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1 Introduction

Over the last few years, major advances have occurred in the field of simulation. In partic-

ular, McFadden(1989) and Pakes and Pollard(1989) have developed simulation methods to

simulate expected values of random functions and have shown how to use those simulators

in econometric estimation routines. Also, for example, Geweke(1989), Chib(1993), andMc-

CuHough and Rossi(1993 ) have shown how to use simulation methods to solve previously

unsolvable Bayesian econometrics problems.

Simulation provides an attractive solution for dealing with problems of the following

type: Let U be a random variable with density f 0, and let h(U) be some function of U.

Then

Eh (U) = f h (u) f (u) du.	 (1.1)

Most econometrics problems including all method of moments problems and many maximum

likelihood problems require one to evaluate equation (1.1) as part of an estimation strategy

for estimating a set of parameters O. There are many cases where Eh(U) can not be evaluated

analytically or even numerically with precision. But we usually can simulate Eh(U) on

a computer by drawing R "pseudorandom" variables from f u u2 ,.., uR , and then

constructing

Eh (U) = 1 Eh	 .	 (1.2)i 

Equation (1.2) provides an unbiased estimator of E h(U) 1 which is frequently enough to

1 E kh (U) =	 Eh (Ur) = tt Eh (U) = Eh (U) as long as Ur is drawn from f .
r=1	 r=1
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provide consistent estimates (or estimates with small bias) of O.

This chapter provides some examples to motivate the problem. The first example is the

multinomial probit problem, the second is a problem with unobserved heterogeneity, and

the third is a Monte Carlo experiment. Next, the chapter describes a set of simulators

that improve upon the most naive simulator in equation (1.2). Improvement is in terms of

variance reduction, increased smoothness, and reduced computation cost. Then the most

common simulation estimators are described. Finally, it evaluates the performance of the

various simulators and estimation methods.

1.1 Multinomial Probit

Tile first example is the multinomial probit problem. Consider a model where y; is the

value to a person of choosing choice j for j = 1, 2, ..., J (a person index is suppressed). For

example, j might index whether to drive a car, ride in someone else's car, take a bus, or take

a train to get to work (J = 4); it might index whether to work full-time, part-time, or retire

(J = 3); or it might index whether an elderly person lives independently, in a nursing home,

with a family member, or with paid help (J = 4). It is assumed that the person chooses

the choice j with the greatest value; j is chosen iff y; > yZ for all k j. Furthermore, it is

assumed that yi is a linear function of a set of observed variables and an error:

y; = xip +	 j	 .., J.	 (1.3)

Let u =	 tr2 ,.., it,p' be the vector of errors and assume that the covariance matrix of u

is Q. The errors sometimes represent variation in values due to unobserved variables, and
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sometimes they represent variation in O's across people. Let yi = 1 if choice j is chosen;

y -= 1 if 4 > yz for all k j.

Usually in data, we observe the covariates X and y = (y i , y2 , yi )' but not y* =

In order to estimate )3 and Q, we need to evaluate the probability of oh-

serving y conditional on X or the moments of y conditional on X. First, note that, since

is binary,

E (yi I X) = Pr [yi = 1 X]
(1.4)

= Pr [y; > 4 Vk j I X} .

If we assume that ui r- iid Extreme Value, then the probability in equation (1.4) has the

analytical form

Pr [yj = 1 I X] = exp {xdo} E exp {Xkia}
	

(1.5)

k

Such a model is called multinomial logit. The problem with multinomial logit is that the

independence assumption for the errors is very restrictive. One can read a large literature

on the independence of irrelevant alternatives problem caused by the independence of errors

assumption. See, for example, Anderson, De Palma, and Thisse(1992).

Alternatively, we could assume that u N [0, C2] where it can be written in terms of a

small number of parameters. When we assume the error distribution is multivariate normal,

the resulting choice probabilities are called multinomial probit. For this case, the parameters

to estimate are 0 = 0(j,0).2 The choice probabilities are

Pr [y, = 1 I Xi = I • • j Pr [X30 + uj > XkO + uk Vk j]dF (u I Si)	 (1.6)

2 Some restrictions are required for d2 for identification. See, for example, Bunch(1991).



where F (u I 12) is the joint normal distribution of u with covariance matrix 12 (with individ-

ual elements Olik). Let u;k = uk —ui for all k # .1, and let u; = (uyi , u;2 , u;j_ i , 0, u;j+i , utlY.

Then the J-dimensional integral in equation (1.6) can be written as a J-1-dimensional in-

tegral:

Pr [yi = 1 I X] = f • • • f Pr [X0 —	 > u;k Vk ildFs (u;11-2;) 	 (L7)
usjj

where P (u; a) is the joint normal distribution of tt; : /Li N SZ;1 where co; =

E (uk — u1 ) (ut — ui ) = cam — coo — wit + afj for each element wild of Sl;. Equation (1.7) can

be written as

Pr Ey, = 1 I	 = Pr iu; < V,	 (1.8)

where V3 is a vector with k'th element equal to V k = X2 0 — Xki(3.

In order to make progress in estimating 9, we need to be able to evaluate equation (1.8)

for any 12; and any 1'. For example, the MLE of B maximizes

E yi • log Pr [u:j <N

where i indexes observations, i = 1, 2, .., N. If J = 3, then equation (1.8) involves evaluating

a bivariate normal probability; most computers have library routines to perform such a

calculation. If J = 4, then equation (1.8) involves a 3-dimension integral. One can evaluate

such an integral using Gaussian quadrature (see Butler and Moffitt, 1982) or the numerical

algorithm in Hausman and Wise(1978). But, if J > 4, numerical routines will be cumbersome

and frequently imprecise.

