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Abstract

We study the asset pricing implications of a multi-agent endowment econ-
omy where agents can default on debt. We build on the environment studied
by Kocherlakota (1995) and Kehoe and Levine (1993). We present an equi-
librium concept for an economy with complete markets and with endogenous
solvency constraints. These solvency constraints prevent default, but at the
cost of reduced risk sharing. We show that versions of the classical welfare
theorems hold for this equilibrium definition. We characterize the pricing
kernel, and compare it to the one for economies without participation con-
straints: interest rates are lower and risk premia depend on the covariance
of the idiosyncratic and aggregate shocks.
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1. Introduction

Standard equilibrium asset pricing models have problems reproducing some of
the basic facts in the data.' A promising direction for improvement along this
dimension has been to maintain standard preferences and to allow for incomplete
risk sharing across agents. Generally, in this class of models, financial markets
are exogenously considered as incomplete. Compared to the representative agent
model, these models have the attractive feature that agents cannot eliminate all
idionsynchratic risk. For this reason, pricing kernels are generally more volatile
than those of representative agent economies with the same aggregate consump-
tion, which brings these models closer to the data. One drawback of studies
following this approach, when compared with complete markets economies, is
that they require more or less arbitrary assumptions about which set of securities
is available. Model conclusions may in turn crucially depend on these assump-
tions. Another possible problem is tractability. Because finding equilibria of
these models involves solving a complicated fixed point problem, it has been very
difficult to analyze the case of many assets or many agents. In this paper, we
study a class of models whose equilibrium, in general, entail limited risk sharing
but that do not have some of these potential drawbacks.

Our approach for limiting risk sharing builds on work by Kehoe and Levine
(1993) and Kocherlakota (1996). 2 These authors present and study efficient al-
locations in endowment economies where participation constraints ensure that
agents would at no time be better off reverting permanently to autarchy. We
show in our paper that these participation constraints can be modelled as portfo-
lio constraints. We imagine a world, where, if agents default on some debt, they
can be punished by seizing all the assets that they may own, but they cannot be
punished by garnishing their labor income. In such an environment, risk sharing
may be effectively reduced because agents with low income realizations can only
borrow up to the amount they are willing to pay back in the future.

A main contribution of this paper is the introduction of a new equilibrium
concept that emphasizes portfolio constraints: a competitive equilibrium with
solvency constraints. Specifically, we focus on constraints that are tight enough
to prevent default but allow as much risk sharing as possible. Except for the
constraints, our equilibrium is identical to a Radner equilibrium with complete
markets (i.e. a competitive equilibrium with a sequence of budget constraints).

'The shortcomings of standard model versions are widely documented in studies such as
Mehra and Prescott (1985), Cochrane and Hansen (1992).

2 Earlier work in the souvereign debt literature by Eaton and Gersovitz (1981) first formalized
the main idea of this approach.
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These endogenously determined solvency constraints are agent and state specific
and ensure that the participation constraints are fulfilled. This means that the
amount of wealth that agents can carry to any particular date and event will
never be small enough to make them choose to default and to revert to autarchy.
At the same time, these constraints allow as much risk sharing as possible.

We show versions of the classical first and second welfare theorems for our
equilibrium concept. Our decentralization differs from the one in Kehoe and
Levine (1993) where the participation constraints are modelled as direct restric-
tions on the consumption possibility sets. We think that our decentralization
relates more closely to the existing asset pricing literature that focuses on port-
folio restrictions such as the work by He and Modest (1995) and Luttmer (1996)
among others. Indeed, our decentralization provides a justification for such sol-
vency constraints. Additionally, with our definition of equilibrium we obtain a
simpler and a very intuitive representation of the prices of securities. In any event,
both our equilibrium notion and that of Kehoe and Levine axe closely related. We
show the circumstances under which the equilibrium allocations are identical and
the exact mapping between the two. This last point turns out to be important,
since some results are easier to prove in one framework than in the other,

We use the welfare theorems to find conditions for the time discount factors,
risk aversion, variance and persistence of endowments, under which autarchy
is the only feasible allocation. These properties are important for quantitative
predictions. Indeed, quantitative studies such as Mehra and Prescott (1984) and
Cochrane and Hansen (1992) have shown that the same parameters are important
for asset pricing results in representative agent models.

We present some properties of the pricing kernel. One-period contingent
claims (Arrow securities) are priced by the agent with the highest marginal rate
of substitution, which is the agent that is not constrained with respect to his
holding of this asset. Thus the price of a contingent claim (an Arrow security)
is equal to the highest marginal valuation across agents. Pricing of an arbitrary
asset is accomplished by adding up the prices of the corresponding contingent
claims (which, interestingly, does not need to coincide with the highest marginal
valuation of the security across agents). As we mentioned before, this framework
has two advantages for the purpose of asset pricing over the standard incomplete
markets specifications. First, allocations do not depend on a particular arbitrary
set of assets that is considered to be available. And second, with markets being
complete, any security can be priced. Finally, we compare two properties of asset
prices in an equilibrium with solvency constraints with the ones obtained in an
identical economy, but without the solvency constraints. The first result is that
interest rates are necessarily smaller in an economy with solvency constraints, in-
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dependently of the precautionary motive (third derivative of the utility function),
a feature emphasized in the literature. Second, we examine the following mea-
sure of the market price of risk: the excess return of a one-period security whose
payments are a function of aggregate endowment. We show that unless relative
endowment shocks are correlated with the aggregate shocks, this premium is the
same that the one in an economy without solvency constraints. Third, we show
as asset prices are determined by those agents with substantial individual risk to
share. In particular, the presence of agents whose endowment is very similar to
the aggregate endowment is irrelevant for asset pricing. Our companion paper
(Alvarez and Jermann (1998)) contains further characterizations and a detailed
analysis of quantitative properties.

The remainder of this paper is organized as follows. In section 2 we present
the model environment. Section 3 presents some characteristics of efficient al-
locations. In Section 4 we introduce the competitive equilibrium with solvency
constraints, show versions of the classical welfare theorems, relate the equilibrium
concept to the one by Kehoe and Levine and analyze the pricing kernel. Section
5 concludes.

2. The Environment

We consider a pure exchange economy with I agents. Agents' endowments fol-
low a finite state Markov process, agents' preferences are identical and given by
time-separable expected discounted utility. We add to this simple environment
participation constraints of the following form: the continuation utility implied
by any allocation should be at least as high as the one implied by autarchy at
any time and for any history.

