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Abstract

This paper is interested in the small sample properties of the indirect inference
procedure which has been previously studied only from an asymptotic point of view.
First, we highlight the fact that the Andrews (1993) median-bias correction procedure
for the autoregressive parameter of an AR(1) process is closely related to indirect
inference; we prove that the counterpart of the median-bias correction for indirect
inference estimator is an exact bias correction in the sense of a generalized mean. Next,
assuming that the auxiliary estimator admits an Edgeworth expansion, we prove that
indirect inference operates automatically a second order bias correction. The latter
is a well known property of the Bootstrap estimator; we therefore provide a precise
comparison between these two simulation based estimators.

Résumé

Cet article s'interesse aux proprietes de petits echantillons de la methode par
inference indirecte, qui a ete essentiellement etudiee d'un point de vue asympto-
tique, Nous commencons par noter que la procedure de correction du biais median
proposee par Andrews (1993) pour le parametre autoregressif d'un processus AR(1)
est etroitement reliee a. Papproche par inference indirecte. Nous montrons que la
demarche equivalente pour l'estimateur d'inference indirecte conduit a une correc-
tion parfaite du biais au sens d'une moyenne generalisee. Puis, supposant l'existence
d'un developpement d'Edgewortli pour le parametre auxiliaire, nous etablissons que
Pinference indirecte induit automatiquement une correction de biais jusqu'au second
l'ordre. Cette propriete est egalement satisfaite pour l'estimateur Bootstrap, ce qui
nous conduit a comparer ces deux estimateurs corriges par simulation.

Keywords : Bias correction, indirect inference, Bootstrap, Edgeworth correction.

Mots clefs : Correction de biais, inference indirecte, Bootstrap, correction d'Edgeworth.

JEL classification : C13.
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Introduction
In this paper we study the small sample properties of the indirect inference procedure,
introduced by Smith (1993 [23]) and generalized independently by Gallant-Tauchen (1994
[7]) and Gourieroux-Monfort-Renault (1993 [11]). This statistical procedure can be seen
as an extension of the simulated method of moments in the sense that the information
contained in the data is summarized by a general auxiliary criterion rather than a given
number of empirical moments. Under usual regularity conditions, the indirect inference
estimator has been shown to be consistent and asymptotically normal. In practice, this
method has been implemented on simulated or real data, and appeared to perform well (see
Pastorello-Renault-Touzi (1993 [18]), Pastorello (1994 [17]), Broze-Scaillet-Zakoian (1993
[4])). In this paper, we provide some additional properties of the indirect inference for small
samples.

First, we relate the median bias correction procedure, suggested by Andrews (1993 [1])
for first order autoregressive models (AR(1)), to the general indirect inference procedure.
Andrews' [1] procedure is an exact bias correction for the LS estimator in the sense of the
median indicator, and can be described as follows : if the least squares (LS) estimator of the
autoregressive parameter a for a sample size T is :ä-r then, the estimator 64, defined as the
value of a that yields the distribution of the LS estimator to have a median of $T, is exactly
median unbiased. The intuition behind the choice of the median unbiasedness criterion for
small sample accuracy seems to be the important skewness of the distribution of the LS
estimator, especially when the AR parameter is close to 1, which makes the median a better
measure of central tendency than the mean.

Andrews' [1] procedure is shown to be closely related to the indirect inference approach.
Therefore, we generalize such a bias correction procedure to a general class of dynamic
models. A comparison by simulations between the median bias correction procedure and
the indirect inference for AR(p) models is provided in section 3.

However, the most popular bias correction procedures relie on the computation of the
bias. In some simple cases, an explicit formula for the small sample bias is available, as for
the maximum likelihood estimator of the variance parameter in a sample of independent
variables distributed as a normal /V(m, a 2 ). Such a characterization of the bias can be
exploited to define an unbiased estimator from the initial biased one.

In general, an explicit formula for the small sample bias is not available. If the first
terms of the bias expansion in powers of +. can be computed, then a new estimator can be
defined such that the bias is reduced up to some order *c,.. For instance, Orcutt-Winokur
(1969 [16]) showed that the first term in the expansion of the bias of the LS estimator
of the AR parameter in an AR(1) model is of order +, and thus a second order unbiased
estimator can be computed (see e.g. Rudebusch (1993 [20])). A generalization of the results
of Orcutt-Winokur to the AR(p) case is provided by Shaman-Stine (1989 [22]).

In most cases of interest, even the first terms of the expansion of the bias are difficult to
compute explicitly. The Bootstrap estimator, introduced by Efron (1979 [6]), presents the
valuable advantage of operating a second order correction of the bias automatically, thanks
to simulations. For an infinite number of simulations, we show that the indirect inference also
operates a second order bias correction. However, in contrast with the Bootstrap methods,
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this result does not hold for a finite number of replications. A precise comparison between
both estimators up to the third order of an Edgeworth expansion is provided in the case
of an infinite number of simulations; we find no evidence for the dominance of one of these
methods.

The paper is organized as follows. In section 1, we recall briefly the indirect inference
procedure and the Andrews [1] bias correction procedure; then we study the exact small
sample properties of the indirect inference estimator. In section 2, we use Edgeworth expan-
sions in order to examine the second order bias of the indirect inference estimator, and we
provide a precise comparison with the Bootstrap estimator. Section 3 presents some simu-
lation results for AR(1) and AR(2) models, and compares the indirect inference estimator
to the median-bias correction procedure of Andrews [I].