(1.9)
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Simulation provides an alternative method for evaluating equation (1.8). The simplest

simulator of equation (1.8) is
R
E 1 (us' < V.)	 (1.10)R r=i	 3

where 1(.) is an indicator function equal to one if the condition inside is true and equal to zero

otherwise, and u; r is an iid draw from N [0, c111. Essentially, the simulator in equation (1.10)

draws a random vector from the correct distribution and then checks whether that random

vector satisfies the condition, it; < V. The simulator in equation (1.10) is called a frequency

simulator. It is unbiased and bounded between zero and one. But its derivative with respect

to 61 is either undefined or zero because the simulator is a step function; this characteristic

makes it difficult to estimate 0 and to compute the covariance matrix of O. Also, especially

When Pr [mi = 1 I X] is small, the frequency simulator has a significant probability of equaling

zero; since MLE requires evaluating logPr [y; = 1 [ X], this is a significant problem. The

simulators discussed in Section 2 suggest ways to simulate Pr Ix; = 1 [ X] with small variance,

with derivatives, and in computationally efficient ways.

1.2 Unobserved Heterogeneity

The second example involves unobserved heterogeneity in a nonlinear model. Let y, t be a

random count variable; i.e., m t = 0, 1, 2, ..., with i = 1, 2, .., N and t = 1, 2, .., T. Assume

that yit Poisson Pit):

	

f (Yit I Ait) = exp	 All /yit !	 (1.11)

and that

log A it = XitO + ui eit	 (1.12)
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where u, ti iidG (. no), G (. a0) is a specified distribution up to a set of parameters ac,

eit = Peit-i f Ea,	 (1.13)

eit iidH (. aH ), and H (. I aH ) is a specified distribution up to a set of parameters aff.3

For example, yn might be the number of trips person i takes in period t, the number of

patents firm i produces in year t, or the number of industrial accidents firm i has in year t.

Adding the unobserved heterogeneity ui and serially correlated error e it allows for richness

frequently necessary to explain the data. The goal is to estimate 0 = (0, p, ac, aH ). The log

likelihood contribution of observation i is

= log f ••• fll [exp {—Aid Aitt lyit!dH (e i, I an)] de (ui ac)
t=iof	 EiT

(1.14)

where Ai = (An, ail, -.) A,T) f depends upon Xitfi, 'di/ and Ei = ( €11, Ea) ••/ cil-) 1 through equa-

tions (1.12) and (1.13). When there is no serial correlation term e it , the integral in equation

(1.14) can be solved analytically for well chosen G (u1 I a0).4 But for general G (. I GIG) and

H (. I aft ), the integral can be evaluated neither analytically nor numerically.

Simulating the integral is quite straightforward. Let ei be an iid pseudorandom draw of

r = 1, 2,.., R. Similarly, let ur be an iid random draw of u,, r = 1, 2, .., R. Then Li can

be simulated by evaluating the integrand for each draw r and taking an average:

R [T
L, = log E exp {—A&} (ge /yid] }

r=1 t=1

(1.15)

3 One might want to specify a different distribution for e, 0 because of an initial conditions problem.

4 See Hausman, Hall, and Griliches(1984).
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where A is evaluated using the pseudorandom draws of ei and u, in equation (1.12). The sim-

ulated maximum likelihood estimator of 9 maximizes E L. Note that even though exp

is unbiased, Li is biased for finite R (because Li is a nonlinear function of exp{ L;}). This

will cause ö to be inconsistent unless R	 oo as NT	 oo. However, Monte Carlo results

discussed later show that the asymptotic bias is small as long as "good" simulators are used.

1.3 Monte Carlo Experiments

The last example is a Monte Carlo experiment. Let U be a vector of data and 8 (U) be a

proposed statistic that depends upon U. The statistic s (U) may be an estimator or a test

statistic. In general, the user will want to know the distribution of s (U). But, for many

statistics (.), deriving the small sample properties of s (U) is not possible analytically.

Simulation can by used to learn about the small sample properties of s (U). All moments of

s (U) can be written in the form Eh (U).5 Medians and, in fact, the whole distribution of

s (U) can be written in the form Eh (U). Monte Carlo experiments are powerful tools to use

in evaluating statistical properties of s (U). However care must be taken in conducting such

experiments. In particular, one must be careful in generalizing Monte Carlo results to cases

not actually simulated; a Monte Carlo experiment really only provides information about

the specific case simulated. Also, one must be careful not to attempt simulating objects that

do not exist. For example, simulating the expected value of a two stage least squares (2SLS)

estimator would provide an answer (because any particular draw of s (U) is finite) but it

would be meaningless because 2SLS estimators have no finite moments. See Hendry(1984)

5 For Es (U), h (U) = s (U), and for Var (U)1, h (U) = (U) — Es (U)J2
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for more on Monte Carlo experiments.

2 Simulators

This section discusses various simulation methods. Throughout, the goal will be to simulate

Eh (U) or, in some special cases, Pr [y, = 1 I X]. The first requirement of a simulation

method is to simulate U from its distribution F. In general, if Z	 Uniform (0,1), then

(Z) r F.' For example, the exponential distribution is F (x) = 1 — exp {—Ax}. Thus,

— log (1 — Z) F. If F is standard normal, then F- I has no closed form, but most

computers have a library routine to approximate F- / for the standard normal distribution.

Truncated random variables can be simulated in the same way. For example, assume U r•-•

N [p, a2] but let it be truncated between a and b. Then, since

F (u) = [ r---A 4) (a a p 1 / El) ( b ; 14)	 (E1.1±)]	 (2.1)

where 4. is the standard normal distribution function, U can be simulated by letting F (u) =

Z in equation (2.1) and solving equation (2.1) for u as

arl
 {4

} ( 12-1	 + 41) ( a	 +
a	 a

This idea can be applied with a small twist to discrete random variables. Assume U = i

with probability pi for i = 1, 2, .., n. Let Pi = Pr [U <	 EiJ=1 pp. Let Z Uniform (0,1),

and let U i iff	 < Z < Pi (where P0 = 0). Then U is distributed as desired.