Formally, we let {1,2, ..., J} = 1, be the set of agents, with typical element
i. We use {zt} to denote a Markov process with generic elements z, a mem-
ber of the finite set Z, and transition probabilities given by matrix H. We use

= (zo,z1,z2,...,zt) to denote a length t history of z. The matrix II generates
conditional probabilities for histories that we denote as r(zt izo = z). We use the
symbol for the partial order z e N z t for t' > t to indicate that z ti is a possible
continuation of zt , that is, that there exists a history z 3 such that / = (zt , 24) for
s 9 —t. We use the notation {q} and {q} for the stochastic process of consump-
tion and endowment of each agent, hence {q} = {c t,t (z t ) : V t > 0, 2 E Zt }. We
define aggregate endowment as e t (zt ) —

E 
e

We assume that individual endowLntsielareitzgi(vet. by a function	 that de-
pends only on zt , so that ei,t (z t )	 Et (4). We assume that Et (Z) > 0 for all i
and z. We also assume that aggregate endowment, defined as c (z) = LEI E. (z),
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is bounded for all z E Z.
The utility for an agent corresponding to the consumption process {c} starting

at time t at history zt is denoted by U(c)(zt) and is given by :

00

U(c)(zt) E E i3t,t+s (
zt+s--i) u (ct

+
s (zt+s)) 7r ( zt-Fs zt)	

(2.1)
s=0 zt+aezt+.

where u is the period utility and au+, is a time discount factor. This implies
that U 0 solves the recursion,

U(c)(zt) u (c (zt)) ± t,t-Fi (zt) 5 U (_ ,C) (zt, Zt+i) IT (Zt±iiZt) .
zt-H.EZ

	We assume that u :	 –+ R is strictly	 increasing, strictly concave and C 1 . The
multi-period time discount factor 3 t,t-l-s+1. is defined recursively using the one

	

period state contingent discount factor 	 /3 : Z	 (0,1). Specifically, iikt (zt-1)
1 for all zt 1 , 8t,t+i (zt) = Q (zt) for all 2, and for s > 1, /3t,t+s+1 Ze+8
[0,1] satisfies

13i,t+st1 (21 = fit,t+s (
zt+s-11 a I

1-• vzt-Es ) •

Note that the standard case with constant discount factor 13 (z) $ corresponds
to pt,t+, (zt+5-1 ) :Ss . As we will show below, letting the time discount factor
to be state contingent, allows us to introduce stochastic growth as a special case
within the same notational framework.

An allocation cil ia is resource feasible if

	

E cAt (it) = et 
(2t)
	

V t > 0, zt Zt ,	 (2.2)

and it satisfies the Participation Constraints if :

	

U(ct)(zt ) � (el)(zt )	 V t > 0, zt E zt	 (2.3)

Notice that U(ei)(zt) depends only on zt because ei,t (zt) is a function of zt.
Except for the state-contingent time discount factor our environment is a

special case of the one by Kehoe and Levine (1993). In particular, we consider
the case with one good and where the participation constraints have autarchy as
the outside option.
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2.1. Aggregate growth

Our specification of the time discount factor allows for aggregate growth to be
introduced in the same fashion as for the specification of the aggregate endowment
process in Mehra-Prescott (1985) and in much of the quantitative consumption
based asset pricing literature. We show how an economy with stochastic growth,
constant time discount factor and constant relative risk aversion can be expressed
as an economy with constant aggregate endowment and state contingent discount
factor, fitting the assumptions of the previous section.

Let

et+ 1	 , z t + i ) = et (zt) • A (zt+i)	 and	 (zt) = et (zt ) • ei ( zt ) for i E I

and define ei,t (z t )	 (zt) let (zt )	 ei(zt) for all i so that et (zt ) = 1 all zt.
Assume a constant time discount factor 0, then (2.1) satisfies

U (ci) (z t) = u (4,t (z t)) +Q E U (ci) (2 1 , zt+ i ) ir (ZE+ 1 IA) ,
it+IEZ

if additionally the period utility function is of the form u(c) for some
positive 7 (for simplicity assume that .7 0 1), defining 6;4 (zt) a c., ,t (zt ) /et (zt),
then U • satisfies

U (CO (z t)	 (al i t (zt))I-7 + (zt) E U (e.t) (zt, Zt+i) * (Zt±i
zt+1E2

with probabilities and discount factor

7r Viz) • A (zit-7
fr (zl iz) =	 1_ and 0 (z) -a-- 0 . E7r (z1z) • A (z')11.Ez, (elz) • A (z')

Clearly, resource feasibility and participation constraints are satisfied for an al-
location {ci }ici in an economy with aggregate growth A (•) and constant discount
factor 13 if an only if they are satisfied for the corresponding {Od ic, allocation
in the economy with constant aggregate endowment, discount factor 13. (•) and
probabilities fr. Moreover, the preference orderings are identical in the two corre-
sponding economies.

3. Constrained efficient allocations

An allocation {ci } is feasible if it is reasource feasible and satisfies the participa-
tion constraints. Constrained efficient allocations are feasible allocations that are
not Pareto dominated by other feasible allocation.
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Kocherlakota (1996) analyzes ef ficient allocations for a similar environment.
Relative to his environment, we consider the case with state specific time discount
factors , I > 2 agents and we allow for serially correlated shocks. Like in Kocher-
lakota (1996), efficient allocations may be characterized by risk sharing regimes
of three types, depending on the parametric environment: Pareto ef ficiency in the
usual unconstrained sense (full risk sharing), autarchy (no risk sharing) or limited
risk sharing. In section (4.12) of our paper we will extend his characterization
by showing under which conditions on the time discount factors, risk aversion,
variance and persistence of endowments, autarchy is the only feasible allocation.

Given our focus on asset pricing, we first show a property of the marginal rates
of substitution for efficient allocations that will be crucial for asset pricing. We
show that an unconstrained agent has the highest marginal rate of substitution—
and hence, all unconstrained agents equalize their marginal rates of substitution.

Proposition 3.1. Let {ci }.to be constrained efficient. If

U(c3 ) (1) > U(e3 ) (2) ,	 (3.1)

then

t
max

e (ci,t+i (zt , zt+1)) (zt±i izt)
r

0(z) U (ej,t+1 VI ;4-1)) 7 (zt-}1124) =	 13(z)td (co (zt ))	 idl	 u (ci,t (4)

4. Equilibrium, efficiency and asset prices

We define a competitive equilibrium with complete markets in Arrow securities
and with solvency constraints. The solvency constraints prohibit agents from
holding large amounts of contingent debt, hence preventing default. In general,
these solvency constraints will be state-contingent, since the value of default (re-
verting to autarchy) varies with the state. 3 We show the conditions under which

3 1n most of the quantitative asset pricing literature portfolio constraints are usually set
exogenously and not as a function of the environment, see for instance Heaton and Lucas (1996)
and Telmer (1993). Mang (1997) computes numerical examples of an equilibrium subjet to a
borrowing constraint chosen so that agents are better off than in autarchy. Our model differs
from Zhang's in that he exogenoulsy limits agents to trade only one-period riskless bonds and
that his borrowing constraint is neither time nor state dependent; additionally, there is no formal
analysis of the relationship between equilibrium and efficient allocations. On the theory side,
there is a substantial amount of work on how to model borrowing or solvency constraints in
the infinite horizon incomplete markets model such as Levine and Zame (1996), Hernandez and
Santos (1994), Santos and Woodford (1997) and Magill and Quinzii (1994). This work addresses
a different question, namely what is the natural way to extend no Ponzi-game conditions to the
incomplete market case.
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efficient allocations can be decentralized as a competitive equilibrium with sol-
vency constraints, and we show the conditions under which the first welfare the-
orem holds. We then use these results to characterize the extent of risk sharing,
and analyze some properties of the asset pricing kernel.