1 Small sample properties of indirect inference
1.1 The indirect inference principle
In this paragraph, we provide a quick review of the indirect inference procedure introduced
by Smith [23) and generalized independently by Gallant-Tauchen al, GT hereafter) and
Gourieroux-Monfort-Renault ([11), GMR hereafter). It is well known that the estimators
of GT and GMR are asymptotically equivalent (see GMR), and that they coincide in the
special case where the auxiliary model and the true one have the same number of parameters
(p = d in the following notations). The results derived in this paper concern essentially the
latter case, and therefore we only present GMR's approach. Consider the general model :

Zt	 =	 so(Zt_ b u t ; 0), (1.1)
Yt	 Z;0),

where {u t , t = 1 ... T} is a white noise process with known distribution Go, {Zt , t

(1.2)

O... T}
is an unobservable stationary state variable whose dynamics is characterized by the transition
equation (1.1), for a given unknown value tr of the parameter 61 , lying in an open bounded
subset 0 c RP and a given function and t = 0... T} is a stationary process whose
dynamics is defined by the measurement equation (1.2), for the value 0° of the parameter
and a given function r.

The important feature that the dynamic model (1.1)-(1.2) has •to satisfy is that one
can draw simulated paths according to it, given a value B of the parameter and an initial
condition (Y0 , Z0). This is achieved by drawing independent simulated disturbance paths

t = 1 ... T}, h = 1 ... H, in the distribution Go, and computing simulated paths {V(9),
t = 0 ... T} according to the recursive system :

#(0) = 40(4-1(61),4;°),
Yth ( 9 ) = r ( Yth 1( 9), Zi ( 61 ); 9),

with initial values Y0h (0) and Z4(0) drawn for instance in the stationary distribution of
(Y, Z) with the value B of the parameter, or taken as initial fixed values Yo, ZQ. The main
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idea of indirect inference is to match simulated data with observed ones in order to estimate
the parameters of the model. Let QT be a given function mapping RT x B into R for some
open bounded subset B of Rd with d > p, and define :

Jar = arg =pa QT (KT, 0)

QT( e) = arg TiFyQT (41i (0) , fl) , h =1,...,H,	
(1.3)

where YT = {Yt , t = 1, , T} and Y 14.(0) = {Y,4 (0), t = QT can be inter-
preted as the estimation criterion corresponding to an auxiliary model which is a good
approximation of the true model, and which allows for classical estimation procedures. The
pseudo-maximum likelihood of Gourieroux-Monfort-Trognon (1989 (10]) is an example of
such an auxiliary criterion. As defined, ;AT summarizes the information given by the sample
path YT . For instance, if we choose as auxiliary criterion QT = — pip, where 7;2, is
a vector of d empirical moments of Y, then the sample path YT is summarized by these d
empirical moments.

The indirect inference estimator in the sense of GAO. is defined by :

OTH = argmin9E0
	 1 Ft

h.1

4(6)

	

H	 H -
	= arg min I pr — — E$ (9 )] Qv	

H
{$7 - - E 4(9)] ,

9E0	 H 4=1	 h=1

where f2T is a symmetric positive definite matrix which converges almost surely to a sym-
metric positive definite matrix f2. For instance, for QT = fir, Jig defined in (1.4) is
the MSM (Method of Simulated Moments) estimator of 9 (Duffle-Singleton (1993 151)), and
the indirect inference procedure appears as a natural generalization of the MSM.

As the number H of simulated sample paths goes to infinity, the limit indirect inference
estimator is :

BT = arg min PT — E [ST ( )}) ,

	

9E0	 SIT
	 (1.5)

where the expectation is with respect to the distribution Go of the error term. While the
indirect inference procedure is presented as an asymptotic estimation methodology, we focus
in this paper on its small sample properties (T small) in the case where the auxiliary and
the true models have the same number of parameters i.e. p d; under this condition, the
estimator is independent of the weighting matrix f2 T . Let us define the function bT mapping
S into bT(0) by :

	

bT(9) = E V3TM]
	

(1.6)

which is the binding function in the finite sample context, and assume the usual identifiability
condition :

Assumption 1.1 The finite sample binding function bT , mapping S into bT(0), is uni-
formly continuous and one-to-one.

2

(1.4)
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In contrast with the usual asymptotic analysis, the distribution of the auxiliary estimator
f3T may recover some values of Ei which are not attained by the function bT, and the
minimum in (1.5) may be positive. In order to simplify the presentation, we therefore make
the following additional assumption :

Assumption 1.2 The support of the distribution of riT is included in b'(0).

Under the last assumption, for an infinite number of replications, the indirect inference
estimator is simply given by :

OT =
	

(1.7)

In the general case, an expression of the indirect inference estimator in the form (1.7)
can always be obtained by considering an (asymptotically equivalent) modification of the
estimator (1.5). Thanks to the uniform continuity of bT on the open bounded set 9, a
continuous extension of bT to the closure of 0 exists. This allows to construct an extension
52- of bT , which is one-to-one on the whole space E. We can therefore define the slightly

modified indirect inference estimator 9T = Tr i ( -13T) for which the results of subsection 1.3
can be stated in terms of the extension ;7%

Before studying the small sample properties of the indirect estimator (1.7), let us recall
some related bias correction procedures appeared in the literature on autoregressive models.

1.2 Median bias correction in autoregressive models
Andrews [11 suggested an exact median unbiased estimator for the autoregressive coefficient
of an AR(1) model. Extensions of this methodology to the AR(p) case have been proposed
by Andrews-Chen [21 and Rudebusch [19]; in the case p > 1, the estimators are only approx-
imately median unbiased since the median is not suitable for vector variables. The purpose
of this section is to provide a presentation of these procedures which highlights the analogy
with the indirect inference methodology.

Consider the following latent AR(p) time series {Yt-, t = 0,...,T} :

di(L)11- = 12,, for t = p,.. ,T,	 (1.8)

where L is the lag operator, 0(L) = 1 — E7=i all,' is the lag polynomial whose roots are
assumed to lie on or outside the unit circle and {u t , t = 1... T} is a gaussian white noise
with variance o- 2 ; Yo", Yp" are drawn from the stationary distribution of the process Y',
if all the roots of O(L) lie outside the unit circle, and are arbitrary constant otherwise. We
denote by O P the set of vectors aERP such that the roots of the polynomial 1 — EC=Iajx)
lie outside the unit circle. In the AR(1) context, it is known that 9' = (-1,1). More
generally, it is shown in the appendix that OP is an open bounded subset of RP.