(2.2)

6 Most computers have a library routine to generate standard uniform random variables. See, for example,
Ripley (1987) for a discussion of standard uniform random number generators.



Random variables frequently can be simulated by using a composition formula. For

example, since a binomial random variable is the sum of independent Bernoulli random vari-

ables, we can simulate a binomial random variable by simulating independent Bernoulli's

and then adding them up. A more useful example is simulating multivariate U N [p, 111.

Let Z N [0,1], and let C be any matrix such that CC' = Q (e.g., the Cholesky decom-

position of Q). Then it is easy to verify that CZ+1.1 N Q). So we can simulate U by

simulating Z and then transforming it.

In some cases, it will be necessary to simulate a random variable conditional on some event

where the inverse conditional distribution has no analytical form (or good approximation).

There are a number of acceptance- rejection methods available for many such cases. Assume

(U, Z) have joint distribution F (u, z) and that it is straightforward to draw (U, Z) from its

joint distribution. Further, assume we want to draw U conditional on Z E S where S is a

subset of the support of Z. The simplest acceptance-rejection simulation method is:

(a) Draw (U, Z) from F.

(b) If Z g S, go to (a).

(c) If Z E S, keep.

There are more sophisticated methods that reduce the expected number of draws of (U, Z)

needed (see, for example, Devroye(1986) or Ripley(1987)), but all acceptance-rejection sim-

ulation methods suffer from a) the potentially large number of draws needed and b) the

lack of differentiability of Eh (U) with respect to parameter vector O' Thus, for the most

7 Differentiability is important for estimation.
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part, they should be avoided. For the remainder of the chapter, it will be assumed one can

simulate U.

The most straightforward simulator for Eh (U) is

^	 R
Eh (u) = -R-h (xi)	 (2.3)

where ur , , r = 1, 2, .., R are R iid pseudorandom draws of U. When simulating Pr [yi = 1 I X],

equation (2.3) becomes equation (1.10). If h is continuous and differentiable with respect

to 0, then Eh (U) will be continuous and differentiable. Equation (2.3) is unbiased, and its

variance is Var [h (U)] /R. Note that as R --■ oo, the variance of the simulator —■ zero.

2.1 Importance Sampling

Several methods allow us to improve the performance of a simulator significantly either in

terms of reduced variance, better smoothness properties, and/or better computation time

properties. The rest of this section describes the most popular simulation methods. The

first method is importance sampling. Consider Eh (U) in equation (1.1) where it is either

difficult to draw U from f or where h is not smooth. In some cases, one can rewrite equation

(1.1) as

Eh (U) = --gh rtto) g (u) du	 (2.4).

where g (u) is a density with the following properties:

a) it is easy to draw U from g,

b) h and g have the same support,

c) it is easy to evaluate h (u) (u) given u, and
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d) h (u) /g (u) is bounded and smooth over the support of U.

Note that equation (2.4) is E [h (U) /g (U)] where U N g. Then the importance sampling

simulator for Eh (U) is

-	 1 	 h (ur)
Eh (u) — n E  , r,

r=i g ku

where ur , , r 1, 2, ..., R1 are R iid draws from g. The purpose of conditions (a) and (c)

are to increase computational speed. The purpose of condition (d) is variance bounding and

smoothness.

Consider simulating Pr [yi = 1 [ X] for the multinomial probit problem. Equation (1.8)

can be written as

f f (u.;) du;	 f [f (u5) fg (14)] g (u;) du;	 (2.6)
1st <V,	 u; <Vj

for some multivariate density g satisfying Conditions (a) through (d). Consider g where the

kth element of u; is distributed independently truncated normal with upper truncation point

Vi k and variance Clikk for each k. The candidate g satisfies Conditions (a), (b), and (c), and

h (u) 1g (u) is smooth over the support u; < Vi . But h (u) g (u) is not bounded especially

when Sr has large off-diagonal terms. Thus, this choice of g may be problematic. In fact, in

general it is the boundedness condition that is difficult to satisfy. For the multinomial probit

problem, the Geweke-Keane-Hajivassilliou (GHK) and decomposition simulators discussed

below both can be thought of as importance sampling simulators that satisfy Conditions (a)

through (d).

(2.5)
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2.2 GHK Simulator

The GHK simulator, developed by Geweke(1991), Hajivassilliou(1990), and Keane(1994)

has been found to perform very well in Monte Carlo studies (discussed later) for simulating

Pr [u; < 174. The GHK algorithm switches back and forth between computing univariate,

truncated normal probabilities, simulating draws from univariate normal distributions, and

computing normal distributions conditional on previously drawn truncated normal random

variables. Since each step is straightforward and fast, the algorithm can decompose the more

difficult problem into a series of feasible steps. The algorithm is as follows:

(a) Set t = 1, it = 0, tr2 = SI;tt , and P = 1.

(b) Compute p = Pr et;st < Vat) analytically, and increment P P * p.

(c) Draw u;t from a truncated normal distribution with mean p, variance a 2 and upper

truncation point V,t.

(d) If t < — 1, increment t by 1; otherwise goto (g).

(e) Compute (analytically) the distribution of u; t conditional on u; 1 , 142 ) •• ) /1;t_1. Note that

this is normal with an analytically computable mean vector it and variance

(f) Goto (b).

(g) P is the simulator.

The algorithm relies upon the fact that normal random variables conditional on other

normal random variables are still normal. The GHK simulator is strictly bounded between

zero and one because each increment to P is strictly bounded between zero and one. It

is continuous and differentiable in B because each increment to P is continuous and differ-
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(2.7)

(2.8)

entiable. Its variance is smaller than the frequency simulator in equation (1.10) because

each draw of P is strictly bounded between zero and one while each draw of the frequency

simulator is either zero or one.