4.1. Definition of competitive equilibrium with solvency constraints

Let qt (2,2) denote the period t, state 1, price of one unit of the consumption
good delivered at t + 1, contingent on the realization of zt + 1 = zl , in terms of
period t consumption goods. The holdings of agent i at t of this security are

aidenote	 z'), and the lower limit on the holdings of agent i is denotedd by 
by B,,t+I (e,	 Following our notational convention, we use {q} , {a.i } and {B,}
for the corresponding stochastic process..

Definition 4.1. An equilibrium with Solvency Constraints {B 1 } for initial con-
ditions {ai,o} has quantities {c„ at ) and prices {q} such that for each i,

a. {c,, at } solves

J, ,t (a,	 =	 max	 u(c)+ 0(z)
ctfaz,h,ez	

E	 (zt , 2)) Tr (214) }4.1)
z,

eiit (2) + a = E azait (2,2) + c	 (4.2)
z'ez

Bi,t+i (2,2) all z'E Z,	 (4.3)

b.

E ci,t (2) = et (zt) , all t, all ze
'El

Eat,t+I (e, e) = 0, all t, all e, all
‘er

Notice that in problem (4.1) agents do never contemplate the option of default.
Since the problem in (4.1) - (4.3) has a concave objective function and a convex
feasible set the Euler and Transversality are sufficient to characterize the solution:

(zt)) qt (zt ,	 ÷ ,13(z)r (i	 kfclz) u'	 (4.4)t,t÷i (e,e)) �. 0

with equality if a, ,t+ i >	 , 2) and,

(zt-i)	
(ci,t 

(zt)) • Eau (zt) – Bo (zt)] • 7T. (ztizo)lim E 00,,	 = 0. (4.5)
ztEz,
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Now we move to the analysis of the decision of default. We are interested in'
the following type of equilibrium with solvency constraints :

Definition 4.2. An equilibrium with Solvency constraints that are not too tight
is such that the solvency constraints satisfy

(Bi,t
(2+1) , it+i) u (ei) (it+i)

+1	 (4.6)

for all t = 0,1, ... and for all Zt+1 E P+1.

This condition ensures that solvency constraints prevent default by prohibiting
agents from accumulating more contingent debt that they are willing to pay back.
At the same time it allows agents as much insurance as possible. If the constraint
binds and the continuation utility is strictly higher than the value of autarchy,
the constraint could be relaxed a bit, without inducing the agent to default. Thus
this conditions implies that

U (ci) (zt)	 U (ei) (zt) and •	 (4.7)

U (ci) (zt)	 U (ei) (it) 44, ai,t (1) Bi,t (it)

Finally, we introduce the concept of high implied interest rates. This condition
ensures finiteness of the value of endowment implied by a given allocation. Given
an allocation {4} , for i = 1, 2..., /, we define

zil (ci*A-1-1 (2t 7 21)
q;(xt , 2) a max )3(z)  \	 (21z)} ,	 (4.8)- mal

 it' (ctt (zt))

and
(21z0) = Czo,zi) • qi (zo,zi,z2) • • 4-1	 zt)

	
(4.9)

Note, Q16 (xi 1z°) as the price of one unit of consumption delivered in state 2 in
units of consumption of t = 0.

Definition 4.3. The implied interest rates for the allocation {en are high if

E E Qo (zt izo) (Scat (zt)) < +c o	 (4.10)
t>0 ztcr
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4.2. Decentralizing optimal allocations: Second welfare theorem

In this section we characterize the allocations that can be supported as com-
petitive equilibria with solvency constraints. In particular, we decentralize con-
strained efficient allocations, i. e., we state a version of the second welfare theorem.

Proposition 4.4. Given any allocation Ica that satisfies : (a) resource feasibil-
ity at any time and event, (b) the participation constraints 2.3 for each agent at
each time and event, (c) if the participation constraint of an agent does not bind
then this agent has the higher marginal rate of substitution, i.e., for all t > 0 and
zt E Zt ,	 Z, then if for agent i

U (c;) (2,	 > U (e,) (2, 2)

P(z)
fli (CZ

Zc(

1
t (

(Zt

zt,) 

2

) 

1) 7 (ilzt) = max 0(z)
if (C;,t+1

t (zt))
Z / Z))  

7 (z/zt)}
u'	 'Et	 u' (c*

and, (d) the allocation has high implied interest rates, there exists (i) a process
{B}, initial wealth a; ,0 and an asset holding process {a;} such that the plan
{a:, c; } is a competitive equilibrium for the solvency constraints {Bo} and the
initial wealth a,,o. Moreover, (ii) the process for the solvency constraint {.8,} can
be chosen so that the solvency constraints for all agents satisfy 4.6 (are not too
tight).

As a corollary of the previous proposition we get the second welfare theorem,
since efficient allocations satisfy properties (a), (b) and (c) of proposition (4.4).

Corollary 4.5. Any constrained efficient allocation that has high implied inter-
est rates can be decentralized as a competitive equilibrium with solvency con-
straints where the constraints are not too tight.

The connection between equilibrium allocations and efficient allocations is
clear. In the equilibrium, solvency constraints that are not too tight take the
place of the participation constraints of the efficient allocations. In equilibrium
allocations, an agent whose solvency constraint is not binding has the highest
marginal rate of substitution. In efficient allocations, an agent whose participation
constraint does not bind has the highest marginal rate of substitution. Later we
will show that for any constrained optimal allocation where there is some risk
sharing the implied interest rates are high.

We finally establish that autarchy can always be decentralized as an equilib-
rium with solvency constraints that are not too tight.
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Proposition 4.6. The following

ca,i,t (zt )	 (zt) ,	 na,2,t+1 (zt ,	 Ba,i,t (zt) = 0,

(zt ,	 )) vizi)qa,t (.zt , zt) a max 15(z)	 (4.11)
/	 tEI	 ui (ei,t (zt))

for all t > 0, zt E Zt, z E Z and the initial conditions ai,o = 0, i E I is an
equilibrium with solvency constraint that are not too tight.

Notice that even though autarchy allocations can always be decentralized,
in general, these are not constrained efficient allocations. Also notice that the
implied interest rate in autarchy can be low, so that (4.10) may be violated.

4.3. 1st Welfare theorem

In this section we show the connection between the Kehoe-Levine (henceforth
K-L) decentralization and an equilibrium with solvency constraints that are not
too tight. First, we show that the implied Arrow prices in the K-L decentral-
ization are equal to the highest marginal rate of substitution across agents, as
in our equilibrium with solvency constraints that are not too tight. Second, we
show that under weak conditions, the allocation of an equilibrium with solvency
constraints corresponds to the allocations of a K-L equilibrium. An immediate
consequence of these results is that we can use the first welfare theorem shown
by K-L. And thus, we obtain a (qualified) version of the first welfare theorem for
our equilibrium concept. That is, allocations corresponding to an equilibrium for
solvency constraints that satisfy 4.6 (solvency constraints not too tight) and 4.10
(that have high implied interest rates) are constrained efficient.