Next, we consider the following models for the observed process {Y, t 0,	 , T} :

model 1 : Y = Yr, t = 0, ,T,

model 2 : Yt = p Yr, t 0,	 , T,	 (1.9)

model 3 : Y = p + -yt + Yts, t = 0, , T,
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where p and -y are two unknown parameters. The nonstationary case (a is on the frontier
of Op) can only be handled within models 2 and 3, and the following restriction appears to
be necessary :

a E Op in model 1 of (1.9). (1.10)

Now, let fir be the (unconstrained) LS estimator of the AR parameters a = (ai, • • • , ep)'-5
Notice that 'S-r• is also the maximum likelihood estimator of the AR parameters and therefore
inherits the asymptotic efficiency property. However it is biased in finite samples because of
the presence of lagged dependent variables which violates the assumption of nonstochastic
regressors in the classical linear regression model. In particular, for estimating the sum of the
AR coefficients E7=. 1 eta, which is useful in the study of the long run persistence properties,
the bias tends to be downward and quite large. For estimating the time trend coefficient 7,

the bias is upward and quite large. For an AR(1) model, we refer to table 2 of Rudebusch
[20] which shows that the probability to underestimate the AR parameter when the latter is
0.9 equals 0.89 and still increases for values of the AR parameter closer to 1. In practice, the
latter case , appears very frequently; in financial applications for instance, interest rates or
asset prices volatilities are usually modelled by a latent continuous time Ornstein-Uhlenbeck
process (see e.g. Vasicek 1977 [25] and Scott 1987 [21]), which time discretization yields to
an AR(1) process with AR parameter converging to 1 as the time space between observations

goes to zero.0
The bias correction procedure, suggested by Andrews in the AR(1) framework, and

generalized to the AR(p) one by Rudebusch [19] and Andrews-Chen [2], relies on the inde-
pendence of the LS estimator of the AR parameter a on the other parameters of the model.
Therefore, given a value of the AR parameter a, one can define a unique random variable
/47. (a) which is the LS estimator induced by a sample of length T, when the true value of
the AR parameter is a.

In the AR(1) framework, one can define the function mr(a), as the median of the random
variable 71T(a), and the estimator [IT by

eq. = arg min 1ST - rnT(a)i •	 (1.11)
QE(-2,21

Assuming that the function mT(.) is increasing (which should be the case from the simula-
tions of Andrews [1]), the last estimator can be written :

1	 if YT > mT(1),
mV(ST) if mT(-1) < exT S mr(1),
-1	 if Mr 5 raT(-1),

where mr(±1) = linaa_.± 1 mr(a). The estimator defined in (1.12) is median unbiased since,
by the increasing property of the function mT (.), we have eil. > a iff 7Th-(ig) > mr(a),

5There is no specification error in the sense that if model i E {1, 2,3} is the true model, then the regression
is performed according to the same model i.

6 Andrews-Chen (21 suggested to use the cumulative impulse response (CIR) as a measure of persistence
that summarizes the information contained in the impulse response function (IRE'); in the context of an
AR(p) model, this measure turns to be a very simple function of the sum of the AR coefficients : CIR =
1 1( 1— Ell=1 ).

(1.12)
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and from the definition of eeg, this is equivalent to PT > mT(a). Note that the median
unbiasedness property of iiig does not depend on the values assigned on the bounds mT(-1)
and mT(1) since the median of a distribution does not depend on the values taken from
both sides of the median; these values have just to be larger than a if AT > mr(1) and vice
versa, and, since a lies in (-1,1), the values on the bounds in (1.12) are well suited.

The practical implementation of this procedure requires the computation of the median
function mT. By drawing simulated paths {iNa), t = 0, ..., T}, h = 1, , H, and com-
puting the LS estimator for each path, we get H independent and identically distributed
realizations 4(a), h = 1,... ,H. An approximation of mT(a) can thus be obtained as the
median of the 4(a)'s. For an infinite number of simulated paths, such an approximation
converges towards the required limit mT(a). Therefore, the median unbiased estimator
suggested by Andrews [1] is nothing but an application of the indirect inference where the
binding function defined in (1.6) is replaced by the median of the auxiliary estimator. An im-
portant feature of this application of indirect inference is that the auxiliary model coincides
with the true model.

The problem in generalizing the median bias correction procedure to the AR(p) case is
that the median indicator is not suited for vector variables. However, defining the median
of the vector variable $T (a) as the median of each individual variable, Rudebusch [20]
and Andrews-Chen [2] suggested a direct generalization of the last procedure for the AR(p)
framework. Unfortunately, such estimators are only approximately median unbiased because
of the inadequacy of the median indicator within this context.

In the sequel, we study the small sample properties of the indirect inference estimator
which handles with any vector variable since it is based on the mean indicator.

1.3 Mean bias correction by indirect inference
In this section, we provide analogous sample properties for the indirect inference estimator
(1.7).

Proposition 1.1 (1) Suppose that the true model and the auxiliary one have the same num-
ber of parameters (p d). Then, under assumptions 1.1 and 1.2, the indirect inference
estimator OT defined in (1.5) is bT-mean unbiased i.e.

{E [bT (OT)1} = 90

where	 is the true value of the parameters.
(ii) Suppose that the auxiliary model coincides with the true one, and that the first step
estimator )52- is mean unbiased i.e. E(I3T)= go Then the indirect inference estimator OT

coincides with the first step estimator i.e. OT = i3T.

Proof. (i) From the expression (1.7) of the indirect inference estimator, E[bT (OT )] = E[3T]
E[PT (0°)] = bT(60 ), and the result follows from the one-to-one property of the function

bT(-)-
(ii) The result is obvious since bT is the identity function under the unbiasedness condition.

