match ours.
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where	 ai<1, w>0, cci20, V i = 1, ..., p. 4 Let 0 = (w, al , ..., apY . The
anl

exact likelihood for a sample of size T is the product of the T-p conditional point

likelihoods corresponding to observations (p +1) through T, and the

unconditional joint likelihood for observations 1 through p. That is,

	

L(en	 el; 0
)	 17(E744-1; 0) 4-1(er-11 0T-2; 0) •-•

C t1 (ep+1 10p; 0) /p(ep,...,ei; 6) .

We simulate a very long realization of the process with parameter 0° ) and

consistently estimate the height of the unconditional density of the first p

observations, evaluated at {E 1 , ...,ep}; denote it inp(e l ,	 sp; 00). We substitute

this estimated unconditional density is substituted into the likelihood where the

true unconditional density appears, yielding the full conditionally Gaussian

likelihood,

T

	L(en...,e1; 00))	 1 (e ..,e • U®) II of (0°	
—1	

)) ex	 e2r
11

p If • 	 p>
t=(p +1) 20,2(0(0)

which we maximize using standard numerical techniques.

4 We adopt the conditional normality assumption only because it is the most
common. Alternative distributions, such as the Student's t advocated by
Bollerslev (1987), could be used with no change in our procedure.
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5. Comparative Finite-Sample Properties of Exact and Approximate

Maximum Likelihood Estimators of ARCH Models

For purposes of illustration, we study a conditionally Gaussian ARCH(1)

process with unit unconditional variance,

eti et-1 -

a,2 = (1-cc) + act
2
-1 •

The stark simplicity of this data generating process is intentional. Although the

model is restrictive, all the points that we want to make can be made within its

simple context, and the simplicity of the model (in particular, the one-

dimensional parameter space) renders it amenable to Monte Carlo analysis.

Moreover, the ARCH(1) is sometimes used in practice; the popular PC-GIVE

software, for example, permits only ARCH(1) estimation. It should be kept in

mind that our procedure is readily applied in higher-dimensional situations, even

though the associated increased computational burden makes Monte Carlo

analysis infeasible.

The Monte Carlo experiments were done in vectorized FORTRAN 77 at

the Cornell National Supercomputer Facility. We report the results of nine

experiments, corresponding to a = .9, .95, .99, and T = 10, 25, 50, each with

1000 Monte Carlo replications performed. The nonparametric estimation of the

initial likelihood term is done by the kernel method, using a standard normal

kernel, fit to a simulated series of length 1000. The bandwidth is set to
1000

1(1000) 5 , where ?(a®) = (E x,2(e)/1000) 1/2 and xlcco), i = 1, ..., 1000, is
i=1

12



the simulated sample.5 The same random numbers are used to construct the

simulated sample at each evaluation of the likelihood and across Monte Carlo

replications.

Because the effect of initial conditions is central to this small-sample

exercise, we take care to let the process run for some time before sampling.

Specifically, each Monte Carlo sample is taken as the last T elements of a vector

of length 500+T, thus eliminating any effects that the starting value (0) might

have.

The calculation of the likelihood for observations 2 through T is the same

for the exact and approximate methods; the methods differ only in the calculation

of the initial likelihood. Our exact method, specialized to the case at hand, yields

an

	

1000 y(a®) (1000)- us J. ' 	1(a®) (1000)-"'
K 	 l	 ,1 	r	 e

where K •) is the N(0,1) density function, and xi , i = 1, ..., 1000 is a simulated

ARCH(1) process with parameter a.

Three approximations to the initial likelihood are considered:

(Al) We simply set / i (e i ; a) = 1. This is of course a perfectly well defined

likelihood, but it does not make full use of all information contained in the

sample.

'Silverman (1990) advocates the use of such a bandwidth selection
procedure, and it satisfies the conditions required for consistency of the density
estimator. More sophisticated "optimal" bandwidth selection procedures may of
course be employed if desired.

ii(e l ; a) -
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(A2) The functional form of 1 1 (e l ; a) is assumed (incorrectly) to be Gaussian, as

with all of the conditional densities, and the unconditional variance (1) is

substituted for the unavailable e02, which yields 11 (e i ; a) = exp(-e21/2).

(A3) The functional form of 1 1 (e l ; a) is assumed (incorrectly) to be Gaussian,

and the unconditional mean (0) is substituted for the unavailable co, which

yields

4	 2

1#1; a) = (1 -a) -1/2 ex - 1	 el
2 1 -a)).

To be certain that global maxima are found, we maximize the exact and

approximate likelihoods using a grid search over the relevant parameter space (in

this case, the unit interval). The grid mesh is of width .01, and it is reduced to

.002 when the distance from either boundary is less than or equal to .05, and

when the distance from the true parameter value is less than or equal to .05.