Let us start setting up some notation. The problem for agent i in the K-L
decentralization is

max U (ci) (zo)
	

(4.12)

	

s 1-	 Po (ci — ei) S ni,o
	 (4.13)

	

U (ci) (zt)	 U (ei) (zt) for all t > 0 and zt E Zt
	

(4.14)

where po is a non-negative linear function. Thus, with the inequalities in (4.14)
defining the consumption possibility set, an equilibrium is a standard Arrow-
Debreu equilibrium, henceforth A-D .
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Given po, the dot product representation of the A-D prices is defined as follows.
For any t and z t E Zt define

Qo (zt I zo) a Po ®

where a, (z') = 0 if s t and z' zt and otherwise at (zt) = 1.

Definition 4.7. The A-D prices are said to have a dot product representation if

po (c) E E Ct (z`)Qo (ze izo) •
t>0 zi

With this notation we can write the budget constraint of agent i as

E E (c,,t (zt) — et,t (zt)) Qo (ztlzo)
t>0 ztEZt

The corresponding Arrow prices are defined as

,	
t	 Qo (zt , zilzo) 

qo t	, Z —
Q0 (ztlzo)

Compared to our equilibrium concept the K-L equilibrium differs along two
dimensions. First, they include the participation constraints in the consumption
possibility sets, as opposed to our limits on borrowing (solvency constraints). Our
approach makes the form of the pricing kernel immediate and allows us to relate
directly to the literature on empirical asset pricing with solvency constraints such
as the results of Luttmer (1996) and He and Modest (1995). Second, in the K-L
decentralization agents are not given the option to default and walk way from
their debts. That is, lifetime utility of consumption plans is limited within a
lifetime budget constraint. Our equilibria with solvency constraints that axe not
too tight allow agents to default and break their budget constraint. Although
agents have this option to default, they will prefer no to do so. We find this
interpretation of the solvency constraint as enforcing individual rationality an
attractive feature of our equilibrium concept.

The next proposition characterizes the Arrow prices in a K-L equilibrium.

Proposition 9.8. Let {q},  = 1,...,I, and {Qo} be the allocations and A-D
prices corresponding to a K-L equilibrium. Let qo be the corresponding Arrow
prices. Then

qo,t (z t ,	 = max {13(z)  
(c, t+1 (ze , .e))  7, vizt)} , (4.15)(c, ,t (zt))
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and if

	

U (ci) (zt,	 > U (ei )	 ,

then
(c-z t	 (zt z'

	

qo,t (zt , e) = /3(z)	 ' 	 " 1r	 Izt)ut	(zt)) 

ll

Now we show that for any equilibrium with solvency constraints, if the implied
interest rate are high and the constraints are not too tight, then the implied A-D
prices and consumption allocations constitute a K-L equilibrium.

Proposition 4.9. Let {q, c ad be an equilibrium given the solvency constraints
{Bi} and the initial wealth aio. Assume that the A-D prices {Q) implied by
{q} satisfy 4.10 (that the implied interest rates are high) and that the solvency
constraints satisfy 4.6 (i.e. they are not too tight). Additionally, assume that for
each i E I there is a constant such that for all t, it,

l u (ci,t (Zt))I � et lu (ct,t (zt)) c ,t (zt) •	 (4.16)

Then the consumption allocations {c.,} and the A-D prices {Qt } constitute a K-L
equilibrium.

Remark 1. The condition (4.16) is a joint requirement on the consumption al-
location and the utility functions. It is satisfied automatically in several relevant
cases. For instance, it holds for agent i if (a) u 0 has relative risk aversion dif-
ferent from one at zero consumption, i.e.:

c u" (c) 

	

lim, ,	 1

	

c—■0	 kc)

which can be verified by repeated application of L 'Thpital's rule, or (b) (0) <
-1-co , or (c) if consumption for agent i is uniformly bounded away from zero.

We obtain the first welfare theorem as a corollary of the previous proposition.

Corollary 4.10. Since a K-L equilibrium is a standard Arrow-Debreu equilib-
rium, its consumption allocation is efficient. Then by proposition (4.9) under the
assumption of equation (4.16), an equilibrium with solvency constraints that are
not too tight (i.e. they satisfy (4.6)) and with implied high interest rates (i.e.
they satisfy 4.10) is efficient.
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4.4. Solvency constraints and the extent of risk sharing

In this section we use the equivalence between a K-L equilibrium, equilibrium
with solvency constraints that are not too tight and optimal allocations to address
three issues. The first is to characterize the circumstances under which autarchy
is the only feasible allocation. The second is to show that if an optimal allocation
is different from autarchy, then it has high implied interest rates. The third is to
show that solvency constraints are negative.

Proposition 4.11. Consider the autarchy allocation, i.e., the one where the
consumption process {c.} is equal to the endowment process {64 for all i. If the
implied interest rates for this allocation are high (i.e. satisfy 4.10) then autarchy
is a constrained efficient allocation, and hence is the only feasible allocation.

In the next proposition we give sufficient conditions so that autarchy is the
only feasible allocation. For this proposition let

II (6) ei I + (1 — b) 11
where 6 indexes the persistence of II (6) .
Proposition 9.12. Autarchy is the only feasible allocation in either of the four
cases: (i) the time discount factor is sufficiently small (i.e. max $(z) j 0), (ii) risk
aversion is sufficiently small uniformly, (iii) the variance of the idiosyncratic shock
is sufficiently close to zero ( let(i) — et (z)1 0,) and (iv) the transition
probability matrix is sufficiently close to identity, (i.e. 6 j 1).

The previous proposition has clear implications for asset pricing. In particu-
lar, it suggests the type of parameter values needed so that idiosyncratic shocks
generate high and volatile pricing kernels. These are the properties found in many
empirical studies, such as Hansen and Cochrane (1992).

Next we show that for any constrained efficient allocation where some risk
sharing is possible, the implied interest rates are high. This result complements
our statement of the second welfare theorem, that uses as an assumption that
the implied interest rates are high. These two results imply that efficient alloca-
tion with some risk sharing can be decentralized as an equilibrium with solvency
constraints that are not too tight.

Proposition 4.13. Let {c.,} be a constrained efficient allocation. Assume that
some risk sharing is possible, so that for each t, 2 2 , there is z' E Z such that one
of the agent j E I :

U (c3 ) (ze , z) > U (e3 ) (zt ,	 .	 (4.17)

Then 4.10 is satisfied (i.e. the implied interest rates are high ).
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We end this section by showing that the solvency constraints are negative.
Indeed, in the definition of an equilibrium with solvency constraints there is no
requirement that the constraints are negative.4 We show that, for the cases of
high interest rates, solvency constraints are effectively constraints on contingent
borrowing i.e. they satisfy Bi,t+i < 0.