0
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The second part of the proposition says that if the first step estimator is mean unbiased,
then the indirect inference procedure does not make it worse. Part (i) is the counterpart of
the median unbiasedness property in the Andrews bias correction procedure. In particular,
if the bias of the estimator is an affine function of the unknown parameter i.e. it is affine,
then the indirect inference estimator is exactly mean-unbiased. But, since bT is unknown in
general, we can not conclude from this property that indirect inference will reduce the bias
of the first step estimator.

In order to understand the result of the first part of the last proposition consider the
following iterative procedure. Define the function 41 from the estimator 9T as bT has been
defined from ST i.e. 149 (0) = Eg(i'T ), for 9 E a We can therefore define the estimator tql
= br(Or). More generally, we define the sequence of estimators :

-/-9?)	 1)) with 4) (0) = Et? (41-1)) , 0 E 0,

assuming that the functions bP and the estimators 5.171:-1) satisfy assumptions 1.1 and 1.2.
Then, if this procedure converges i.e. if the limits b() = 1Tkl and 4" ) = g(?)
exist, then the limit estimator 0. (21"° ) is mean-unbiased. To see this notice that for such a limit
point, we have br(4' )) etc) , which means that 14:° ) equals the identity function on

0T ) (0), the set of values which might be taken by the estimator O4°° ) when the true value
of the parameter 9 varies in 0. It then follows from the definition of 4°3 that E90 [4°3) ] =
br) (0°) = 9°, where the last equality follows from the fact that 9° E a°°)(0):

1.4 Examples
Example 1. Consider independent and identically iV(m,o"2) distributed observations 11,

YT, and take as a first step (auxiliary) estimator the maximum likelihood one. Then it
is well known that the variance estimator :

1 T	 1 T
tEJYt - YT ) 2 , with FI T = T EYt ,	 (1.14)

L=1

is biased in finite samples. The expectation of this first step estimator can be computed
explicitly in this simple example :

1
E ( ST) =	 —0.

2
/

and the finite sample binding function E[.4(.)1 is thus linear in the variance parameter
cr 2 . Therefore the indirect inference estimator (1.7) (corresponding to an infinite number of
replications) is unbiased, and is equal to :

T
T „,2

s .
T - 1 T

(1.15)

Example 2. In the previous example, we pointed out the fact that the indirect inference
estimator is mean-unbiased if the bias of the auxiliary estimator is an affine function of the

(1.13)
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true value of the parameter. We now give an example where the (finite sample) binding
function is a power of the true value of the parameter. Consider the model :

Yt = Out,

and the estimator :

T3T = VI; = ( 1 Ye)
t=1

for a given integer k. The expectation of this estimator is :

br(0) = p(T, kW where p(T, k)	 ER-1 	 k

	

T	 t`t ]'t.1

so that the indirect inference estimator is given by :

	

BT =	 (YT) =

The expectation of this estimator is :

4.) ( 0 ) = [P(T k)] –ilk P(T,1) O.

Since 41 is a linear function of the parameter 9, the next step estimator 41) br i (BT ) is
	unbiased and for any p > 2, -JP =	 .

2 Edgeworth expansions

When the bias of a given estimator can be computed, as in the case of the variance parameter
of a linear regression, a mean-unbiased estimator can be defined from the initial estimator.
However, the bias can not be computed explicitly in general. Another approach consists in
computing explicitly the first terms of the expansion of the bias in -1, so as to define a new
estimator with reduced bias. This is a usual practice in autoregressive models, where the
expansion up to the first order has been provided by Orcutt-Winokur (1969 [16]) for AR(1)
models and by Shaman-Stine (1989 [22]) for general AR(p) models. However, even this
methodology requires the explicit computation of the expansion up to some order, which is
very difficult in general.

Bootstrap methods introduced by Efron (1979 [6]), which are based on simulations, has
been shown to operate the latter correction automatically : the bias of order + disappears
in the Bootstrap estimator. In the following sections, we show that the indirect inference
estimator presents the same property and we compare both estimation methodologies by
focusing on the next term of the expansion.
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2.1 Second order bias correction by indirect inference
We suppose again that the auxiliary model and the true one have the same number of

9°. The following analysis relies on the assumption that the auxiliary estimator admits an
parameters, and that the auxiliary estimator fir is a consistent estimator of the parameter

Edgeworth expansion :

13r = 61° 1 A(vg)
B+  (v, 0°)	 C(v, 61°)	 I \	

(2.1)
T	 Tee +

where a E A(v,9°), B(v,9°) and C(v,9°) are random vectors depending on some
asymptotic random term v, and the expansion is to be understood in the probability sense
(see e.g. Hall 1992 [12], chapter 2). The next order after the +. one is * in most situations;
in order to deal with the general case we introduce the order * where a could be t or
2. Such an Edgeworth expansion exits in many cases of interest where the statistic under
consideration has a limiting standard normal distribution (see Hall [12], paragraph 2.3, p.
46).

Under some regularity conditions on the random coefficients A, B and C of the Edgeworth
expansion (2.1), we can show that the indirect inference estimator also has an Edgeworth
expansion which can be fully characterized :

Proposition 2.1 Under some regularity conditions, the indirect inference estimator
given in (1.4), has the following Edgeworth expansion :

eT 
= 90+ A;1 B	 TC3, 2

o(T'12 ),	 (2.2)
VT T

where the coefficients A71 , B7.1 and Cif are deduced from A, B and C by :

Ax =

B

Cif

A(v,

B(v,

[C(),

8°) --	 E A(v h , 9°) ,
H 

, 0°) — 1 E B(vh , 0°) —
H h=1

9°) —	 C(Vh, 61° )}

zX 8B (vh,00)1 AH.
H h=1

1aat4(V h , 0°)] A;f,

1{a=3/2}

844(vii, 00)] 371.

a	 =1 V 9 11.

