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Abstract

We consider a random matching model without monetary exchange where

agents have complete access to each others' histories. Exchange is motivated

by risk sharing given random unobservable incomes. There is capital accumu-

lation and an endogenous interest rate. The key feature of this environment is

that information is mobile across locations even while goods are not. Optimal

allocations in the dynamic private information environment resemble real-world
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credit arrangements in that there are credit balances, credit limits, and install-

ment payments. The steady state has the property that there is a limiting

distribution of expected utility entitlements with mobility and a positive frac-

tion of agents who are credit constrained.
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1. INTRODUCTION

Search environments with random matching have been used by Kiyotaki and Wright

(1989, 1993), Williamson and Wright (1994) and Trejos and Wright (1995) in attempts

to understand the role of money in exchange. It has been argued (e.g. Kiyotaki and

Wright 1989) that the spatial frictions in these models preclude credit arrangements.

That is, with a continuum of agents who are matched pairwise and at random in

each period, no two agents can meet more than once in their lifetimes, and there-

fore intertemporal trade is impossible. However (see Aiyagari and Wallace 1991 and

Kocherlakota 1996), what is critical to the absence of credit in a Kiyotaki-Wright

search environment is not spatial frictions but the fact that agents do not have ac-

cess to each other's trading histories. For example, in the environment considered

by Kiyotaki and Wright (1989) where goods are indivisible and agents are special-

ized in production and consumption, subgame-perfect Nash equilibria which Pareto

dominate all commodity money and fiat money equilibria exist when each agent has

access to all other agents' complete trading histories.'

One might want to argue that spatial frictions help to motivate the lack of access to

trading histories in search models. However, a problem is that in modern economies

technology has evolved to the point where information can be moved between loca-

tions far more easily than most physical goods can be transported. In reality, credit

transactions are typically not of the type where, effectively, an IOU is issued in ex-

change for some goods, with that IOU later being redeemed by the issuer. Typically,

most of us conduct sequences of credit transactions with agents whom we never meet

again, with settlement occurring through a centralized credit agency or check-clearing

1 For example, in Kiyotaki and Wright's three-agent, three-commodity example, an efficient

arrangement is for any agent to hold their production good until they meet an agent who con-

sumes it, in which case the good is handed over, and another one is produced. This allocation can

be supported as a Nash equilibrium.
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mechanism.

The purpose of this paper is to study credit arrangements in a random matching

environment in which agents' histories are public information. This matching setup

differs from the typical monetary search environment in that there is a single good

and consumers have random unobservable endowments and wish to share risk. As

shown in the pioneering work of Townsend (1980), the desire to share risk in the

presence of private information leads to a motive for intertemporal trade by tying

future transfers to current transfers. Our model is closely-related to the environment

studied by Green (1987), but we add random matching and a nonnegativity constraint

on consumption, in addition to some other features. The approach we take is similar

to what is done in the literature on dynamic private information (e.g. Green 1987,

Spear and Srivastava 1987, Phelan and Townsend 1991, Atkeson and Lucas 1992,

1995, and Wang 1995), in that we analyze the allocation problem of a social planner

who seeks to construct an efficient allocation subject to the constraints implied by

private information.

In the model, there is a continuum of infinite-lived consumers who are matched with

"stores" (i.e. locations) at random in each period. Consumption goods are produced

from capital at a central location, and shipped out to each store at the beginning

of each period, and the social planner uses unsold goods to produce capital which

becomes productive in the next period, Consumption goods can not be transported

across locations within the period. An interpretation of the physical environment

and credit arrangement we consider is that it involves a firm simultaneously engaged

in production, retail sales (through a large number of distinct retail outlets), and

consumer finance.2

The economy here is very similar to that in Aiyagari (1994). The key differences arc

2 1t could be argued that automobile manufacturers, which Own some dealerships and also inter-

mediate auto loans, provide a good fit to the environment we consider.
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that there is random matching and allocations are (private information) constrained

efficient in the economy studied here, whereas in Aiyagari (1994) all agents were

together at all dates and the market structure and borrowing constraints were exoge-

nously imposed. Indeed, ours is one of the first dynamic insurance economies with

private information to include capital accumulation. 3 If the pairwise resource con-

straints implied by random matching turn out not to be binding (which can happen)

then the efficient steady state allocation in our model would be a natural benchmark

for the steady state allocation in Aiyagari (1994).

We show that efficient allocations can be determined by solving a set of recursive

component planning problems, as in Atkeson and Lucas (1995). Then, we proceed to

determine the characteristics of limiting distributions for this environment. A limiting

distribution always exists, and it exhibits mobility, i.e. individual agents are mobile

within the steady state distribution of wealth. The efficient allocation has features

which resemble real-world credit systems. That is, agents have credit balances, and

there are credit limits and installment payments. Further, and in spite of the fact

that the marginal utility of consumption is infinite at zero and there is a positive

probability of receiving a zero endowment for each consumer, there is a positive mass

of agents who are credit-constrained in the steady state. This contrasts with results

from incomplete markets models where imperfect consumption-smoothing is obtained

by exogenously shutting down markets (e.g. Aiyagari 1994). However, as in Aiyagari

(1994) we find that the interest rate is less than the time preference rate and that

there is capital overaccumulation relative to a public information economy.

There are two novelties here. The first is that we study a pure credit arrange-

ment in a random matching environment where there is no (social) role for monetary

exchange. Second, we obtain a limiting distribution with mobility through an alter-

3 See also Khan and Ravikumar (1996), which incorporates capital accumulation in a somewhat

different way than is done here.
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native to existing approaches in the literature. 4 In our model, the interest rate is

endogenous, and there is capital accumulation. Allowing for capital accumulation

rules out equilibrium interest rates which imply degenerate limiting distributions of

expected utilities where all agents converge to the upper bound on expected utilities

(here, the upper bound is implied by the resource constraints which come from random

matching and immobility of resources across locations). Also, our economy satisfies

"non-attainability of misery" as in Aiyagari and Alvarez (1995), which prevents a

degenerate distribution where all agents are at the lower bound on expected utilities

(given by the nonnegativity constraint on consumption and incentive compatibility).