Proposition 4.14. If {q*,c:, J, ,B,* ,} , a:,0 is an equilibrium with solvency
constraints that are not too tight, where the implied interest rates are high,
then there is an equilibrium with solvency constraints that are not too tight with
{q*, 4, a:, Ji ,	 4,0 } 4,0 where -kt-fri (zt , z') < 0, with strict inequality if U(cn(zt)

U(ei)(zt) and 3zs	zt cts (zs) e„s(zs).

4.5. Properties of asset returns in economies with solvency constraints

In this section we analyze some properties of the pricing kernels in economies
with solvency constraints. We start by describing the pricing of securities that
are more complex than Arrow securities. We then compare pricing implications
in economies with and without participation constraints by considering marginal
valuations, interest rates and risk premia. Finally we present a simple irrelevance
result.

4.5.1. Pricing complex securities

Instead of allowing agents to trade only Arrow securities (one-period contingent
claims) we want to let them trade any security, particularly multiperiod securities
such as stocks and bonds. A straightforward extension of our framework allows us
to do this. It turns out that the pricing of any security (under certain conditions
stated below) can be obtained by pricing the corresponding portfolio of Arrow
securities

We assume that at time t the set of securities that could have possibly been
bought (or sold) at dates and states priors to t, z t is given by Kt (zt). These secu-
rities have prices qk,t and may pay dividends dk,t at multiple dates. Analogously
the set {Kt+ 3. (zt, : z' E z} contains the set of securities that can be bought
(or sold) at time and state t, zt . In this case, agents face the following sequence
of budget constraints for all t = 0,1, ...and for all z t E Zt:

ai,t+1.,k'(/)qt,k, (1) + ci,t(2)
Ext+,(zt,i)

4 A positive B.,t+i means that agent i has to save a minimum amount.
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5_	 E ai,t,k(zt-1 ) kt,k(2) dt,k (Zt )1 	et,t(Zt ) •
kEKt(zt)

To have the same budget set as in the case with Arrow securities we need
two conditions: first, that this set of securities be rich enough so that markets
are dynamically complete, and second, that the portfolio choice be restricted
so that the value of an agent's portfolio be high enough in the different states.
Specifically, for each period, a set of solvency constraints that limits the minimum
value of next period's portfolio for each state is defined as :

[qt+1,,,	ZI) d2+1,W (211 zt)]	 (21 z) > Bi tt+1( 21 , Zi)
ecxt+i (zt,z1)

for all t = 0,1, ... and for all z t E Zt . Clearly, every security is just a portfolio
contingent claims and can be valued as such.

4.5.2. Prices and marginal valuations

Given the frictions introduced by solvency constraints, we find that the prices of
securities with non-negative payoffs are generally higher than any of the agents'
valuation. Superficially, this result may seem to imply an arbitrage opportunity,
in the sense that the prices are too high for everyone, but recall that agents can
short sell only limited amounts of securities.5

Assume that le is a security available at time t , i.e. k' E Kt.4.1 (zt ,e) and
that

dine (211 > 0 for all s > 0.

Let us denote the price of this security for the equilibrium with solvency con-
straints by (kw and the marginal valuation of agent i by MV,,t,k, where the
marginal valuation is defined as

(ci,t+s (zt , zs)) 7 (73170

	

MV.,t,te (2) E > Ot ,t+s (21±8-1 ) dt+s,le (Zt , Zs) 	 a' (ci,t (zt ))s>oz•Ez•

This quantity measures the marginal change in utility, in terms of time t consumption,
produced by an increase in the ith agent's consumption that is proportional to the
dividends of security le at each future date. When agents are never constrained,
or equivalently for the case of perfect insurance, we have that for all i,

qt,k, (zt) =	 (2).

In our environment we have the following result:

s We thank George Constantinides for hihglighting this point.
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Lemma 4.15. In an equilibrium with solvency constraints, when there is only
limited risk sharing, then

qt,le (zt) � max MVi,t,le (zt)iEI
for all agents i, securities k', time periods t = 0,1, .., and states z t E Zt . With
strict inequality for an agent i if he is constrained at least once between t and
t+s.

Notice that since we assume that the dividends are non-negative, increasing
the holding of security k' can never lead to default in the future if the original plan
did not already contemplate default. One may therefore be tempted to conclude
that in equilibrium qt ,k, (zt) = maxicr M3/4,t,19 (Zt) . The misleading part of this
conjecture is that this equality holds only for Arrow securities and not for general
securities. The latter may pay in different states, but the pricing kernel is defined
by the max across agents of the marginal rate of substitution, state by state.
That is, the agent whose marginal rate of substitution is equal to the price of the
Arrow security in a given state may not price the Arrow security in a different
state.

4.5.3. Interest rates and security prices

For several relevant cases, we can show that interest rates are smaller in economies
with solvency constraints than in corresponding economies without such con-
straints. Moreover, as opposed to the findings in some applications of incomplete
markets economies, this effect does not rely on the precautionary savings motive
(convexity of the marginal utility).

Proposition 4.16. Arrow prices in an economy with solvency constraints are
higher than in an otherwise identical economy without solvency constraints in
either one of the following three cases : (1) Et et (z) = 1, all z, i.e., constant
aggregate endowment, (ii) u () has constant relative risk aversion, or (iii) ILO is
quadratic.

We remind the reader that since the proposition holds for the case with con-
stant relative risk aversion, using the mapping described in (2.1), it will also hold
for the case with aggregate growth.

For the cases described in Proposition (4.16), the price of a one-period bond
is higher in an economy with solvency constraints than in an otherwise identical
economy without these constraints. It is strictly so, if one agent at least is con-
strained in each period. Regardless of this, the unconditional mean of the risk
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free rate is strictly lower in the solvency constraints economy. By the same logic
as in the proposition, in these cases, any security with non-negative payouts will
have a weakly higher price in the solvency constraints economy compared to the
corresponding representative agent one.

4.5.4. The premium for aggregate risk with idiosyncratic shocks

A major issue for any "heterogenous-agent" model of asset pricing is the mecha-
nism through which idiosyncratic shocks can generate a risk premium for claims
contingent on the aggregate shock, that is, the market risk premium. In this
section we consider the endowment specification with aggregate growth, constant
relative risk aversion and constant discount factor described in section (2.1). We
derive sufficient conditions under which the economy with idiosyncratic shocks
generates a risk premium on a one-period risky strip identical to the representa-
tive agent economy.

We specialize the endowment process so that A 0 and, c = {e, O}.E/
are statistically independent and A(-) is i.i.d. Assume that z can be written as
z (x, y) E Z = X x Y and that A and e are functions of y and x, specifically:
A : Y R and 6 : X —. , the I — th dimensional simplex.