(2.3)

(2.4)

(2.5)

a2 A (vh,00)] 
Air,

{ 
H h= , MO'

the random variables v, 	 = 1., H are independent and identically distributed.

Proof. See appendix 2

0
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Let us first consider the limit case of an infinite number of replications. We get :

A:. = lim A.75 = A(v,0°)— E[A(v,0°)],
H—co

,

and we can deduce the following result :

Corollary 2.1 The indirect inference estimator Or, corresponding to an infinite number of
simulation (1.5), is unbiased up to the second order i.e. the terms of order *, and +. in the
Edgeworth expansion satisfy : E(A,) = E(Boo ) = 0.

For a fixed number of replications H, the last property is not satisfied. We still have
E(A7.1) = 0 and the first order bias vanishes. In contrast with the auxiliary estimator, the
second order bias of the indirect inference estimator does not depend on the coefficient B,
and is determined by :

E(B71 )	 —E { 7:1	 ;(vA , 0°) [A(v, , 0°) —	
A(vh, 9°)] }.1

aA (v, 01 [40 9o ) _ E1 Aj(vh god}
H	 a°, 

h	

h=.1

-Ecov {--E 
aA
—(v 

h 0°) • A,(v, 0°) — -t7 A (v1/4 0°)}
H 004=1	 n h.1

1 P H

Th-EE C ov { 2Ann (v h , 0°) ; Al (v h , 0°)}
i=-.1	 vvi

Cov	 (v 0°) A	 (2.6)
3=1	 ao,	 /}

where the equalities follow from the independence of the random variables v and v 4 , h
1,	 , H. Therefore the second order bias of the indirect inference estimator is smaller than
the auxiliary estimator one as soon as :

H

which provides the minimum number of replications in order to improve the second order
bias of the estimator.

2.2 Comparison with the Bootstrap bias correction
The important result of corollary 2.1 is a well known property of the Bootstrap etimators,
which are also based on simulations. We first recall briefly the expansion of the Bootstrap
estimator in our context before comparing it with the indirect inference one.

= urn
H--•co

B(v, 9°) — E[B(v, ,
aA

— E[(v , {A(v, , 0°) — EjA.(v, , 90 )1 1

Cov { OA (v  0°); Ai (v u 0)1,it ,	 Do;
ElB(v,0°)1	 (2.7)
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Suppose that the auxiliary estimator ST is a consistent estimator of the parameter 0°, so
that EpT(/32,)1 — J3T is a "good" approximation of the bias of )3T . Therefore, by drawing H
replications in the distribution induced by the parameter 0 = ST , the Bootstrap estimator
is defined by :

=	 A-Atcar)_;ed.	 (2.8)

As in the previous section, if we assume that the first step (auxiliary) estimator has an Edge-
worth expansion, the Bootstrap estimator defined in (2.8) also has an Edgeworth expansion
(under some regularity conditions) :

= 90 + AbFI T + T.,37 + o(T-3/2 ),	 (2.9)

where the coefficients 4, 4 and Ch are deduced from A, B and C by :

1 H
AbH = A(v , 0°) -  E A(vh , 0°)

ic (v, 0 )1 A( v, 0)	

(110)
H h= 1

4 = B(v , 0°) 	 B(vh, 9°) -	 (2.11)
12 4=1

Cif = [C(11, 90 ) —	 E c (v4,60 ) ]	 (2.12)

	

4 aB h Ao,] , 0	 A
—{ ff. 2_, 	(v , )	 e ) —	 L77	 - F (vh , 0)] B(v, 0°)

H h=1	 h=1

1 ,	 Hit 32A
- - A (v, )	 E 

aoae 
(v

h
 ,0°)] 

A(v,9°).2	 H h= ,	 ,

As for the indirect inference estimator, the first order bias is zero, i.e. E (4) = 0. The
second order bias is given by :

H 	 ,
E(B6H )	 - ff 2:1 [56,(vh,0)A(v, 0)h	 ]

= E[A(v, , 0°)]E ILA (v, 0°)] ,
00'

(2.13)

where the last equality follows from the independence of the random variables v and ,
h = 1,	 , H. Equation (2.13) shows that :

- If EfA(v, 9°)] • j 0, then, even for an infinite number of simulations, the Bootstrap estimator
presents a second order bias; from this viewpoint, the indirect inference estimator is preferred
since its second order bias vanishes for an infinite H.
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- If E[A(v,0°)] = 0, then the second order bias of the Bootstrap estimator vanishes for a finite
number of replications H, i.e. E(4) = 0; from this viewpoint, the Bootstrap estimator
dominates the indirect inference one.

In the case H = co and E[A(v,9°)] = 0, both estimators correct from the second order
bias. We therefore examine the third order bias. We denote by	 =	 Cif and 61:0

CH; using again the independence of v and the vh , h = 1, , H, and the fact
that E[A(v,09] = 0, we obtain the third order bias of the indirect inference estimator :

1	 82A E(C:0 ) =	 [A(v 0)1
E (aoae,(v'19°)) A(v ' 9°)]

and that of the Bootstrap estimator :

(2.14)

=
 —E{

OA 0-aF (v, 0 )E[B(v,0°)] — 2-1 E [A(v,0°)'E (w28t(v,0°)) A(v, 0)12.15)

Clearly, the two expressions (2.14) and (2.15) can not be compared in general, and the
indirect inference estimator and the Bootstrap one are competitors for an infinite number
of simulations.