The remainder of the paper is organized as follows. In Section 2, we describe the

model, and in Section 3 we specify the problem the social planner solves to determine

efficient allocations. Section 4 reformulates the component planning problem asso-

ciated with the problem in Section 3 in terms of a Bellman equation. In Section 5,

we use the Bellman equation to characterize the efficient allocation and the limiting

distribution of expected utilities. Section 6 contains a discussion of the results and

assumptions, and Section 7 is a conclusion.

°Some fixed interest rate private information economies have the property that the expected

discounted utility of an arbitrarily large fraction of the population eventually becomes arbitrarily

low (e.g. Green 1987), and there are related endogenous interest rate economies (e.g. Atkeson and

Lucas 1992) where the wealth distribution continues to fan out over time. Nondegenerate limiting

distributions of expected utilities with mobility are obtained by Atkeson and Lucas (1995) and

Phelan (1995) by imposing a lower bound on expected utilities. In Atkeson-Lucas this lower bound

is arbitrary, but Phelan makes the lower bound endogenous by supposing that long-term contracts

are offered by firms to workers, and that workers can leave the contractual arrangement at any time

and start a new contract with another firm.
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2. THE MODEL

The population consists of a continuum of infinite-lived agents with unit mass,

denoted buyers, each of whom has preferences given by

E0 (1 — (3)E Stu(ct),

where 0 < (3 < 1, n is consumption, and u•) is strictly increasing, strictly concave,

and satisfies decreasing absolute risk aversion. Assume that u(0) = 0 and u t (0) = Do.

Define CO by C(u(c)) = c, that is CO = u- 1 ( . ). We then have C (0) = 0 and

C(0) = 0. There is a continuum of locations, denoted stores, also with unit mass,

with a seller at each store. Stores are indexed by i E [0, 1]. Sellers will act as agents

for the social planner in allocating consumption goods in each period.

Each period, buyers are matched pairwise and at random with stores. Thus, each

buyer is matched with a seller. At the beginning of period t, the social planner has

kt units of capital available at a central location, where /co is given. Capital can be

used by the planner to produce consumption goods at the beginning of the period,

according to the production function g(kt). We assume that g•) is strictly increasing,

strictly concave, and continuously differentiable, with g(0) = 0, d (0) = co, and

g i (oo) = 0. Capital depreciates by 100% after production. After consumption goods

are produced at the central location, goods are transported costlessly to each store.

Let x it denote the quantity of consumption goods at store i. We assume that each

store has a capacity constraint, that is x it < e for all i, where x* > 0. We also assume

that

9(k) >	 > g(k)- ,	 (1)

where k is the solution to

•

9(k) =	 (2)

The first inequality in (1) is designed to guarantee that transfers to buyers are limited•



by store capacity and not by available output. This assumption makes it possible to

separate the problem of optimal capital accumulation from that of optimal transfers

to buyers and makes the problem tractable. The second inequality in (1) is motivated

by a consideration of the problem under public information regarding endowments.

Obviously, full insurance is the natural outcome in this case. This inequality turns

out to be a necessary condition for store capacity to be non-binding in attaining full

insurance. Assumption (1) is discussed in more detail in Section 6.

We also assume that when the social planner sends consumption goods to stores,

it is not yet known which buyers are matched with which stores for the period.

At the beginning of the period, a buyer receives an endowment, O t , which is an i.i.d.

(across agents and time) draw from a probability distribution F(8,), where O > 0.

The buyer's endowment is private information. After consumption goods arrive at

the store and the buyer receives her endowment, the seller makes a transfer (which

could be negative) to the buyer, where the transfer is determined by the buyer's

reported history (recorded with the social planner) and the buyer's report of her

current endowment shock. Consumption goods can not be moved across locations

during the period, but at the end of the period any consumption goods not consumed

by buyers are transported back to the social planner and converted, one-for-one, into

capital.

3. EFFICIENT ALLOCATIONS

The social planner is given 00 (w), the distribution of date 0 expected utilities across

buyers, and ko, the initial capital stock. If equal quantities of consumption goods are

not transported to stores in each period, this can only introduce the possibility of

more randomness in buyers' consumptions, and it cannot help incentives. Thus, there

is no loss from considering only allocations where xi = x t for all t and all i E [0, 11,

and we can therefore drop i superscripts from the subsequent analysis. Also, the

•
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•
social planner will ship the largest quantity of goods possible, as this can only relax

constraints in the planner's optimization problem. Thus, we have x t = mink*, g(kt)].

Let frt(wo, Gi )}n, denote the sequence of transfers received by a buyer from the

sequence of sellers she meets, where O t = {t9o,th , O t} denotes the buyer's history

of endowment shock reports to date t and wo is the buyer's date 0 expected utility

entitlement.

Definition 1 An allocation (r,k) is a set of sequences {Olio,	 {kt}ttp for

each initial expected utility entitlement wo, given ko, which satisfies

co
wo E0(1 — E ptu [rt (wo, Bt) ed	 (3)

t=0

for all wo,

•	 Et E ss-tu Fos	 Os)] u [Ot + rt(wa, {03, 01, • • Ot-i, °I})}	 (4)

00

+Et E t39-tu io, + Ts(WO, {90, 01 , , 0 t_ 1 , 01 , et+1, •••, 04))
s=t+1

for all wo, and for all t,

< Tt (Wo, et ) < Xt

for all wo, t, and fit,

kt+ 1 > 0

Xt	 rnin[X.)9(kt)]

for all t.