Definition 4.17. We say that the aggregate shock is i.i.d. and independent of
the idiosyncratic shock if there exists a probability distribution 0 and a stochastic
matrix tp such that

7r (11z)	 ((xi, V) I (x, y)) = 0 (V) • tb (xix)

for all z, z'. .
We consider the risk premium for one-period risky strips. A strip, is a security

that pays a random dividend dt+i only at one period. We consider a one-period
strip whose payout is function only of the aggregate output, yt+i , and hence whose
price equals Ez, ,,, qt (zt+ I )dt + 1 (Ye+1)- Equation (4.18) defines the premium as the
expected strip return divided by the risk free rate,

[	
t+1d (Yt+i)7 (zt+i Izt)	 1,.,+

E.,+ , qt(zt	
i

+1 )dt+i(Yt+i) i {Er,+ , qt (zt+ 1)]
E  

where [1/ Ezt+ , qt (zt+1 )] is the risk free rate. This is sometimes called the "mul-
tiplicative excess return of the one-period risky strip". We choose this premium
as opposed to the equity premium for its tractability. Indeed, the equity premium
is a weighted sum of the entire infinite sequence of strips, one for each period.

(4.18)
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Proposition 4.18. If endowments and preferences are specified as in section 2.1
and if the aggregate shock is i.i.d. and independent of the idiosyncratic shock, then
the multiplicative premium on a one-period risky strip with payout contingent on
the aggregate output is the same in an economy with and without participation
constraints.

This proposition shows that dependence of the cross sectional distribution
of earnings on the aggregate is required to obtain interesting results for excess
returns.6 This result complements similar results by Mankiw (1986) and Con-
stantinides and Duffie (1996) that were obtained in environments with exogenous
asset market incompleteness.

4.5.5. Irrelevance of the average agent

The next result is important for thinking about quantitative implementation of
this equilibrium concept. Consider first an equilibrium with solvency that are not
too tight and add one agent to that economy. If the marginal rates of substitution
under autarchy of this agent is smaller than the equilibrium prices, then there is
an equilibrium for the expanded economy with the same prices. Additionally, the
extra agent will be constrained all the time.

Proposition 4.19. Let the processes {q, ,and the initial conditions
40 for i = 1, 2, I be an equilibrium with solvency constraints that are not too
tight. Add to the previous economy one agent with endowment process {er+l } •
Assume that for all zt and .4+1

(er+i,t+i (zt 7 zt-i-1)) 0(z)	 7r ( zt+li zt)	 (zt ,zt+i) •	 (4.19)ni (er+i,t (zt))

Then {c: , a: ,q* ,I37} , for i = 1,2, ..., I + 1 and the initial condition 40 for i =
1,2,...,1 + 1 is an equilibrium with solvency constraints that are not too tight
where {4±1 } {er+i} , {a7±1 } = 1131 and {13 11±1 } = 101 and initial condition
a7+10 = O.

The example in the next remark says that adding an extra agent whose en-
dowment is perfectly correlated with aggregate endowment will have no effect on
equilibrium prices.

6 This result requires not only independence of the aggregate and idiosynchratic shocks, but
also that the aggregate growth rates axe i.i.d. Given that aggregate consumption has a very
small forecastable component, this last assumption imposes a very mild restriction.
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Remark 2. Let a > 0 be a constant and e (zt) = a • et (zt ) for all t and zt
where et is the aggregate endowment for the economy with I agents. Assume that
u (•) has constant relative risk aversion. Then, by using proposition (4.16) one
obtains immediately that assumption (4.19) holds.

Agent I + 1 has no reason to participate in future insurance arrangements
with the I agents, and thus he will default if he acquires any debt. By continuity,
agents with individual endowment processes that are very similar to the aggregate
endowment are not important for the determination of asset prices. Instead, only
the agents with substantial idiosyncratic risk are key to determining asset prices.

5. Conclusions

We have presented a framework for analyzing asset prices where endogenous sol-
vency constraints may end up limiting risk sharing. We have proposed a concept
of a market equilibrium with explicit endogenous portfolio constraints. We de-
rived the classical first and second welfare theorems and studied the pricing kernel
that emerges in this setup. We derive some general properties of asset prices, for
example we show that interest rates in the environment with solvency constraints
are lower than in the corresponding representative agent economy, without the
need for precautionary saving.

We view this paper as a first step in exploring asset pricing relationships in
an economy where the possibility of default limits risk sharing. In a companion
paper (Alvarez and Jermann (1998)) we have started examining the quantitative
side more in depth. Given the characterization of the equilibrium allocations
of this paper we are able to design simple and fast algorithms for computing
efficient allocations. Applying these allows us to address several quantitative
issues. We are interested in the first moments such as the mean risk free rate and
the equity premium that have attracted so much attention in the recent literature
on equilibrium asset pricing. We are also interested in the business cycle behavior
of excess returns and the term structure that have been documented empirically.
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Appendix

Proof. Proposition (3.1)
The proof is based on a simple variational argument, so we only sketch it

here. Let i j be the agent with the highest marginal rate of substitution. One
can increase current consumption and decrease future consumption of agent j in
state zt+i so as to keep U (ci) (zt)constant. This is feasible since there is slack in
(3.1). By decreasing current consumption and increasing future consumption of
agent i in state z t.44while keeping material balance, U (q) (zt) increases since i's
marginal rate of substitution is the higher of the two, which is in contradiction
to constrained efficiency. ■
Proof. Proposition (4.4)

The proof is by construction. Given the allocation, use 4.8 and 4.9 to define
prices. Since by assumption the implied interest rates are high, we use the budget
constraint (4.2) to construct asset holdings at each time and event so that {c:} is
budget feasible. When an agent's marginal rate of substitution is not the highest
one, let the solvency constraint equal the holding of the corresponding Arrow
security. When an agent's marginal rate of substitution is the highest, we will
define, as an intermediate step, solvency constraints {Bn such that

(zt ,	 = — E Q5 (zs (zt+1 )	 (z8),
za z4 +1

we will redefine the solvency constraints later. The sufficient Euler and Transver-
sality conditions for individual maximization can now be checked. The Euler
conditions (4.4) follows from the definition of the Arrow prices (4.8) and the
assumption that the unconstrained agent has the highest marginal rate of substi-
tution. Now we can check the transversality condition :

ihn
o 

z	

pox (zT-1) 
it' 

(ct,,77 (zT))

 {a'T 

(zT)	 (z1} (zTizo)
71--foTEZT

< lim L 00,7 0,7 (zT-1) ut (<2, (zT)) E Q; (zs izT) ers (zs) 7 (zT izo)

71-4° zr EZT	 zsyzT J

C lim
4co-T

E 00,T (zT— ')u' kg, V)) E 
Q8

(zs izT) es (9) 7r (zTlzo)
zTezr	 zs>-,

< 11 (Ci 3O (20)) BM E Q* (zr Izo) E Q: (zs IzT) es (9) = 0T --* co
zr EZT	 zs y zT

where the first inequality follows since by construction atT (zT) — 13 ix (zT) = 0
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if the participation constraint binds or equal to EzsyrT Q; (91zT) cZ, (f) > 0
otherwise, the second because cZ, (9) < e, (9) since the allocation is feasible,
the third follows from the definition of QA's in terms of product of the qt and
the relationship of the qr s with the marginal rate of substitution, and the final
equality from the assumption that the implied interest rates are high.