2.3 Examples

To illustrate these results, we consider again the first example of paragraph 1.4 : 1/2,
YT are independent and identically distributed observations from the normal N(m,c2 ), and
the first step (auxiliary) estimator is the maximum likelihood one :

rrtT
T

E and sT
1 T

= —EDT,
t=1

By drawing H replications, we can construct :

	

2 h	 1

	

3.T.	 a2 ) = 
T

E {Yth	 a" ) — 75414. (m 0-12
t=1

Recalling that Yth (rn, cr2 ) = rn o-4, where u ttl , h = I,	 , T are drawn independently in
the standard normal distribution, the last expression can be written as :

T4,f	 0.2) = 0,2 1_ (u, _ 4)2,T tti
with 4 1-Euht

T t=1

Therefore, by equating 4 with H Eft,/ .12; (in , 0.2 )1 we obtain the indirect inference estimator
of c2 :

2H ET-1(Ut – 117)2 CT = ac2

Ehll=1 EtT=1(U th 4)2

14



The finite sample distribution of the indirect inference estimator is such that :

Zx

^-4 PIT— 1, 1-/(T 1)],
a02

where F(p, q) stands for the Fisher distribution, and in the limit case H = oo, we have :

2
erT x2 (T — 1).
a's

For fixed H, the bias of the indirect inference estimator is given by :

2 5°2 

	

ERR a
02 

—	 (2.16)
H(T — 1) — 2'

while the bias of the first step estimator is :

1	 2

	

E(:91.) — c°2	.

We can thus conclude that the indirect inference estimator bias is smaller than that of the
first order estimator as soon as :

T + 1 
H > 2 

T — 1
.

3 Simulations results
In this section, we examine the empirical content for AR(p) models of the theoretical results
of sections 1 and 2. Indeed, unbiasedness of the indirect inference estimators does not give
direct intuition on their performance. Section 3.1 gives simulations results for the AR(1)
case and compares the median unbiased estimator of Andrews [1] to the indirect inference
estimator introduced in (1.5). Then, section 3.2 presents an application to the AR(2) con-
text and compares the indirect inference methodology to the approximately median bias
correction procedures suggested by Rudebusch [19] and Andrews-Chen [2].

As stated previously, we do not present any application for the general model (1.1)-
(1.2), and we refer to Pastorello-Renault-Touzi [18] for an application of indirect inference
to the estimation of the volatility process parameters, from option prices data, in stochastic
volatility models which are popular in option pricing literature. More precisely, these au-
thors compare the estimators obtained by an E.M. algorithm combined, with the Andrews'
bias correction methodology, to the indirect inference estimators. Their results show that
the latter estimators perform as well as the former ones even though no (appearent) bias
correction is performed.

3.1 Application to AR(1) models
As in Andrews [1], our assumption 1.1 is not justified by an analytic proof and we use
simulations to chek its validity for different sample sizes T. Simulations are performed as
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described in section 2 for model 2 of (1.9) without time trend. Values of br(a) and mT(a)
for a = -0.99, -0.995 + 0.005k, k = 0,...,399, are computed by Monte Carlo simulations
without using any numerical trick to improve the efficiency of the algorithm : br(a) and
mT(a) are simply approximated by their finite sample counterparts with finite large enough
H.

In order to agree with Andrews' numerical results presented in table 2 of (1] up to the
third decimal, we had to use a very large number of simulations (H > 25,000). Table 1.1
and figure 1.1 present our simulation results with H = 15,000, which provides very close
values for the function mT to those of Andrews' table 2, and show clearly the increasing
feature of rnT and 62...

TABLE 1.1. MEAN AND MEDIAN OF THE LS ESTIMATOR
OF THE AR PARAMETER IN AN AR(1) MODEL WITHOUT TIME TREND.

(H=15,000)

a
T = 40

Mean Median
T = 50

Mean Median
T = 80

Mean Median
-.999 -.937 -.950 -.989 -.997 -.964 -.973
-.80 -.727 -.750 -.780 -.789 -.761 -.771
-.60 -.545 -.560 -.586 -.596 -.570 -.578
-.40 -.363 -.371 -.397 -.404 -.381 -.385
-.20 -.181 -.184 -.208 -.212 -.191 -.191

.00 -.000 -.002 -.022 -.023 -.001 -.000

.10 .091 .095 .072 .073 .094 .095
.20 .181 .187 .166 .169 .189 .191
.30 .272 .280 .260 .265 .284 .287
.40 .362 .372 .354 .361 .379 .384
.50 .452 .465 .452 .461 .474 .480
.60 .542 .556 .545 .556 .569 .576
.70 .631 .647 .638 .651 .664 .673
.80 .719 .736 .730 .745 .759 .769
.85 .762 .782 .775 .792 .805 .816
.90 .805 .824 .819 .836 852 .863
.93 .829 .849 .845 .862 .879 .890
.97 .860 .880 .877 .895 .913 .925
.99 .874 .893 .892 .910 .929 .941

1.00 .880 .899 .899 .916 .936 .947

Comparing the functions bT and mr, we see that there exists some al 0.06, for
T 50) such that the median of the LS estimator is larger than the its mean if and only
if the true value of the AR parameter is larger than cti., i.e. the distribution of the LS
estimator for the AR parameter is skewed to the right for values of a larger than al., and to
the left for values of a smaller than 	 A direct consequence is that, when the LS estimator
of the AR parameter 19T lies in mr([-1, 1]) fl er([-1,1]) :

if ST > cq, then 6eT >

if flT < ag., then aT <
if SIT = c+, then EcT =
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As suggested by Andrews for computing the median unbiased estimator, the indirect infer-
ence estimator can be determined by linear interpolation in table 1.1. Figure 1.1 justifies
the linear approximation of the functions mT and bT. Table 1.2 provides some comparative
results for indirect inference and median unbiased estimators, and shows that there is no
important difference between them in practice. Hence, we can conclude that the indirect
inference estimator suggested in this paper perform as well as the median unbiased one sug-
gested by Andrews [1]. Finally, figure 1.2 plots the kernel estimates of the densities of the
LS estimator OT and the indirect inference one EtT for a sample size T = 50 and values of
the AR parameter a = 0.75, 0.85.