In the above definition, (3) is a promise-keeping constraint, (4) are temporary

incentive compatibility constraints, (5) is the pairwise resource constraint, (6) is a

nonnegativity constraint on capital, and (7) captures the capacity constraint on goods

•	 shipped to each store.



Definition 2 An allocation (r, k) attains trio with resource cost z E R if

—g(k,) + kt+1 + f rt (w, Ot)(41(0`)40(w) z,	 (8)

and (3)-(7) are satisfied.

In the above definition, te(9`) is the distribution of the history 64.

Definition 3 An efficient allocation is a	 k) which attains tbo with cost z, and

there exists no other allocation which attains t/ with cost less than z.

Now, we follow Atkeson and Lucas (1995), in decentralizing the problem of de-

termining efficient allocations by considering component planning problems. First

suppose that there is a planner at the central location who starts with the initial

capital stock, ko, at the beginning of the first period. In each period, this planner

produces given the existing capital stock, retains some output to accumulate capital

for the succeeding period, retains an additional amount of output (denoted Tt) to

pay for transfers to consumers, and sells the remaining output, facing the sequence

of intertemporal prices {qt }7, 129 , where qt E (0,1) (i.e. at = where rt is the one-

period interest rate). That is, this planner can borrow and lend at market prices,

and maximizes the present discounted value of profits, i.e. she chooses {k t }',,.. 1 given

ko to solve

00	 t-

max{(1 – q0)1g(ko) – To – lc ) ] + E(1 –qt)ll q'Eg(le t) – T, – k,	 (9)

In addition to the planner at the central location, there is a planner associated with

each initial expected utility entitlement wo. At the beginning of each period, the

planner at the central location ships z t min[x* g(k,)] units of consumption goods

to each store. Then, after buyers have been randomly allocated to stores, the plan-

ner associated with wo receives a report from each of the buyers for whom she has

•
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responsibility, and makes a transfer to each. Any consumption goods not transferred

to buyers are returned to the planner at the central location at the end of the pe-

riod. The planner responsible for buyers with initial expected utility entitlement wo

minimizes the cost of delivering wo given the price sequence {q t }ifc, and the sequence

of shipments Ixt ri'o from the planner at the central location. That is, she chooses

{Tt (wo, 69};! 0 to solve

co	 t-1

min{ (1 — qo ) J ro(wo, 00 )dF(Oo)	 — qt) fi gs J rt (WG, O t )Ciii(Ot )	 (10)
t=1	 a=0

subject to (3)-(5).

Note that in (9)

Tt	 Tt(W,Ot)dp.(0`)dt,b0(w),

and will in general depend on {kW%) via the resource constraints (5) and (7). This

dependence is taken into account by the central planner in choosing a path for capital

accumulation.

It is then straightforward to apply Theorem 1 on page 70 of Atkeson and Lucas

(1995), to show that if there exists an allocation (r, k), prices {qt }r10 , an initial

distribution of expected utility entitlements 0 0 (w), and aggregate resources z such

that (r, k) solves the above two minimization problems given {-qt }r_o (each planner

minimizes cost given prices), (8) is satisfied with equality for all t (market clearing),

and
00	 t- 1

1— q.+E(1— qt ) rigs oo,
t=0	 s=0

then (r, k) attains 00 with resources z and is efficient.

A potential complication in using the above characterization of efficient allocations

is that the total transfers {T1 } appearing in (9) may depend on {kt }. This makes

it difficult to characterize an efficient {kt } sequence. A way around this difficulty is

provided by the following proposition.

11
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Proposition 1: Let the sequence fk;	 satisfy

	

–1 + qt + (1 – qt .4. 1 )qtg i	0	 (11)

and

	

g(k2+1 ) > e.	 (12)

Let fr:(w0 ,0 t )lc, minimize (10) and suppose that (8) is satisfied with equality

for all t. Then (T', le) attains 00 with resources z and is efficient.

Proof. It is obvious that (-1- 11 , le) attains	 with resources z. Suppose that (r•,/e)
is not efficient. Then there exists (it , k) such that

– g (kt) + ict+1 + Tt < z < z = – g(kr) + kr 1a + 77 ,

where

J 	 f t(w ,0`)dP(0`)chPo(w),
	 •

F; f f Tee (w, 0`)cip(0540(w).

Therefore,

(1 – qo)(-9(ko) + ic i + '114 + E(1 qt) fl q5(- t) kt 41 + /lit) (13)
t=i	 3=0

on	 t-1
(1 – q0 )(– g(ko) + k; + Tr ) + E(1 – qt ) H q,(– g(k;) + kr4 + 77)

3-0

However, by virtue of (11) we must have

00	 t- I
(1 — go)(-9(ko) + 	 + E(1 - qt)H93(—g(ict) + ict+i)

	
(14)

t-t	 3-0

(1 – go)( – g(ko) + k() + E(1 – qt ) 11q,(-g(k;') + kr, 1)
t-=,1	 3=0

•
12



•

•

because {kt*.n }ilo attains the minimum of the expression

t-1

(1 — go)(—g(ko) + k1) + E(1 — qt)	 qs(-9(kt) kt+1).
t=1

Note that in addition to the first order conditions (11), the sequence of capital stocks

lc:+ ario also satisfies the transversality condition. This can be seen as follows. The

pairwise resource constraints imply that

–iry <	 g(k;').

Hence, (8) implies that

z <	 < g(k;) + 7t-y z.

By virtue of the restrictions on g•) it follows that the sequence of capital stocks

fict*M0 is bounded. Further, the assumption on the price sequenceimplies

that	

{qt}tto

t- 1
lim (1 — qt) ]J qs --= O.