A minor modification of the algorithm provides draws of normal random variables u;

conditional on it; <	 Other minor modifications are useful for related problems.

2.3 Decomposition Simulators

Next, two decomposition simulators are described. The Stern(1992) simulator uses the

property that the sum of two normal random vectors is also normal. The goal is to simulate

Pr [u; < V . Decompose ity + Z2 where Z1 N [0, , Z2 N [0,11; — , Zi and

Z2 are independent, and A is chosen to be a diagonal matrix as large as possible such that

fk; — A is positive definite.' Then equation (1.8) can be written as

f Pr [Zi < V — g (z2 ) dz2

=	 v,n,)g 
(Z2) dZ2

k	 Ak

where g 0 is the joint normal density of Z2. Equation (2.7) can be simulated as

ft ritt, (Vik 4k)
R .Akr=1 k

where 4, k = 1,2, J — 1, are pseudorandom draws of Z2. The Stern simulator has all of

the properties of the GHK simulator. So which one performs better is an empirical matter

left to later discussion.

An easy way to pick A is to set each diagonal element of A equal to the smallest eigenvalue of 12; minus
a small amount.
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Another decomposition simulator, suggested by McFadden(1989), changes the specifica-

tion of equation (1.3) to

y; = X0 + + rej , j = 1, J	 (2.9)

where r is a small number and e r iid Extreme Value. In the limit, as r 0, Pr [yi = 1 I X]

converges to a multinomial probit probability. But for any r > 0,

Pr [yi = 1. I X] =
Xi) 3 +1 izexp ixo + uk 

f (u)dut (2.10)

which is the multinomial logit probability conditional on u = 	 u2, it,j ) integrated over

f. Equation (2.10) can be simulated as

1	 rep tx,f3 + u.; 1	 exp xkg +14 }I
R	 [	 k

where te are pseudorandom draws of u. The idea in McFadden(1989) is to think of equa-

tion (2.9) as a kernel-type approximation of equation (1.3) for small T. However, assuming

equation (2.9) is the true structure (where T is a parameter that can sometimes be esti-

mated) takes away no flexibility and frequently eases simulation. Multivariate normality is a

desirable assumption because of its flexible covariance matrix. But there are very few appli-

cations where theory dictates that the error in equation (1.3) should be multivariate normal.

Berkovec and Stern(1991) use the McFadden specification as the "true" specification in a

structural model of retirement behavior.

2.4 Antithetic Acceleration

Antithetic acceleration is a powerful variance reduction method (see Geweke, 1988). In

any simulation method, there is some probability that the pseudorandom draws will be

14
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unusually large (or small). Antithetic acceleration prevents such events from occurring and

thus reduces the variance of the simulator. Consider the general problem of simulating

Eh (U) where U r•-• F. Let Z Uniform (0,1). Then h (F- 1 (Z)) is a simulator of Eh (U).

But h (F- 1 (1 — Z)) is also a simulator of Eh (U) (because 1 — Z Uniform (0,1) also).

The antithetic acceleration simulator of Eh (U) is

Eh (u) = ZR E(F-1 (e)) h (F-1 (1 — zr))1
r=1

(2.12)

where .zr is a pseudorandom draw of Z. When F is N [0, a-1 , equation (2.12) becomes

R1
Eh (u) =	 E[h (tit. ) + h (—ur)] (2.13)

where ur is a pseudorandom draw of U. For any F, if h is linear, the variance of Eh (U) is

zero. For monotone h, the variance of Eh (U) with R draws and antithetic acceleration is

smaller than the variance of Eh (U) with 2R draws and no antithetic acceleration. If Eh (U)

is being simulated to estimate a parameter 0 with N observations and h is monotone, then

the increase in Var(d) due to simulation when antithetic acceleration is used is of order

(1/N) times the increase in Var(0 due to simulation when antithetic acceleration is not

used. The value of this is discussed more in the next section.

There are simulation problems where antithetic acceleration does not help. For example,

let U ti N [0, a2], and let h (U) = U2. Then Var[th (U)] with antithetic acceleration and

R draws is greater than that without antithetic acceleration and 2R draws. This is because

h (—U) = h (U) which means that equation (2.13) becomes equation (2.3); the variance

is twice as great as with no antithetic acceleration and 2R draws. In general, deviations
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from monotone it will diminish the performance of antithetic acceleration. But Hammersly

and Handscomb(1964) suggests generalizations of antithetic acceleration that will reduce

variance for more general h.

3 Estimation Methods

The goal of this section is to use the simulators developed in the last section in some es-

timation problems. Four different estimation methods are discussed: method of simulated

moments (MSM), simulated maximum likelihood estimation (SML), method of simulated

scores (MSS), and Gibbs sampling. Each method is described, and its theoretical properties

are discussed.

3:1 Method of Simulated Moments

Many estimation problems involve finding a parameter vector B that solves a set of orthog-

onality conditions

Eqh (y, X I 0) = 0	 (3.1)

where Q is a set of instruments. Such estimators are called method of moments (MOM)

estimators. All least squares methods are special cases of equation (3.1), and many problems

usually estimated as MLE can be recast as MOM estimators. For example, Avery, Hansen,

and Hotz(1983) suggest how to recast the the multinomial probit problem as a MOM problem

where h (y, X I 9) is the vector y — E (y I X) in the multinomial probit problem of Section 1

with jth element given by equation (1.4).