TABLE 1.2. SOME COMPARATIVE RESULTS BETWEEN
MEDIAN UNBIASED AND INDIRECT INFERENCE ESTIMATORS

(T = 50)

LS er
a = -0.8

MU ay.	 II a,
a = 0.2

Ls ;37,	 mu ay.	 II EiT

a = 0.9
Ls $7	 mu ay	 II a 7,

-.746 -.755 -.765 .222 .255 .260 .817 .878 .897
-.859 -.871 -.888 .109 .138 .139 .843 .908 .928
-.592 -.596 -.607 .322 .359 .366 .681 .732 .747
-.768 -.779 -.793 .034 .059 .064 .814 .875 .894
-.779 -.790 -.805 .324 .361 .368 .807 .867 .885
-.823 -.834 -.850 .184 .216 .219 .811 .871 .890
-.756 -.766 -.778 .087 .115 .116 .647 .696 .710
-.110 -.718 -.732 .110 .139 .141 .589 .635 .648
-.830 -.842 -.857 -.036 -.017 -.022 .816 .877 .896
-.879 -.892 -.909 .246 .280 .285 .910 .990 1.000

3.2 Application to AR(2) models
First, we characterize the set 9 2 of autoregressive coefficients a = (a t , az) E IR2 such that
the latent process r, with convenient initial values, is stationary i.e. the roots of the lag
polynomial operator 0 ,(x) = 1 - air - az.r 2 are outside the unit circle. Let A = a? + 4a2
be the discriminant of the lag polynomial operator.

• Case A : A > 0, then, since 0(0) = 1 > 0, the roots of 0(.) are outside the unit circle
ifF q5(-1) > 0 and 0(1) > 0, i.e. 1 a i - az > 0 and 1 +	 - az > 0.

• Case B : A < 0, then 0 has two conjugate complex roots which are outside the unit
circle iff a 2 E ( -1, 0).

We thus conclude that :

0 2 = {(ai , az) E	 I a i2 + 4a2 > 0 , 1-at-az>0and1-at-az>0}

{(a t , a2 ) E R2 1 a i2 + 4a2 > 0 and -1 < a2 < 0 ,

which can be written in :

02 = {(al, az) E 1R2 I a l + az < 1 , at - a2 > - 1 and a2 > -1 .	 (3.1)
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In contrast with the application 3.1, the finite sample binding function 1), T is now charging
a subset of R2 , and verification of assumption 1.1 through Monte-Carlo simulations is much
more time consuming. By definition, given the LS _ estimator PT, the indirect inference
estimator 62T is the unique solution to the equation /37, = bT (a), where IT is an extension
of b-f , as described in section 1. Since no explicit expression of the function /7. 1 is available,
we have to use numerical methods in order to solve for Fe T , which usually require numerical
evaluation of the gradient of the finite sample binding function.

For the present AR(2) model, we use an algorithm which is likely to avoid such time
consuming numerical procedures. The basic idea behind our procedure, is that the finite
sample binding function in the AR(1) framework is close to the identity function (up to a
constant), according to figure 1.1. Therefore, we can hope that such a property is still valid
for the AR(2) case so that the function :

	

91-(a) = a +	 br(a),	 (3.2)

is a strong contraction, and the indirect inference estimator ecT is its unique fixed point.
Thus, for a given (iT we construct the sequence (&T") )„>o by :

EeP = ST and a+1) =gT(«T„)1
	

(3.3)

If g} is a strong contraction, this sequence converges towards the unique fixed point &T.
For our application, we consider a l = 1.2 and ct2 = —0.4 as true values of the AR

parameters, and we fix o- = 0.5 and it = 1. The sample size is set to T = 40 and the
number of simulations in the indirect inference procedure is fixed to H = 5000, i.e. bT(a) is
approximated by its sample moment counterpart with 5000 observations. We perform 1000
experiments by simulating the AR(2) process, computing the corresponding LS and indirect
inference estimators, and we construct (gaussian) kernel estimates of the density of each
estimator.

The algorithm described above appears to perform well since convergence of the proce-
dure, up to an error of 10-4 , is achieved for a maximum of 6 iterations'. However, for some
simulated paths, the LS estimator happens to be close to the frontier of the set bT(0 2 ) and
the algorithm fails to be contracting. In such cases, we define the sequence :

= )37' and 4+1) = 9'2\ (4)) ,

where :

	

9T(a) = a + A	 — bT(a))

and A is chosen so as g4. is a strong contraction. In our application, we obtain convergence
in all cases with A = 0.2.

We also wish to compare the performance of indirect inference to the approximately
median unbiased procedure suggested by Rudebusch [191. We therefore compute for the same

'More precisely, let 6r(a) = (61,r(a),52,T(a))1 and Th. =	 /32,Ty; by convention, convergence of the
algorithm occurs when t=1 ISLT (Fer) — &71 < 0.0001.
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experiments the associated approximately median unbiased estimators and we construct
kernel estimates of their density functions. Figure 2.1 presents plots of kernel estimates of
the density functions of the different estimators and shows clearly the bias correcting feature
of both indirect inference and approximately median unbiased procedures; the mean and the
median of the different estimators are reported in table 2.1. Another important conclusion
that we can draw from figure 2.1 is that the indirect inference and the approximately median
unbiased estimators are very close, as already noticed in the AR(1) context of section 4.1,
and there is no significant difference between their mean and median. Therefore, we conclude
that the br-mean indicator of central tendency is a good measure which takes into account
the asymmetry of the LS estimator distribution.

TABLE 2.1. ESTIMATORS OF THE AR COEFFICIENTS (a t = 1.2 AND a2 = —0.4)

1, a = 0.5,T = 40, H 5,000, 1,000 EXPERIMENTS.