Therefore,
t-

lim (1 — q t ) H tis ic:+1 = 0,t—poo s=0
which is the relevant transversality condition. Further,

cc)	 t-i
(1 — qo) f fo(wo,0o)dF(00) + E(1 — qt) fl qs I 1-t (wo, et )d AO') (15)

t=1	 s=o
.	 t- 1

�. (1 — 'go) f Tgwo, 0o)dF(0o) + Di — qt)fiqs f T:(
1=1	 s=0

as {r'} attains the minimum in (10) and {f-} is a feasible choice for that problem. To

check this we only need to verify that {i-} satisfies the pairwise resource constraints

for the problem (10) for t > 1 with the sequence of capital stocks Iktfi l talo . This is

obvious because

–Bt < ft (wo, Bt ) < min[x*, g(ict )] < e mink', g(kn]

•

,fldp(Ot),

13
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for t > 1 by virtue of (11). Now, integrating (15) with respect to 00 (w0) we have

CO	 c-1	 oo	 t-1

(1 – tio)To + E(1 – gr) H q,i't (1 – q0)7; +	 _ ch)nqi,T.	 (16)
tr‘ l	 5=0	 t=1	 5=0

However, adding (14) and (16), we see that the result contradicts (13). This contra-

diction establishes the desired result!:

This proposition is useful since it provides a way of characterizing an efficient

sequence of capital stocks using (11), provided (12) holds, and an efficient sequence

of transfers by solving problem (10). Note that by virtue of (12), the pairwise resource

constraint for the problem (10) can be replaced by

–0, < Tc(wo,	 < x*,

so that the {k t } sequence no longer enters problem (10).

	

In the next section we confine attention to steady states and use dynamic pro-
	 •

gramming methods to solve problem (10) and thereby construct stationary efficient

allocations.

4. BELLMAN EQUATION

Assume now that there are only two states, i.e. O E E {0, y}, where PrlOt = yl 7T,

and Pr[et = 0] = 1 – 7r, with 0 < 7r < 1. 5 We will confine attention to steady states,

where g, = g E 0,1 ) for all t. Let kg be such that

91 (kg) =
	 (17)

By virtue of assumptions (1) and (2) we have g(kg) > e. Therefore, the sequence of

capital stocks lc, = kg satisfies the conditions (11) and (12) in Proposition 1. Now,

in a steady state, the other component planning problems can be specified as the

sThe assumption that the low endowment is zero is without loss of generality. •
14
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solution to a Bellman equation, where Vq (w) is interpreted as the minimum cost to

the planner of delivering an expected utility entitlement of w to a given buyer, given

q. That is, define Vq (w) as follows.

+q(7rVg(w1 (w)) + (1 — 7014(wo(w))1/

subject to

74( 1 - fi)u(y +	 (w)) + /3lvt(w)) + ( 1 — 7r) [( 1 — 13) u (ro(w)) + Swo(w)] = (19)

(1 — flu(y + ri(w)) + j3w1(w)	 (1 — 13)u(y	 To(w)) + 13wo(w),

(1 — 13)/1(T0(w)) + /3wo(w) � (1 — 0)u(ri (w)) + Owl (w),

-y	 (W) < W.,

(20)

(21)

(22)

0 < ro(w) < x',

w,w0(w),w1 (w) E Lump},

where wr-- Iru(y) and tn ru(y + e) + (1 — 7r)u(x*). Here, (19) is a promise-keeping

constraint, (20) and (21) are incentive constraints, and (22) are the pairwise resource

constraints, where e denotes the quantity of consumption goods shipped to each

location in the steady state. The choice variables in the optimization problem on the

right-hand side of the Hellman equation are r1 (w), ro(w), w i (w), and wo(w). As noted

earlier, the planner always has output g(kg) which exceeds the capacity constraint of

stores given by e. Hence, it is x* which appears in the pairwise resource constraints

(22).

S

Vq(w) (1 (1 7r)ro(w)]min{ — q)[7rr1 (w) + — (18)

•
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5. CHARACTERIZING THE STEADY STATE EFFICIENT

ALLOCATION

Now that we have a recursive representation of the component planning problems,

we can proceed to a derivation of the properties of the steady state efficient allocation.

We consider the steady state where z 0, that is, where the total net transfer to

buyers is zero. Then, if 1P g (w) is the steady state distribution of expected utility

entitlements across buyers, we must have

g(kq) – k g j[wri,q(w) + (1 – 4r0,q(w)109 (w),	 (23)

where the left-hand side of (23) is output per capita at the beginning of the period

minus capital set aside at the end of the period, and the right-hand side of (23) is

total transfers per capita. We can write (23) as

HI(0) = H2(4),
	

(24)

	 •
where

H i (q)E- g(kg)– kq,

H2 (q)-,: 1[77-1,g(w) + (1 – 2r)To4(w)idTko(u))

We can think of solving for the steady state as follows. Given a price q, we can

solve for the steady state quantity of capital, kq , from (17). Then, we can solve (18)

subject to (19)-(22) to obtain Vi,(w), ritc (tv), to,c,(w), wi,q (w), and wo,q (w). This then

implies a dynamic stochastic path for w, and we can accordingly solve for 49(w).

Then, we can ask whether (23) is satisfied and, if not, then try another q, etc.

For the analysis, it will be convenient to rewrite the Bellman equation by making

the following change of variables. Let u l (w) u(y + (w)) and uo(w) u(ro(w)) so

that ri (w) = C(u i (w)) – y, ro(w) = C(242 (w)) and u(y + ro(w)) = u(y + C(uo(w))).

	We will also assume that if a buyer claims a positive endowment, i.e. 0 = y, then she	 •
16
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must be able to show it. This assumption allows us to ignore the incentive constraint

(21), so that we only need to worry about the incentive constraint (20).