In many MOM problems, the orthogonality condition can not be evaluated analytically.
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For example, in the multinomial probit problem, evaluating E [y I X] involves evaluating

equation (1.4). MSM replaces h (y, X 1 9) with an unbiased simulator it (y, X 1 9) and then

finds the 9 that solves

Q' (y, X 0). 0.	 (3.2)

The 9 that solves equation (3.2) is the MSM estimator of 9,9. McFadden(1989) and Pakes

and Pollard(1989) show that, as long as h (y, X 1 9) is an unbiased simulator of h (y, X 1 0),

deviations between it and h will wash out by the Law of Large Numbers because equation

(3.2) is linear in h. and plim(0) = 9 as the sample size N co even for small R.9

Consider the multinomial probit problem in more detail. As in Section 1, let y i be the

vector of dependent variables for observation i, i = 1, 2, .., N, where yu = 1 iff choice j is

chosen by i. The probability of i choosing j conditional on Xi is given in equation (1.8),

and its frequency simulator is given in equation (1.10). The frequency simulator should be

replaced by one of the simulators discussed in Section 2, but for now we will use the frequency

simulator for ease of presentation. As was discussed earlier, E [yid I = Pr [yid = 1 I .

Let Abe a J-element vector with Pr [yii = 1 I xi] in the jth element of Pi , and let ci = —Pi.

Then E [ei I X4 0, and

= 0	 (3.3)

for any set of exogenous instruments Qi. Thus, conditional on a chosen Q = (Q,, Q2, .., QN),

the 0 = (/3, fl) that satisfies equation (3.3) is the MOM estimator of O. Let A be an unbiased

9 Extra conditions ane found in McFadden(1989) and Pakes and Pollard(1989).
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simulator of Pi , and let ei =	 A. Then the B that solves

E KiEi = 0	 (3.4)

is the MSM estimator of 0.

To find a reasonable Q, consider the log likelihood contribution for the multinomial probit

model:

L E yi; log Pi;	 (3.5)

The score statistics for B can be written as

8L;/8B = E-12niaYtr Pii

= E --118"96 (y,, P.; + P1.0
"

= E eqrf (N3 Psi ) + E41

where the last term equals zero because the SPi.7 = 1. Thus, one can write the score

statistics in the form of equation (3.4). With an initial estimate of 0, one can construct

(1/Pil )(0.1D,;180) for B and all j and use it as an instrument matrix Q.; for each i. It is

likely that the instruments Q will need to be simulated (e.g., if the elements of Q, are

(1PM (apidae)). This presents no significant problems as long as the pseudorandom vari-

' ables used to simulate Q i are independent of those used in the estimation process (to ensure

exogeneity). For any exogenous Q, the 0. that solves equation (3.4) is a consistent estimate

of 0. Thus, once 0 is estimated, Q can be updated using 0 and then used to find a new

that solves equation (3.4).

For any exogenous Q, the covariance matrix of B has two terms: a term due to random

variation in the data and a term due to simulation. As long as A is an exogenous, unbiased

(3.6)

to
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simulator of R, one can write

where e, is a random variable caused by simulation with zero mean independent of the

deviation between y, and R. Thus, the covariance matrix of ei can be written as EEC/ +

Eee". If F is the frequency simulator of P, then e is just an average of R independent

pseudorandom variables each with the same covariance matrix as C. Thus, the covariance

matrix of g is the covariance matrix of e times [1 + The asymptotic covariance matrix

of 9 is a linear function of the covariance matrices for €,, i = 1, 2, .., N (McFadden, 1989, p.

1006). Note that for any R > 1, 9 is consistent; that as R oo, the MSM covariance matrix

approaches the MOM covariance matrix (which is efficient when the two-step procedure

described above is used); and that the marginal improvement in precision declines rapidly

in R. If an alternative simulator with smaller variance is used, then the loss of precision

due to simulation declines. For example, if antithetic acceleration is used, then the loss in

precision becomes of order (1/N) which requires no adjustment to the covariance matrix.

Below is a roadmap for using MSM to estimate multinomial probit parameters:

a) Choose an identifiable parameterization for ft and initial values for 0 = (i 3, C1). Make sure

that the initial guess results in probabilities reasonably far from zero or one.

b) Choose a simulator.

c) Simulate 2NJR" standard normal random variables. Store NJR of them in an instruments

random number file and NJR in an estimation random number file. These random numbers

10 Remember that N = sample size, J = number of choices, and li= number of draws.

(3.7)
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will be used throughout the estimation process and never changed.

d) Given the initial guess of 9 and the instruments random number file, simulate Q. Store

the simulated instruments.

e) Given the initial guess of 9, the simulated Q, and the estimation random number file,

solve equation (3.4) for 0. This is an MSM estimator of O.

f) Given the initial MSM estimator, reperform steps (d) and (e) once.

Solving equation (3.4) requires using an optimization algorithm to find the 0 that minimizes

L
	

(3.8)

•

The derivatives of Pi are well behaved, so derivative based optimization routines should be

used. At each guess of 0, the standard normal pseudorandom numbers in the estimation

random number file are used to create a new set of N [0, SI] random numbers using the

method described in Section 2. Thus, even though the standard normal random numbers

never change, one is always using random numbers from the correct normal distribution.

Consider the unobserved heterogeneity count problem described in equations (1.11)

through (1.13). Let yit be the number of events for i at time t. E [flit I Aid is Ait , but

the covariance matrix of y i has no closed form. Let v, be a . vector of residuals with

[T +T (T + 1) /21 elements. The first T elements of it; are ytt — Ekt for t = 1,2, ..,T

where the expectation is over eit and vi in equation (1.12). The last T (T + 1) /2 elements

correspond to "covariance residuals." A representative element would be

(flit — EAit)(yia — EAia) — Cit.	 (3.9)
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for two periods, t and s, where Ca, is the Cov(Y“ , yts) . The MOM estimator of B =

(3 ,p,cc, an) solves

E Qivi = 0
	

(3.10)

given a set of instruments Q. Since both EA, t and Cit, can not be evaluated analytically,'

the MOM estimator is not feasible. But E.A it and C,ts can be simulated. Let Yrt be a

simulated count variable. We can simulate ea and u t and therefore Att . Conditional on the

simulated Ad, we can simulate yit either directly or by using the relationship between Poisson

random variables and exponential random variables.