Procedure
a l

Mean Median
a2

Mean Median

LS /IT 0.936 0.947 —0.191 —0.215
MU ag. 1.191 1.213 —0.396 —0.430
II &T 1.202 1.229 —0.406 —0.444

Next, we compare the indirect inference procedure to the approximately median unbiased
procedure of Andrews-Chen [2]. These authors suggested a generalization of Andrews' [1]
methodology to the AR(p) case in the same way as Rudebusch [19], but using a "Dickey-
Fuller" regression form for the AR(p) model :

Yt. =	 72aYt. + •	 "fpAr-p+i ut	t = P, • • • ,T,	 (3.4)

where : Alt ; = — 71:= E I ai and 71 — a; for i = 2 ...p. In our
AR(2) context, we have 71 = a I + a2 and 72 = —a2 , and the set e2 in terms of this new
parameterization can be deduced from (3.1) :

e2	 { (71,72) E	 < 1 , 'y2 < 1 , and 72 + 272 > —1 .	 (3.5)

Indirect inference and approximately median unbiased estimators are simultaneously com-
puted according to the same numerical procedure as above. Figure 2.2 contains plots of
kernel estimates of the density function for the different estimators of the AR coefficients,
and shows clearly the bias correcting feature of both indirect inference and approximately
median unbiased procedures; the mean and the median of the different estimators are re-
ported in table 2.2. As noticed before, the two procedures produce very close estimators
and the difference between their mean and median is very small.
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TABLE 2.2. DICKEY-FULLER REGRESSION FORM	 = 0.8 AND 72 = 0.4)

1, Q = 0.5, T = 40, H = 5,000, 1,000 EXPERIMENTS.

Procedure
71

Mean Median
72

Mean Median
LS p-,. 0.743 0.752 0.194 0.210
MU 4 0.783 0.796 0.388 0.416
II FtT 0.794 0.807 0.410 0.446

Finally, we compare estimators of the sum of the AR coefficients obtained in the regular
form and the "Dickey-Fuller" regression one of the AR(2) model. Figure 2.3 presents kernel
estimates of the density function of each estimator and shows that these estimators are very
close, as noticed by Andrews-Chen [2].

APPENDIX 1

In this appendix, we prove that the set OP of parameters a E RP which induce a sta-
tionary AR(p) model is an open bounded subset of RP .

Let (al ) ), j = 1, ... ,p, be p real valued sequences converging towards an j = 1, ...,p
as n goes to infinity, and consider the polynomial operators oS„(z) = 1 — E';=,a(3n)z-1 and
0(z) = 1 — E13'.., l ajz3 . We denote by Z„ and Z the set of roots of the polynomials On and
95. Now suppose that all the elements of 2„ are inside or on the unit circle i.e. Vn E
a (n) = (41%) ,	 , al; ) ) E RP \ OP , and consider a sequence (zn ) such that Vn, zn E Zn . Then
it is easily seen that 0(z.n ) = E7=i (afin) - a1 )4 and therefore 10(zn )I <	 —

Thus, from the convergence of (a (: ) )
"
 towards an for j = 1,	 , p, we have	 0(z.n)

0, which proves that the elements of 2 lie in or on the unit circle as limit of elements of 2„
i.e. a E RP \ OP . Hence, IRP — OP is a closed subset of RP.
To see that OP is bounded, recall that the lag polynomial can be written in terms of its
roots as q5(x) = nzE2( 1 — ), so that the coefficents al , j = 1,...,p are linear combinations
of products of the I's, z E Z. Since Irl > 1 for all z E 2, it is clear that the coefficients (xi,
j = 1,	 , p, are bounded, which proves that OP is bounded.

APPENDIX 2
Edgeworth expansion of the indirect inference estimator

The Edgeworth expansion (2.1) may be applied both to the auxiliary estimator :

QT 
= ea A(v,9°)	 B(v,9°)	 C(v,0°)	 1

T
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and to the estimators based on the simulated values :

4(0) = 0 + A(vh , 9) + B(vh , 9) + C(vh
'
 9) + 0( 1 ) h = 1,..., 

H,
Ta.5'	 T	 Ta '

where v and 0, h = 1... H are independent with identical distribution. Now the indirect
inference estimator is the solution Of. of :

1 H
pT = 

H
E 4(eT).
h=1

By plugging the Edgeworth expansions of ST and QT we get :

A(12,0°)	 B(v, , 9°)	 C(v,go) +(T-")
VT'	 T	 Tc"	 °
A(vh , )	 B(vh , -o4f )	 C (vh ,41,) 

+ o(T)1

which provides the form of the Edgeworth expansion for Oif as follows. Let :

BT = 00 +	 +	 Cif
+	 + o(71-312)

T

be the Edgeworth expansion of 	 Then by Taylor expansion of A(v h , OD, B(vh , ) and
C(vh , 94) around 0° and keeping only terms of order lower than 71" we get :

A(v , 9°)	 B(v, 0°)	 C ( v 0°) + o(T-.)
90+ jt	 T	 Ta
0 A7,

+
	 Crf 0,3/2)

= 0 + 	 + 7 + Ts/2+ (1

1 1 H	 1 1 H DA+{	
n 

E A(vh , 60 ) + ,- E	 (12h, 0°)AH

h. 1	 i n /.1 u°

+E	 (7111 7 9°) Bif + 2 7-7-/ I-, If &we ,T3/2 H h=i as

1 1 H aA	 1 1 1 c A. /  52A  (p h' 9°)KH + 0 (T-312)}
h=1

H

f 1 1 .1 B( h 9„)+  	 f. LB (v ii 3O0 )A-H + o (T-"2)}+ 1 7ITI hei._ V 7	 T"2 17 h=1 ao'

-1-1f1+ 	 C(vh, 9°) + o(T').
Ta H h=1

Identifying both sides of the equality provides the result announced in proposition 2.1.

15'T	 Ta

• •
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FIGURE 1.1. MEDIAN AND MEAN OF THE LS ESTIMATOR OF THE AR PARAMETER IN

AR(1) MODELS.
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PARAMETER IN AN AR(1) MODEL.
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