With the above changes in notation and the added assumption, we can rewrite the

Bellman equation as follows:

{ (1— q) hrC(ui (w)) + (1 — tf)C(uo(w)) — 7rYI
Ito (w) = min

+q (lrVq(wi(w)) + (1 — 7r)v1(wo(w))I

subject to

rr [(1 /3)u1 (w) + 01-01(4 + (1 — it) [(1 Muo(w) + j3wo(w)] = W	 (25)

- flul(W) + 0101(W ) � ( 1 — $)u(y + C(no(w))) + Owo(w)	 (26)

0 < C(ui(w)) y+ x 	 (27)

0 < C(uo(w))

I	 I
w , W IP WO E 

f 

Wi

The first step is to show that the cost function, KO is well-behaved, and then to

obtain a characterization of the solution to the Bellman equation. This is done in the

following proposition.

Proposition 2: (a) Vq (•) is strictly increasing, convex, and continuously differen-

tiable. 6 (b) u1 (w) > uo(w),w1 (w) > wo(w), and u1 (w) and w1 (w) are nonde-

creasing in W. (c) uo(w) 0, C(ui (w) < y, w0 (1.1_)) =w, and w1 (w) >w. (d) For

w E (w, w), wo(w) < w and sup{w : wo(w) =u2} >w.

Proof. (a) See Proposition 3.5 in Aiyagari and Alvarez (1995), p. 28. (b) If uo(w) >

(w) then set uo(w) = uT (w) nu' (w)+ (1— ir)uo(w) and we have u 1 (w) < u;(w)

6 The assumption that n(-) satisfies decreasing absolute risk aversion guarantees that the con-

straint set defined by (25)-(27) is convex without need to resort to lotteries.

S
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ugw) < uo(w). This alternative policy satisfies the promise-keeping and incentive

constraints. But, by convexity, the objective function decreases, a contradiction.

Similarly, suppose wo (W) > (w). Then set w3(w) = wr(W) (w)+ (1 —r)wo(w),

and we have wi (w) < wi'(w) = t4(w) < wo(w), and this works in the same way. For

the rest, see Aiyagari and Alvarez (1995).0

From the above Proposition, we therefore know that buyers consume at least as

much in the high-endowment state as in the low-endowment state, and that future

expected utility entitlements are at least as large in the high-endowment state as

in the low-endowment state. When the buyer's expected utility entitlement falls to

the lower bound, w, then if the buyer receives the low endowment, she receives a

transfer of zero and a future expected utility entitlement of w. However, if the buyer

is at the lower bound and receives the high endowment, then she gets a negative

transfer and an incresse in her expected utility entitlement. Nrther, for w in some

neighborhood of w, if the buyer receives a low endowment then her future expected

utility entitlement is set equal to w. This result will play an important role in ensuring

that there will be a positive fraction of credit constrained buyers in the steady state.

We can now proceed to examine the implications for the steady state distribution

of expected utilities, tb(w), of alternative steady state prices, g E (11,1). We first

consider the case q = 13. Let A denote the Lagrange multiplier associated with the

promise-keeping constraint (25), and p the nonnegative multiplier associated with

the incentive constraint (26). The first-order` necessary condition for w i (w) is

—q7V4(tu i (w)) + kir0 + ita = 0, if w i (w) E	 to),

or

—T7rV9(in i (w))+ AO+	 > 0, if wi(w) = Ul

The envelope condition is

A = V,;(w)

•

•

•
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•

• Thus,
IL0Vq' (w i (w)) < V'(w)– + —, with equality if w i (w) <?D.q yr

Analogously, the first-order necessary condition for wo(w) can be written as

lij(wo(w)) = V9 (w) q(i  ir)II° 	 for wo(w) E	 w),

or

li,;,(wo(w)) > 11:,(w): 	 q(114f 7r) if wo(w) = w.

Proposition 3: If V(W) = co, then there exists tb i < W such that ui (w) = u(y+x*)

for w E 121) 1 , 211

Proof. Suppose u i (w) < u(y + x*). Consider increasing ul (w) and lowering wi(w)

in order to keep (1 – (3)/21 (w) + Owl (w) constant. This satisfies all the constraints.

The change in the objective function is given by

[(1 — q)C1 (u i (w)) – 9r1<;(wi(w)) (1 s Q) 1 diti(w).

We know that when w = /II I (w) = tb. Then, since IP (CO oo, in a neighborhood

of w = fo the above expression must be negative, which is a contradiction.°

Proposition 4: If 1<;(7-11) = co, then there exists W2 < iv such that uo(w) = u(x*)

for w E [th2, frii•

Proof. Suppose uo(w) < u(x*). Consider raising uo(w) and lowering wo(w) such that

(1 – P)uo(w)-1-Pwo(w) is held constant. This satisfies the promise-keeping constraint.

It also satisfies the incentive constraint as the change in the right-hand side is given

by

(1 — /3)[u'(y + C(uo(w))) – 11duo(w) < 0

by concavity of u( . ). The change in the objective function is given by

[(1 q)(1 – 71-)C(uo(w)) – q(1 – 7r)V:(wo(w)) (1 0 11 duo(w).
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We know that when in = wo(w) = ID and 1/:(th) = co. Hence, in a neighborhood

of w = Ili, the above expression must be negative, which is a contradiction. q

Proposition 5: If q = /3 then Vq1 (th) < oc

Proof. Suppose to the contrary that ti:(if)) = co. Now, let W = max(tb i , W21. Then,

for w E fal, we know that if V:(tb. ) = oc then u i (w) = u(y + x'), uo(w) u(xl,

and
– th

wi(w) wo(w) – 
w – 

(Q 
(3)

 
< w.

But the first-order necessary condition for w i (w) implies

V;(w i (w)) tir;(w) E1- +	 > V,;(w),q 

which implies w i (w) > w. This is a contradiction, hence 1	 < oo. q

Now we will show that for q = /3 the stochastic process of expected utility entitle-

ments converges to if; almost surely.

Proposition 6: Let q = S. Then {tut }	 a.s.