3.2 Simulated Maximum Likelihood

As-common estimation method with good optimality properties is maximum likelihood (ML)

estimation. The basic idea is to maximize the log likelihood of the observed data over the

vector of estimated parameters. ML estimators are consistent and efficient for a very large

class of problems. Their asymptotic distribution is normal for a slightly smaller class of

problems. However there are many likelihood functions that can not be evaluated analyti-

cally. In many cases, they can be thought of as expected values of some random function

that can be simulated.

Consider again the multinomial probit problem. The log likelihood contribution for

observation i is defined in equation (3.5). Note that only one element of y i is not zero, so

only one probability needs to be computed. This is a significant advantage of simulated

11 Under special assumptions about the distribution of 24 and e it described in Hausman, Hall, and Griliches
(1984), the moments have analytical forms.
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maximum likelihood (SML) over MSM. Still, to evaluate the log likelihood function, one

must be able to evaluate or simulate P, for the choice chosen. The SML estimator of 9 is

the value of 9 that maximizes

L EE N 	 (3.11)
i=i j

where Ai is the simulated value of Pti.

A significant problem with SML is that the log likelihood function is not linear in P.

Thus, unlike MSM, the simulation errors, P—P, will not wash out asymptotically as N oo

unless R —* oo also. Lerman and Manski(1981) suggested using SML with a frequency

simulator. They found that R needed to be quite large to deal with this problem. However,

Borsch-Supan and Hajivassilliou(1993) show in Monte Carlo studies that if better simulators

are used, in particular smooth, smaller variance simulators bounded away from zero and one,

then the bias caused by finite R is small for moderate sized R. In fact, in their study, SML

performs better than MSM.

Consider the unobserved heterogeneity model described in equations (1.11) through

(1.13). The log likelihood contribution for observation i is given in equation (1.14). The

argument of the log is the expected value of

T
[exp	 AYNYitg
	

(3.12)
t=i

over the distribution of the errors determining A it . One can simulate Aft for each i and t and

therefore the expected value of the term in equation (3.12). Since the simulator of Li is the

log of this term, it is 'biased, and the bias disappears only as R —' co. But the simulator of

equation (3.12) is smooth, and antithetic acceleration can be used to significantly reduce the
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ap,las a t=	 f (Y.) 4713J (3.14)

variance. Thus the asymptotic bias associated with simulating the log likelihood function

should be small.

3.3 Method of Simulated Scores

A property of maximum likelihood is that the score statistic, the derivative of the log likeli-

hood function, should have an expected value of zero at the true value of 9. This idea is the

motivation behind the method of simulated scores (MSS). The potential advantage of MSS

is to use an estimator with the efficiency properties of ML and the consistency properties

of MSM. The difficulty in this method is to construct an unbiased simulator of the score

statistic. The problems this causes will become clear in the multinomial probit example.

The log likelihood contribution of observation i is given in equation (3.5), and its derivative

is

ar„me. y,32te	
(3.13)

OP"100
— Ps,

for the j corresponding to the chosen alternative. The goal is to construct an unbiased

simulator for equation (3.13) so that the problem can be turned into a MSM problem.

While it is straightforward to construct an unbiased simulator for both the numerator and

denominator in equation (3.13), the ratio will not be unbiased as long as the denominator

is random.

Consider constructing an unbiased simulator of the ratio. Supressing the i subscript,

equation (3.13) can be written as
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where y s =	 y;, ..,	 f is the joint density of y', and Aj is the subset of the support of

y` where y; > y; for all lc j. This equals

2-Pe = elfitr (Ye)clYsiPi
Aj

E[gln f (y*) I yj = 11

where the expectation is with respect to the joint density of y*. One usually can simulate

the expectation in equation (3.15) (e.g., using the GHK simulator) and thus get an unbiased

estimator of the ratio.

3.4 Gibbs Sampling

The last estimation procedure discussed is quite different than the others in that it is a

Bayesian estimator. In general, we have a model specified up to a set of parameters 0,

some data {(yi , X1 )}iN 1 , and a prior distribution for O. The goal is to use the data to

update the prior distribution to get a posterior distribution for O. Computing the posterior

involves using Bayes rule which usually involves solving a difficult integral, thus making it

an intractable problem. The idea in Gibbs sampling is to augment the data with another

unobserved variable, let's say { yn iN_1 that has the following properties:

a) the posterior distribution of y; given (yi , 0) is easy to simulate from, and

b) the posterior distribution of 0 given (y:, yi) and the prior distribution of 0 is easy to

compute and simulate from.

Assume there is a { ynr 1 that satisfies these two conditions. Then the Gibbs sampling

algorithm draws fy:1 14„.. 1 given fyir_i and 0, then draws 0 given new {y:, yi }iN_.. 1 , and repeats

this process over and over again. The draws of 0 provide information about the posterior

(3.15)
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distribution of 0. The algorithm is:

(a) Assume a prior distribution for B conditional on (m, 0). Choose Re such that the first

Re draws will not count and R 1 such that the process will stop after R 1 draws. Set r = 0.

(b) Simulate one draw of 0 from its posterior distribution.

(c) If r > Re, store the draw of 0 as draw r — Re.

(d) If r >	 goto (g).

(e) Simulate one draw of {yn iN_i conditional on ({yZI

(f) Evaluate analytically the posterior distribution for 0 given {(yi,y:)}iN Increment r =

r + 1. Goto (b).

(g) Use the R1 — Re draws of 0 as a random sample of draws of B and compute any sample

characteristics desired.

Markov chain theory implies that the Gibbs sampling algorithm described above will pro-

duce a distribution of draws of B corresponding to the posterior distribution of B conditional

on {(yi , X,)}L. See, for example, Casella and George (1992), Gelfand and Smith(1990),

Geman and Geman(1984), and Tanner and Wong(1987) for more about Markov chains.