The exact and approximate estimators' biases, variances and mean-squared

errors are displayed in Table 1. Efficiency of all methods increases with T and

a. The exact method, however, consistently outperforms all approximate

methods, especially for small T and large a. The mean-squared error reductions

afforded by the exact estimator typically come both from variance and bias

reductions. In Figure 1, we graphically highlight the results for small samples (T

= 5, 10, 15, 20, 25) with high persistence (a = .99); the efficiency gains from

exact maximum likelihood are immediately visually apparent.

14



Our results are consistent with existing literature. Beach and MacKinnon

(1978), in particular, report efficiency gains from exact maximum likelihood

estimation in autoregressive processes. But ARCH processes are autoregressions

in squares; that is, if ; is an ARCH(p) process,

et I et-i> .. eta - N , ot2”	 O )

2	 2= (A) + a(L)et,

where a(L) = E a, L co>0, a,� 0 Vi, and a(1)<1, then 4 has the covariance-
1=1

stationary autoregressive representation

et
2 

=	 a(L)e
2
 v

where vt = 4 - of is the difference between the squared innovation and the

conditional variance at time t.6

6. Summary and Concluding Remarks

We have proposed an exact estimator for finite-ordered observation-driven

models. The exact estimator is more efficient than commonly-used approximate

estimators. Our methods are computationally intense but nevertheless entirely

feasible, even accounting for the "curse of dimensionality" associated with

higher-dimensional situations, due to the fact that the simulation sample size may

be made very large.

Our "exact" estimator, like its approximate competitors, is in fact an

approximation, but with the crucial difference that the size of the approximation

6 See Diebold and Lopez (1995) for additional discussion.
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error is under the control of the investigator. In real applications, a very large

simulation sample size can be used in order to guarantee that the approximation

error is negligible. Similarly, more sophisticated methods of bandwidth selection

and likelihood maximization may be used.

In closing, we note that our results as presented here are primarily of

theoretical interest, because available time series sample sizes are often so large

as to render negligible the difference between exact and approximate estimators.

Presently, however, we are exploring the applicability of our techniques to panel

data, the time series dimension of which is often notoriously small.
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Table 1
Exact and Approximate Maximum Likelihood Estimation

Exact	 Al	 A2	 A3
ga.- 2
Bias	 0.01822	 0.04967	 0.04628	 0.05147
Var	 0.01640	 0.02327	 0.02218	 0.02593
MSE	 0.01674	 0.02573	 0.02432	 0.02858
a= .95 
Bias	 0.00843	 0.03028	 0.02662	 0.03241

T=10	 Var	 0.00570	 0.01010	 0.00807	 0.01229
MSE	 0.00577	 0.01102	 0.00878	 0.01334
ga..29
Bias	 0.00258	 0.00923	 0.00831	 0.01119
Var	 0.00152	 0.00226	 0.00219	 0.00339
MSE	 0.00153	 0.00234	 0.00225	 0.00351

Exact	 Al	 A2	 A3
a=.9
Bias	 0.00699	 0.02372	 0.02228	 0.01959
Var	 0.00398	 0.00685	 0.00685	 0.00682
MSE	 0.00403	 0.00741	 0.00735	 0.00720
a=.95 
Bias	 0.00339	 0.01425	 0.01328	 0.01199

T=25	 Var	 0.00121	 0.00268	 0.00273	 0.00294
MSE	 0.00122	 0.00288	 0.00290	 0.00307
cc= .99
Bias	 0.0019	 0.00432	 0.00308	 0.00293
Var	 9.72E-5	 2.15E-4	 1.88E-4	 2.49E-4
MSE	 9.72E-5	 2.26E-4	 1.98E-4	 2.57E-4

Exact	 Al	 A2	 A3
2a.9
Bias	 0.00122	 0.00940	 0.00801	 0.00914
Var	 0.00129	 0.00226	 0.00165	 0.00252
MSE	 0.00129	 0.00235	 0.00171	 0.00261
cc= .95 
Bias	 0.00024	 0.00532	 0.00426	 0.00493

T=50	 Var	 0.00032	 0.00074	 0.00046	 0.00074
MSE	 0.00032	 0.00077	 0.00047	 0.00076
cc= .99
Bias	 0.00003	 0.00122	 0.00101	 0.00114
Var	 1.23E-5	 3.52E-5	 1.96E-5	 3.38E-5
MSE	 1.23E-5	 3.67E-5	 2.06E-5	 3.51E-5

Notes to Table 1: The data are generated as an ARCH(1) process; cc is the ARCH
parameter and T is the sample size. Three estimators are compared: exact
maximum likelihood ("Exact"), and three approximations ("Al," "A2," and "A3").
We report the bias, variance and mean-squared error for each estimator ("Bias,"
"Var," and "MSE"). See the text for details.



Figure 1
Mean-Squared Error Comparison, a = .99

t exact method -+- approximate At 	 approximate A2 -B- approximate A3

Notes to Figure 1: The data are generated as an ARCH(1) process; a is the ARCH
parameter and T is the sample size. We show the mean-squared error (MSE) of
three estimators of a as a function of T: exact maximum likelihood ("Exact
method"), and three approximations ("Al," "A2," and "A3"). See the text for
details.
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