Proof. Suppose w 3 (w) = ti) for some In E (w,th). Since w, (w) is nondecreasing it

follows that w i (w) = W for in E [ti), ID]. Consider w E (w, W) If Tv ' (iv) E (w, w) then

the first-order conditions for w 1 (w) imply that

•

•

Vgl ( lli (0)

Hence w 1 (w) > w. If w 1 (w) = th then again w 1 (w) > in. Finally, we have already seen

that wi (w)>w. It follows that in a finite number of steps {eu t }	 th.

•
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Now suppose that w i (w) < ID for all w E (w ,w). Let to E (w ,w). Then wi (w) E

(w, tb) and the first-order condition for w i (w) yields

	

lij(w)(w)) = n(w)
	

(28)

Further, wo(w) < W. If wo(w) E (w, w) then the first-order condition for wo(w) yields

	

ve 	it(WO(W))	 q(1 — 71)

= Vj(w) 	

If wo(w) =w then we have

V: (wo(w)) � vd(w) 112

Therefore

li(wa(w)) %' (w)	 1 IL	 (29)

Combining (28) and (29) we have

(w)) + (1 — 7r)17:1 (wo(w)) V/1 (w)•

Hence 117,;(wi )} follows a sub-martingale which is bounded above since V9(w) < oo.

Hence {1f/7 (wt)} converges (a.s.), and it converges (a.s.) to (w). Therefore, {wt}

21, (a.s.). q

Thus, we have shown that when q fit , the limiting distribution of expected utilities

is degenerate at t-u- (see Figure 1). Therefore, in the limit each buyer receives a transfer

of x. in each state. We will therefore have 112 (q) = e > 14(q) for q = where the

inequality follows from (1) and (2).

•

•	
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Figure 1: q = (3

We will now analyze the stochastic process of expected utility entitlements for

1 > q > /3 and give conditions under which 1/2 (q) < 11 1 (q) for some q. This result,

together with continuity of 11 2 • will establish the existence of a q* E (13,1) such

that 112 (q*) = 11 1 (T'). The corresponding allocations are efficient and support the

stationary distribution with zero cast. The first step in this process is to establish

the following proposition.

Proposition 7: If q > 13 then 1.,;(11)) = oo.

Proof. The first derivative with respect to wo(w) from the minimization problem on

the right-hand side of the Hellman equation is as follows.

—q(I — r)V1 (.16) + \(I — 7)0 - ms,

which is less than zero if wo(w) =w, greater than zero if wo(w) = ti.), and equal to

zero if wo(w) E (w, w). We know that wo(W) = W. By continuity we have wo(w) >w
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•

for in in a neighborhood of W. Therefore,

AO 	 i3
17:(wo(w))	 q	 q(1 

P 
x),

with equality if wo(w) < W. Further, by the envelope condition

A = V;(W).

Hence,

n(lvo(w)) n(w)–.

If 11(.13) < oo, then setting 11.1 wo(w) = W, we have

n(th) � n(to-<v‘(th),
a contradiction. Therefore, VI (w) oo. q

From Proposition (7), and Propositions (3) and (4), we then know that there exists

some W < 7.D such that u1 (w) u(y+e) and uo(w) = u(x`) for w E [w, w]. Therefore,

for w E	 zid the Hellman equation becomes

179(w) = min {(1 – q)x* + qfrrIfq(wi(w)) + ( 1 --- 71-)1(q(wo(w))11

subject to

(1 fi) th + fiirwi (w) + ( 1 – 7r ) WO(W )] = w,

/3W 1 (w) /3wo(w).

Since Vq (• is convex, without loss of generality we can set w 1 (w) wo(w) w-(1-13*

and

Vq (w) = (1 – q)x* +	 (w – (1 – P)th
13

for w E [w, w]. It follows that, for w E	 16), w1 (w) = wo(w) – w (173)w < w. We

also know that w1 (w) >w. Further, if wo(w) =w then wo(w) < w for w >w. If

wo(w) >w then the first-order necessary condition for wo(w) implies

Vc:(wo(w))	 q	 q(1 –	 7r)	 17:(w) – < n(w),
q

•
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which implies that wo(w) < w by convexity.

Thus, the graphs of w / (w), wo(w), u i (w) and uo(w) versus w look as in Figure 2.

While the w i (w) curve need not intersect the 45° line uniquely in (w,W), there will

be a smallest value w' >w such that w i (w*) = ut. Since wo(w) < w for to E (w,10,

it follows that [w,w1 and {ifi} are the only ergodic sets. We will focus only on

stationary distributions which put zero probability on {O. It is obvious that there

exists a unique stationary distribution for {we}, and it exhibits mobility. When q > $,

there is a tendency for the expected utility of a given buyer to drift down over time,

since the planner is more patient than are buyers. However, the incentive structure

in the optimal allocation will tend to push up (down) the expected utility of buyers

with low(high) expected utility entitlements.

Figure 2: q = p

•
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Now it is straightforward, along the lines of Atkeson and Lucas (1995), 7 to show

that 1-12 (q) is a continuous function on WM (we omit the proof for brevity). What

remains is to show that, for some q E (9,1), 1-12 (q) < Hi (q). We consider two cases

below. Let i.= g(k 1 ) — kl where 91 (k 1 ) = 1. Case 1 obtains when we have x' <

Here, it is obvious that for q sufficiently close to unity we must have H2 (q) <1-11(4).

This is because H2 (q) < e and Hi (q) g(kg)— kg 'X as q 1. This is summarized

in the following proposition.

Proposition 8: If e < ± then there exists q E (0,1) such that H2 (q) < 111(q).

Proof. Obvious from the discussion above.

Now suppose we have case 2, where e > Define fh, 6, and as follows.

—= (1 —13)frru(y + + (1 — 7r)u(i))+ Ow,

7ru(y + co) + (1 — 7r)u(60) a ib,

73 = 	 ru`(y + ao) 
xus (y + co) + (1 — ir)u(ee).