Consider how Gibbs sampling can be applied to the multinomial logit problem. To

simplify exposition, assume we know fl and only need to estimate 0. Assume 131 = 0 as

a normalizing factor. For step (a), we need a prior distribution for I,0 j }i=2 . If we pick Re

big enough and the prior diffuse enough, then the choice of prior will become irrelevant.

Thus, pick the prior to be diffuse. The diffuse prior makes it easy to compute posterior
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distributions for {fli }it2 . Next, let y: be the latent variable associated with yi:

Yiìk = Xifik + uik, k = 1, 2, ..., J, i = 1, 2, N	 (3.16)

where u, N [0,12].

For step (b), we need to simulate /3 from its posterior distribution. Since at any iteration

of the algorithm, j3 is normal, we can simulate # using the method described in Section 2.

For step (e), we need to simulate {y:},N_I conditional on ({y,},N_..1 ) 0). Since the observa-

tions are independent, we need only simulate y: conditional on (yi , 13) for each i = 1,2, .., N

separately. Let j be the chosen choice. Then

'MB

Or

+ ui7 > .xith + uik Vk # j (3.17)

u9k <	 - A) Vic #	 (3.18)

where u:ik = uik — uij . The errors Ulik Vk # j can be simulated using the GHK algorithm,

and the yak can be constructed Vk # 1 12 as

	

Y. = X,#k + u:jk — u:11.
	 (3.19)

Alternatively, we can use an acceptance-rejection simulator.

For step (f), we need to evaluate the posterior distribution of $ given (y:}7 1 . Since

uij N (0, .) for each i and j, yr, N Inch means that computing a posterior

distribution for # involves running an OLS regression of e on X.

12 Recall that choice 1 is the base choice.
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For step (g), the sample of R1 — Ro draws of 13 are distributed from the distribution of 0

conditional on the data (including the dependent variables {y,} iN 1 ). A few notes of caution

are in order here. First, the draws of are not independent even though any dependence dies

out as the number of draws between two draws becomes large. Thus, we must not compute

any statistics that depend upon the ordering of the draws. Second, the draws are conditional

on {yd i=1 . This is quite different than what we would expect in classical statistical analysis

(where we would condition on only the exogenous variables). The effect of this is that the

researcher does not know how the estimator would have behaved had a different realization

of the data been observed. This is a fundamental difference between classical estimators

and Bayesian estimators. There are other reasonable (and perhaps better) choices for im-

plementing the Gibbs sampler to the multinomial probit problem. The real issues involve

also estimating IL See McCullough and Rossi(1993) or Albert and Chib(1993) for a much

more extensive discussion.

The unobserved heterogeneity count problem is also easily adaptable to Gibbs sampling.

The data should be augmented with {Attrt_i ,,N_ 1 and its prior should be normal. Steps (b)

and (f) are the same as in the multinomial probit problem. Step (e) involves simulating

Ail conditional on (y t , 0) which is not as straightforward. The density of Ad conditional on

(Vat, 0) is

(Ait yit , 0)	 (y) e - Ar- 1 0 (log Ait — Xit0)
	

(3.20)

where ax is the standard deviation of the composite error in equation (1.12), 4) is the standard

normal density function, and C (y) is a proportionality constant chosen so that equation
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(3.20) integrates to one. One can evaluate the integral of equation (3.20) numerically for

each value of y = 0,1, .. for a finite number of points: 6, 26,.., K6 for some small 6. Figure

1 draws the approximate distribution curves for y 0,1, .., 5, 6 = .01, and K = 1000.

Then one can use the discretized distribution as an approximation to draw A from. This

is equivalent to drawing a random point on the vertical axis of Figure 1 (e.g., point A),

drawing a. horizontal line to the curve corresponding to y (e.g., B when y = 4) and choosing

A to be the horizontal component of the curve at that vertical point (e.g., point C). An

alternative would be to use the Metropolis-Hastings algorithm described in, for example,

Chib and Greenberg(1994).

4 Empirical Comparison of Methods

A number of studies have compared the performance of various simulators and estimation

methods especially for the multinomial probit problem. This section summarizes the results

of four of those studies and presents some new results focusing on questions that are neglected

in the other studies.

Borsch-Supan and Hajivassiliou (1993) compare the GHK simulator to the Stern simu-

lator and a frequency simulator. They present convincing evidence that the CHIC simulator

has a significantly smaller standard deviation than the other two simulators. They further

show that the standard deviation of the GHK simulator is small enough so that it can be

used in an SML estimation routine providing parameter estimates with small root mean

squared errors (RMSE's). Having a good simulator with small standard deviation for SML
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is important because, unlike MSM, SML does not provide consistent estimates for fixed R.

Hajivassiliou, McFadden, and Ruud (1994) compare ten different simulators (including

the Stern simulator, a Gibbs sampler, and a kernel smoothed simulator) in terms of the

RMSE of the multinomial probit probability and its derivatives. They consider a large class

of Vg's and Ctrs. They find that the 011K simulator performs the best overall. In particular,

it performs well relative to the alternatives when 1/ .; displays high correlation terms. They

provide no results concerning parameter estimates.

Geweke, Keane, and Runkle (1994a) compare MSM using 011K, SML using GHK, Gibbs

sampling, and kernel smoothing. In an unrestricted estimation procedure (including covari-

ance parameters), MSM-GHK and Gibbs sampling dominated SML-GHK. Kernel smoothing

was dominated by all methods. In various restricted models, the performance of SML-GHK

improved. In general, as more restrictions were placed on the model, the performance of

MSM-GHK, SML-GHK, and Gibbs sampling converged. But Gibbs sampling seemed to

dominate other methods overall.