Using the prices and solvency constraints we construct the function .1, 4 , which
is attained by {c1;} . Finally we use to redefine the values of the solvency
constraints for the cases where an agent has the highest MRS, that is, when the
constraints do not bind. In particular, we define the solvency constraints {Br} as
so that they solve

(B:,t+i (zt ,	
(zt, 1)) = U (ei) (zt

which has a solution since the At •, 9) are strictly decreasing. Clearly {c:} and
{a;} still solve the problem (4.1) for the same prices and solvency constraints
{137 , since the feasible set is smaller, but the original plan is still feasible. ■
Proof. Proposition (4.6)

It is immediate to verify that {e,,,,aa,t,qa,B,,,} satisfy the sufficient condi-
tions (4.4) and(4.5), resource feasibility and market clearing. Moreover {B

i	
{Ba,i} are

not too tight, since trivially J ,t	 (zt) , zt) =	 (1) 
21) = U (ei) (zt) for

all t, . •
Proof. Proposition (4.8)

It follows from the following variational argument around the consumption
allocation in a K-L equilibrium. For an arbitrary date ("the current date") allow
consumption to decrease at the current date and to increase in the next at a
particular state, so as to keep the same expenditure at the K-L prices. Chose the
values of current and future consumption to maximize utility. Notice that the
participation constraints at the future date will be satisfied since consumption can
only increase in the future. Also, the participation constraints at the current date
will be satisfied (at the maximum), since current continuation utility cannot de-
crease, given that no deviation is feasible for the modified problem. This problem
has a strictly concave differentiable objective function and linear constraints, so
the Kuhn-Tucker conditions are necessary. The result follows immediately from
the Kuhn-Tucker conditions. ■
Proof. Proposition (4.9)

In an equilibrium, for given solvency constraints, the consumption allocation is
feasible. If the solvency constraints are not too tight, the consumption allocations
satisfy the participation constraints for each agent at all times and states. It only
remains to be shown that given the A-D prices implied by {q} the consumption
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allocation maximizes utility subject to budget and participation constraints. It
will suffice to find non-negative shadow values (multipliers) associated with the
budget constraints and participation constraints and verify that they are a saddle.
The following algorithm defines these multipliers as a function of the consumption
allocation, Arrow prices and participation constraints. The multiplier on the A-D
budget constraint (4.13) is set to

(zo)) Ci	 '°	 —	 (ci,o (zo)) -(2 (zeizo)
The multiplier for the participation constraints (4.14) at time t = 0 is ni,c, (zo) =

. The multipliers for the participation constraints (4.14) for all t > 0 and 2 E Zt
are defined recursively by

	

00,t (zt-1) u' (CU (if)) [1 + E nt,r (Zni IT (2t 1Z0 =	 (zt lzo) .	 (5.1)
zr-<zt

Finally, one verifies that these multipliers together with the consumption allo-
cation are indeed a saddle. This is accomplished by verifying the first order
conditions for a saddle. The fact that Arrow prices are defined as in (4.15) is
used to show that the multipliers are non-negative.

We define the Lagrangian as follows :

L	 {m})	 (5.2)

U (T.,)(z0)+zi Ho + E Q (zt lzo)	 (zt) —	 (it))1	 (5.3)

+ E so,, (21	 (zt) {U Cad (2) — U((ei) (zt)] (zt I z
zttro

for any non-negative consumption plan {Z i} and non-negative multipliers Z".„ 	 .
First, by construction of the multiplier, it is straightforward to see that

Si {77,} minimizes L (foi l ,-). Second, we turn to establish that {ei } maximizes
L (•, (i . In order to do so we interchange the order of summations, so as a
technical requirement, we first check that each of the terms of the sum

E	 tficy (21 ni,t (2) u (ei) (zt) 71. (2120) and > SCI,(2-1) 	
(zt) 

(ci) (2)7, (ztizo)
zttzt,	 zt)-zo

converges to the same finite limit.

•
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.

Using the definitions of U (c i) (2), using (5.1) for the multipliers {m} , col-
lecting terms on u (c, ,t (z t)) and using the assumption (4.16), one obtains

U (c ) (20 ) + E > fio,r (2-I ) 77, 4 (zt) U(;) (zt )ir (21x0)
. ztczt 

E E	 (zt-1) u (co (2)) {i , E7hy (e )] 7r (2t1zo

t>0.z i EZ I 	 rr<st

e, • u' (ci,o(zon . E E Q (z` l zo)	 (2)
0.o.ect,

which is finite by the assumption that the implied interest rates are high.
By the previous arguments about the convergence of each component of the

sums it is equivalent to verify that

	

u (,) (zo)- c, E Q (21.zo) c, ,t, (2)1 + E	 (2-9 ni,t (zt) U (ci) (2)7r (21z0)
zo-zo

	

U (z,) (zo) — (,[ E Q (zt lzo)z,,t ())1+ E	 (zt-1)71,,, (zt) U (?..t ) (Zt)71. (zt I ZO) •

z t _zo	 zt tzo

By collecting terms on u (e, ,t (zt)) we can write

5 00,t (2-9u kt (29) {1+ 5 n, ,,
s l tzo	 9-<zt

(1)1 (21zo) — [ E Q (2`120) c,,t V)]
ze>-zo

E 0%, (.2- 1 ) u	 (2)) [1. + E
erzo	 zrszi

(21 (2Izo) - E Q (zt izo)zi,t (1]
zitzo

By concavity and differentiability of u we have

u   ei ,t (2)) 5 u (ci,t (z9) + til (ci,c  (2)) {-ei , t (2) -ci (29]

and by definition of the Oa

I004 (ztl le (ci,t (z9) { 5 no. (7r) 7 (zt l zo)
 — ciQ (z t izo) = 0.

zr-<zt

(5.4)

(5.5)

(5.6)
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Thus using the inequality (5.5), the equality (5.6) and rearranging, we obtain the
desired inequality:

E	 9so,t (z - U
zt.zo

V)) {1+ E	 (Zr)1 7T (zt I20) — (i I E Q
ztt zo

E 00,t (2-1) u	 (2))	E	 (z) (ztizo)
zt>_zo 	 zr-<zt

+	 ,t (zt
-1) ur (ei,t (zt))	 (zt)	 (zt)] [1.	 E ni,r(zni (ztizo)

zt
E

zo 
$o,t	

zr-<zt

–Si
 [

E Q (zt i zo) (z)]
ztrz,

E Po,t (ztiu 	(zt))	 E	 (zt	 (21zo) — Si [ E Q (zt / Z0) (z)] •
zrsz tzq:zo	 zttzo

•
Proof. Proposition (4.11)

Recall that Proposition (4.6) shows that autarchy is an equilibrium with sol-
vency constraints that are not too tight for .131,t = 0 and a1,0 = 0. Then the result
follows using the first welfare theorem (4.10) since by assumption the implied
interest rates are high. ■
Proof. Proposition (4.12)

We need to show that under the given condition the autarchy-value of en-
dowment converges to a finite limit. In autarchy, Arrow prices depend only on
the current and past z, so they are Markov. Thus the value of the aggregate
endowment satisfies a simple recursion. This recursion satisfies monotonicity and
discounts at a rate that depends on assumptions (i) to (iv). We show below that
this rate is strictly smaller than one for the limit values in (0 to (iv).