Note that ti; E (w ,th) and 60 E (0,i).The former obtains because 0 < i < e and

ru(y) < ru(y + th) + (1 — ir)u(i) < ru(y + x) + (1 — r)u(x*) tn.

The latter can be seen as follows. Let

Me-0) = 7ru (Y + co) + (1 — 7r)u(co)-

Then,

h(0) = w <

h(±) ru(y + + (1 — x)n(i) > ta

r In particular, see Lemmas 10, 11, and 12, pp. 81-82 in Atkeson and Lucas (1995).

•

•
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•
Further, h(•) is strictly increasing. Hence, there exists a unique Co E (0,1) which

satisfies h(c0 ) =
We can now state a proposition giving conditions such that H2(q) < Hi (q) for some

q E (/3, 1) when case 2 obtains.

Proposition 9: Suppose x • > ± If 13 <	 then there exists q E (0,1) such that

H2 (q) < HI(q)

Proof. Fix w = iv. Combining the promise keeping constraint (25) with the incentive

compatibility constraint (26) at equality we have

w	 (1 – fl)frru(y + C(uo(w))) + (1 – 7r)u(C(uo(w)))) + Owo(w)

< (1 – 13)Itru(y + C(uo(w))) + (1 – 7r)u(C(uo(w)))) +

Hence	

•
tru(y + C(uo(w))) + (1 – 7r)u(C(uo(w))) 	 7ru(y + co) + (1 – 7r)u(co).

Therefore C(uo(w)) > co. Since the utility function u(•) is assumed to satisfy de-

creasing absolute risk aversion it is easy to verify that as a consequence we have

7rut (y + co)	 ru'(y + C(uo(w))) 
13 = 

itte(y + 'ea) + (1 – 7)uteo) 	 7rui (y + C(uo(w))) + (1 – zr)td(C(uo(w))).

Therefore,

W < truqy + C(uo(w))) + (1 – ir)uf(C(uo(w))).
irui(y + C(uo(w))) 	

(30)

Further,

w = (I – 11)17u(y + C(uo(w))) + (1 – 7r)u(C(uo(w)))] + Owo(w)

(1 – ,O)kru(y + C(uo(w))) + (1 – 7r)u(C(uo(w)))) + /3w.

It follows from the definition of ti; that C(uo(w)) < 1. Therefore, To = C(uo(w)) 1.

Further, since w 1 (w) > wo(w) we must have u 1 u(Y+C(uo(w)))• Hence, C(uo(w)) �
	 •
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y4-C(uo(w)) and T1 —y < C(uo(w)) < 1. It follows that total transfers associated

with w = W are no greater than ±. We will now show that for q sufficiently close to

unity we must have w1 (w) < W. This will guarantee that the ergodic set for the

stochastic process of {wt} will be contained in [IQ 'lb). Therefore, total transfers will

be less than the transfers associated with w . These transfers as shown above are

no greater than ± = g(k 1 ) — k 1 . It follows that 112 (q) < X for q sufficiently close to

unity. Hence, we will have the desired result that H2 (q) < IMO for some q E (fl, 1)

because 111 (q) 1 as q --■ 1. Now, to show that for q sufficiently close to unity we

must have w 1 (w) < W we proceed by contradiction. Suppose that there is e > 0 such

that wi (w) > W for q E (1— e, 1). Note that our assumptions imply that 0 < To < x'

and —y < T1 < e. The first obtains because 0 < 6 0 < C(uo(w)) < x < x" and

To = C(uo(w)). The second obtains because 74 (w) uo(w) = u(C(uo(w))) > u (60) >

0 which implies C(uo(w)) > 0 in turn implying 7-1 = C(uo(w)) — y < C(uo(w)) <

± < x*. Therefore, the pairwise resource constraints are not binding. Hence, the first

order conditions with respect to uo and u 1 together with the envelope condition can

be use to derive the following equation.

(1 — P)[irSC(ui ) + (1 — 77)Ci(u0)] 
17̀;(1\b	 (1 — q)[7r6 + 1 — 71-1

where

6 = C(LO(W))21(Y C(uo(w))).

Further, the first-order condition for u 1 combined with that for w 1 (w) yields

•

C(721 (0)
(1 — 13)07:(wi(w))

(1 — g)d3
(1 — ,13)q17,;(W)

—	 (1 — Oft

g[755C (22 1 (w)) + (1 — 7r)C(uo(w)))
fit7r6 + 1 — 711
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Dividing through by C'(u 1 ), substituting for b and rearranging we have

qin-til(y + C(uo(w))) + (1 – 7r)uf (C(u i (w)))) 
1

fifirur (y + C(uo(w))) + (1 – ir)if(C(uo(w))))
qrru'(y + C(uo(w))) 

fifiruqy + C(uo(w))) + (1 – 7r)te(C(uo(w))))•

However, by virtue of (30) the above can not hold for q sufficiently close to unity.

This contradiction establishes that for q sufficiently close to unity we must have

/D i (w) < tb. q

We can now state the following proposition.

Proposition 10: If either (i) x' < x or (ii)	 > ± and )3 < /3 then there exists

q* E (0, 1) such that H2 (q*) = .111(q*).

Proof. Obvious.

The allocation and the stationary distribution associated with q • are efficient and

consistent with zero total net transfers from the planner.8

6. DISCUSSION OF RESULTS AND ASSUMPTIONS

The stochastic law of motion for (w t ) (see Figure 2) has several of the features

associated with a credit system, in particular credit balances, credit limits, and vari-

able installments. We can interpret w • –w as a buyer's credit limit, w–w as credit

available, and w' – w as the current balance. If a buyer starts with to =w then he/she

has no credit available. If no income is received then payment cannot be made, con-

sumption is zero, and the buyer will continue to have no credit available. If the buyer

receives positive income then a payment is made, the remainder is consumed, and

8 The restriction on fi required in case (ii) of Proposition 9 appears aLso in other dynamic models of

insurance with private information. For example, the model of unemployment insurance in Atkeson

and Lucas (1995) contains a similar restriction (see page 81) to guarantee the existence of efficient

stationary allocations which support stationary distributions with zero transfers.