Geweke, Keane, and Runkle (1994b) compare MSM-GHK, SML-GHK, and Gibbs sam-

pling in the related multinomial multiple period probit model. They find that Gibbs sam-

pling dominates and MSM-GHK is second. Estimated standard errors are good for Gibbs

sampling and MSM-GHK but are downward biased for SML-GHK.

None of these methods compare the computational cost of the alternatives. Computa-

tional cost is important because the simulators are essentially a method to reduce compu-

tation time; if time was not an issue, we could compute the relevant integrals numerically
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using arbitrarily precise approximation methods or we could simulate them letting R be an

arbitrarily large number. If one method takes twice as much time as another for a given R,

then a fair comparison requires using different R for each method to produce comparable

times. Also none of the methods considers the effect of using antithetic acceleration (AA)

despite Geweke's strong theoretical results.

Table 1 presents the results of a small Monte Carlo study. Its results should be inter-

preted as suggestive of where more work needs to be done. The methods that are compared

are MSM-GHK, MSM-Stern, SML-GHK, SML-Stern, Gibbs sampling (with acceptance-

rejection), and MSM-KS (kernel smoothing). Three different models are used: a) fl is

diagonal and N (sample size) = 500, b) SI is diagonal and N = 1000, and c) S2 corresponds

to an AR (1) process with p = .9 and N = 1000. Except for Gibbs sampling, results are

reported with and without AA. RMSE results and average times per estimation procedure

are reported.

Kernel smoothing methods performed poorly in terms of RMSE of the simulated multino-

mial probit probabilities. Also, more importantly, its derivatives with respect to parameters

were poorly behaved in that if the bandwidth parameter was small, the derivatives were

very volatile (and therefore derivative based optimization algorithms for estimation behaved

poorly), and if it was large, parameter bias was very large. Thus kernel smoothing method

results are not reported. In terms of RMSE, Gibbs sampling estimators behave reasonably

well. But the amount of time involved is an order of magnitude greater than for the MSM
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and SML estimates? Thus, there are only limited results reported for the Gibbs samplers.

The remainder of the discussion focuses on MSM, SML, 011K, Stern, and AA. First,

it is clear that SML dominates MSM in these examples. It provides smaller RMSE's and

it requires less computation time. GHK dominates Stern in terms of RMSE, but Stern is

significantly faster. One might consider using Stern with twice as large R. Unreported

Monte Carlo experiments suggest that for the examples used here the standard deviation of

the multinomial probit probabilities is about twice as large for the Stern simulator as for the

GHK simulator when R = 10. This would suggest that doubling R for the Stern simulator

(relative to the GHK simulator) would make the GHK simulator more efficient by a factor of

ji Thus, these results are consistent with Borsch-Supan and Hajivassiliou, suggesting that

SML-GHK provides estimates with the smallest RMSE's even after controlling for variation

in computation time. Based on results in Borsch-Supan and Hajivassiliou and Hajivassiliou,

McFadden, and Ruud, it probably performs even better for pathological cases with highly

correlated errors or small multinomial probit probabilities.

The poor performance of AA is striking. AA almost uniformly improves the performance

of the Stem simulator. But it behaves poorly for the 011K simulator. However, unreported

results show that AA significantly reduces the standard deviation of the simulated multi-

nomial probit probabilities for GHK, Stem, and kernel smoothing. This apparent paradox

occurs because of the small sample properties of method of moments (MOM) and maximum

13 It should be noted that in these Monte Carlo experiments, I am conditioning on the true value of 12.
It might be the case that the Gibbs sampler performs better relative to the other methods when fl also is
estimated.

•

31



likelihood (MLE). In other words, the RMSE of MOM and MLE dominate any extra ran-

domness caused by simulation. This is verified by unreported results showing that when R

is increased to 50, SML-GHK and SML-Stern RMSE's converge to each other with or with-

out AA and they are similar to the RMSE's for the case when R = 5 with AA or R = 10

without AA. The bottom line is that for MSM and SML, the choice of simulation method

has a second order effect on RMSE relative to RMSE caused by the underlying estimation

method. This further suggests that computation time issues should be given high priority.
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Table 1

Results for Diagonal Covariance Matrix

N = 500

w/ Antithetic Acceleration	 wo/ Antithetic Acceleration

Method Avg RMSE Avg Time Avg RMSE Avg Time

MSM-GHK 0.299 3559.0 0.257 3373.8

MSM-Stern 0.270 1047.0 0.288 1097.0

SML-GHK 0.247 1571.0 0.246 1598.8

SML-Stern 0.254 654.9 0.252 674.7

Gibbs 0.263 16119.9

Results for Diagonal Covariance Matrix

N = 1000

w/ Antithetic Acceleration	 wo/ Antithetic Acceleration

Method Avg RMSE Avg Time Avg RMSE Avg Time

MSM-GHK 0.181 6470.9 0.167 6283.1

MSM-Stern 0.173 1911.4 0.186 2006.0

SML-GHK 0.158 1951.5 0.161 1889.9

SML-Stem 0.161 802.0 0.163 853.0

Gibbs 0.170 29746.9
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Results for Non-Diagonal Covariance Matrix

N = 1000

w/ Antithetic Acceleration wo/ Antithetic Acceleration

Method Avg RMSE Avg Time Avg RMSE Avg Time

MSM-GHK 0.267 7192.1 0.201 6782.8

MSM-Stern 0.358 2422.5 0.420 2565.2

SML-GHK 0.175 2194.8 0.192 2010.0

SML-Stern 0.180 1114.3 0.195 1174.0

Notes:

There are 200 Monte Carlo draws per experiment.

There are 6 choices and 5 explanatory variables per choice.

For experiments with AA, R 5, and for experiments without AA, R = 10.

All experiments are performed on an IBM RS6000 Model 390.

Gibbs sampling results are based on 10000 draws after skipping 2000 draws;

i.e., Ro = 2000 and R1 = 12000.

Table 1 cont'd

•J■
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Cumulative Distribution Functions
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