Let's denote the value of aggregate endowment evaluated at autarchy prices
qa (z, z') conditional on current shock z as A (z) . This value satisfies the following
recursion

,	 s /3(z) maiac{  ((fc ((Zzi	 71" (21x)

A (z)	 E qa (z, [e (2) + A (I)]
ziEZ

27



or equivalently,

A (z) =	 (z) E le (i) + A (1] 7T's (z1
z'EZ

tzi  (fi(2)) \IT0*(z) E a(Z) E fIlax til (et(z))	
(2 z)

 J
z'EZ

1114(e,(i))
naaxtel 4€,Z.15 / (11z) /T s (zilz)

E z,,z max,0 f uu,t( zq iv (ilz)

Notice that the operator defined by that recursion is monotone and satisfies dis-
counting at a rate less than one if ir (z) < 1 for all z, in which case the value of
aggregate endowment is finite.

We show that for arbitrary z, as we take each of the four limits, IP (z) tends
to a number smaller than one. First, as maxi 0 (z) —0 0 then maxi 0' (z) can be
made arbitrarily small. For cases (ii) and (iii)

u'	 (i))
max 	 -• 1

icr,“Ez (et(z))

hence )5' (z)	 (z) In case (iv) limo_ i re (z'lz) = 1 if z' = z and 0 otherwise,
and since uu,r'etii = 1, then 0. (z) 0(z) < 1. ■
Proof. Proposition (4.13)

A K-L economy is a standard Arrow-Debreu convex economy, hence by the
second welfare theorem any efficient allocation can be supported as a quasi-
equilibrium by a linear function po. By a straightforward adaptation of the
argument in Proposition (4.8) under the assumed condition (4.17) the Arrow
prices implicit in the supporting prices po in a quasi equilibrium satisfy (4.15).
Thus the Arrow prices are strictly positive. Let us denote the correspond-
ing A-D prices by Qo. This establishes that agent j has a cheaper point in
his consumption possibility set, and hence a quasi-equilibrium is an equilib-
rium. In a K-L equilibrium the value of the agent j endowment is finite under
m since preferences are strictly monotone.. By monotonicity of the preferences,
E.4-zo Qo (z`lzo) Ct (zt) < pa (c), with equality if the prices have a dot product
representation. Since e t > 0 for all i is uniformly bounded, then the value of the
endowment of each agent under Qo is finite, and hence the implied interest rates
are high. ■
Proof. Proposition (4.14)

Consider an equilibrium {q', 	 4, fin , 40 with solvency constraints that
are not too tight and with high interest rates. By Proposition (4.9) there is a K-L
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equilibrium with the same Arrow prices, with prices po given by the implied A-D
prices. Define 4 ,0 (a, zo) as the maximized value of Equation (4.12) subject to
(4.13) and (4.14). Notice the following two properties of the function (70. First,
4,0 (0, zo) > U (et) (zo) because Ci ei is budget feasible for ato = 0. Second, if
ft,o (a, zo) = U (ei ) (zo) , and if the optimal consumption ci ei then ai3O < 0,
because the objective function is strictly concave and the feasible set is convex.
Since the continuation of a K-L equilibrium at node 2 is itself a K-L equilibrium
then we can define price systems pt and functions J,,t (•, 2) for the economy start-

(., zt+1,
ing at node 2. These functions satisfy the same two properties that in the case

(2+1) as the solution ofof t = 0. Define B,,t+i	 = U (ei) (2+1 ) for
each 2+1 . It is immediate to verify that (q:, Gi j att4.1 ,	 ai,t+/ , ato } constitute
an equilibrium with solvency constraints that are not too tight. Finally, from the
two properties of the functions J we obtain the desired result for /32,t+1• ■
Proof. Lemma (4.15)

It follows directly from the fact that Arrow prices are equal to the highest
marginal rate of substitution across agents. ■
Proof. Proposition (4.16)

Case (i): In the case with no solvency constraint all the marginal rate of
substitution are equated, and because of constant aggregate endowment the ratio
of the marginal utilities equals one. If in the economy with solvency constraints
Arrow prices are smaller, then,

,uf	 (zt+9) < it 	 (zt))

for all i,then since if is decreasing we arrive to a ct,t+i (zt+l) > Ei t (zt) , a
contradiction.

Case (ii), if in the economy with solvency constraints Arrow prices are smaller,

(zt+1)) /zit (ci,t (zt))	 [ci ,t+1 (2±1)] < [et.“ (2+1) /et (ztr
ci,t (zt)

which implies that, Eio	 (zt+i) < et+i (2+1)
L ie ci,t (2)	 et (zt)

a contradiction.
Case (iii) : Denote by ci,t , ci,t+1 and ci,t , the consumptions in the economies

with solvency constraints and the one where the marginal rate of substitution are
equated for z t and 2+1 . If in the economy with solvency constraints Arrow prices
are smaller, then for all i and j in I we have

tl (c,,t+.1)	 (ei,t ) <
	

(dj,t+1)	 (ci,t) •
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Then, for each j by linearity of til • adding across i and dividing by I,

, (et7 )
, ( etu	 u (cit) < u' (e),t4i)u 

now adding across j and dividing by I,

u, (et+i) u, (et) < u, (ett-i ) 12 (et
7)

a contradiction. ■
Proof. Proposition (4.18)

We first prove an intermediate result for any constrained efficient allocation.
Let 21 .5. (xt . For all i, and for all zt , (zt) (xt, yt) is the same for
all V. Notice that in this case, by direct computation, .4)is constant, and thus
U (xt , yt ) does not depend on yt . Hence, neither the resource constraints, the
participation constraints nor the discount factor depend on V.Thus, given the
strict concavity of the utility function, it would not be efficient to make e itt (xt,.)
depend on ye.

Now we use the intermediate result to show the proposition. By the first
welfare theorem and the representation of Arrow prices it suffices to analyze the
marginal rate of substitution :

(xt+1, yt+1)

	

{)3 [A (yi+Or 0 (Ye4.1)} (( 
t+1

4,t(xt , v) 	 7,1)(xt+ilxi)}

which can be written as the product of two functions. The first one depends on
Ye-ri, which is equal to the marginal rate of substitution for the economy without

participation constraints, J3 tA(Yt+i))-1. 0 (yt-1-1) . The second one, (``.`+,:(;:'C')) -7
tf (xt+ Ix t ), by the intermediate result, does not depend on yt+t , and hence cancels
out in the formula for the strip premium. ■
Proof. Proposition (4.19)

The allocation is clearly resource feasible and satisfies the participation con-
straints. It suffices to show that {4, an solve (4.1) given {q*} and {B; }and aZ0
for i I 1. It is immediate to verify that given (4.19) the Euler equations (4,4)
are satisfied for all t and that since ai,t+1 (21+1 ) = B.,t+1 (z t+1 ) for all zt+1 the
Transversality condition (4.5) is satisfied. ■
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