•
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in the following period the buyer will have w >w, that is the credit balance will

be smaller than the credit limit. If the buyer continues to receive positive income

then he/she continues to consume and to build up the credit balance until it reaches

w'—w. Then, if the buyer receives no income, consumption is positive but the credit

balance will be reduced. If the buyer continues to receive no income then hejshe will

eventually reach the credit limit with tu =w.

Note that the steady state distribution tb(w) will have the property that a positive

mass of buyers is concentrated on the lower bound on expected utility entitlements,

w. That is, in the steady state there is a positive mass of agents who are credit-

constrained. Now, suppose that we consider an alternative model with incomplete

markets, for example Aiyagari (1994), with a borrowing constraint. In that model, if

we had 741 (0) = co and a positive probability of obtaining a zero endowment in any

period, as is the case here, then no agents would be credit-constrained. Thus, our

private information model has some characteristics which are quite different from a

model where markets are arbitrarily shut down.

Capital accumulation was introduced in this model so as to make the interest rate

endogenous, which ultimately guarantees that q > p and assures that the limiting

distribution of expected utilities exhibits mobility. The implied interest rate is less

than the time preference rate, and hence there is capital overaccumulation relative

to the public information economy. Both of these features also obtain in incomplete

markets models with borrowing constraints.

We now discuss the assumption of a capacity constraint C at stores and the re-

strictions (1) and (2). The restriction that at most e units of the consumption good

can be shipped to each location is made for tractability. That is, if this constraint

were not in place, and any quantity of goods could be shipped to each location, then

the total output of goods available might be binding in the steady state, so that there

would not be a straightforward determination of the steady state capital stock, as in

•
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(17). The specific restrictions (1) and (2) guarantee that in any steady state q > /3

and that transfers are limited by the capacity constraint e and not by available

output. This permits a separation of the problem of choosing the capital stock from

that of choosing transfers. That the specific nature of these assumptions guarantees

q > p should not be worrisome because if no capacity constraint were imposed then

q < /3 can never be a steady state.

This is because whenever q < /3 the stationary distribution of expected utilities

becomes degenerate at the highest feasible value.' Hence total transfers equal the

highest feasible level of transfers which (in the absence of a capacity constraint) equal

total output, i.e. g(k). However, the associated cost is given by g(k)–(g(k)– k) = k >

0. Therefore, q < /3 can never be consistent with a steady state with zero cost. Thus,

the specific assumptions we made regarding the capacity constraint x' to guarantee

q > in a steady state do not taint our results concerning the nature of the stationary

distribution.

The second inequality in (1) can also be motivated by a consideration of the problem

under public information regarding endowments. It turns out that this inequality is a

necessary condition for the capacity constraint to be non-binding arid thereby permits

the obvious full insurance outcome. This can be seen as follows.

While many full insurance steady state distributions exist under public information,

we will focus on one where individuals have identical expected utility entitlements

denoted w*. The solution in this case is then given by q = /3, g i (k)	 e + k

g(k)+zry, zu s = u(c'), ro e, and r1 = C–y. Here, k is the steady state capital stock,

e is the constant level of consumption (i.e. there is full insurance), and ro and r 1 are

the transfers in the bad and good states respectively. To make sure that the capacity

9 We have shown that this applies for q = 0, but it can be shown that this is also the case for

q <O. Then Vq1(tb) < co and there exists /1; E (w, w) such that tti k (tv)-= w for w E 1/1),1/4. Therefore,

in a finite number of steps {we}
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•
constraint is not binding we need to have To = c* < e that is g(k) - k + try <

Therefore, a necessary condition is e > g(k) - , which is the second inequality in

(1).

Finally, it is worth noting that the upper bound on transfers implied by random

matching and the capacity constraint may or may not be binding in the steady state.

That is, q' and the corresponding steady state distribution te may be such that this

constraint does not bind. In terms of Figure 2, this would happen if the transfer in

the bad state when w = te happens to be less than x*. In such a case, the friction on

resource movement implied by random matching does not matter and the allocation

would continue to be efficient if all agents were assumed to be together at the central

location at all times. Such an allocation would be a natural benchmark against which

one could compare the steady state allocation with an arbitrary market structure and

•	 borrowing constraint studied in Aiyagari (1994).

7. SUMMARY AND CONCLUSION

Efficient steady state allocations in our random matching environment have features

which resemble observed credit arrangements. That is, consumers visit a sequence of

stores, receiving goods from the stores or transferring goods, with credit arrangements

governed by a centralized credit agency. The key features of the steady state allocation

can be interpreted in terms of a credit mechanism with credit balances, credit limits,

and installment payments.

A novelty in the paper is that we obtain a steady state distribution of expected

utility entitlements with mobility by modeling a capital accumulation economy with

an endogenous interest rate. This assures that the social planner is more patient

than consumers in the steady state. We do not impose any bounds on expected

utility entitlements to obtain this result, as is done in other work (Atkeson and Lucas

•	 1995, Phelan 1995). Indeed, ours is one of the first dynamic insurance economies
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with private information to include capital accumulation. If the friction on resource

movement implied by random matching turns out not to matter, then the efficient

steady state allocation in our model would be a natural and useful benchmark for

comparing steady state allocations with those obtained subject to an arbitrary market

structure and borrowing constraints as in Aiyagari (1994).

Future work will involve the introduction of monetary exchange into a similar

environment. To do this requires that a friction be introduced which makes the credit

mechanism imperfect, otherwise money will have no social role. A complication is

that there are then two state variables in the social planner's optimization problem

(the consumer's expected utility entitlement and her money balances) instead of one.

We intend to use this environment to study optimal monetary policy.

•

•
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