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1 Introduction
It is widely agreed that frictions play an important role in asset markets and that

contrary to the complete market model individuals bear substantial idiosyncratic risk.

Why, for example, is there no private insurance for workers against industry failure? In

earlier work, Kehoe and Levine [1990] argued that this is likely due to individual

rationality constraints: workers in other industries would simply not honor a contract

requiring them to pay a substantial fraction of their wages to workers in other industries.

Kocherlakota [1997] and Alvarez and Jermann [1997] and others have used this argument

to study issues such as the equity premium puzzle. However, while the lack of private

insurance against industry failure can scarcely be explained by moral hazard, the strong

concentration of individual portfolios in a narrow range of assets cannot be easily

explained by individual rationality constraints. Why, for example, does Bill Gates hold

largely of Microsoft stock, or does a small shopkeeper's portfolio consisting largely of the

shop itself? While individuals with such undiversified portfolios may be small in number,

they are large in the percentage of wealth they control.

Recently there has been a resurgence of interest in incorporating moral hazard and

adverse selection into general equilibrium theory in an effort to model asset market

frictions of this sort. Bisin and Guaitoli [1995], Bernardo and Chiappori [1997] and

Bernardo [1997] have been such efforts. The point of departure has been Prescott and

Towsend [1984], who introduce both the idea that incentive constraints can be introduced

into general equilibrium theory in a sensible way, and that lotteries play a potentially

important role in the resulting theory. Although their theory has been widely used to study

indivisibilities in the aggregate economy by Hansen [1985], Rogerson [1985] and others,

until recently little effort has been made to study incentive constraints from this point of

view, and the idea of using lotteries to study asset markets remains controversial, The

goal of this paper is to review the theory from Prescott and Towsend [1984], as well as

subsequent research in the area. We formalize the argument that lottery economies are

equivalent to sunspot economies, and discuss the fact that in many practical applications

involving decreasing absolute risk aversion, lotteries are not needed in equilibrium. We

develop the notion of the stand-in consumer economy as a tool for proving theorems

about lottery economies. Overall, we argue that the Prescott/Townsend framework
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represents a sensible and progressive framework for analyzing moral hazard and adverse

selection in general equilibrium theory. Our goal is not to prove new results, but rather

discuss existing knowledge about lottery and moral hazard economies in a systematic

way.

2 A Simple Insurance Problem: A Motivating Example
There is a continuum of households who are ex ante identical. There are two

goods j =1,2 . Let ci denote consumption of good j. Utility is given by u ( 6) ) ÷172 (c2)

where ii, is concave and strictly increasing. The endowment of good 1 is risky, while

good 2 has a certain endowment. Each household has an independent 50% chance of

being in one of two states, s = 1,2 So the endowment of good 1 is state dependent, and

can take on one of the two values co l (1) and (0 1 (2) , where (01 (2) > to, (1), while the

endowment of good 2 is fixed at 0) 2 .

Viewed in the aggregate, after the state is realized, half of the population has the

high endowment, and half the low endowment. After the state is realized, there are gains

from trade, as the low endowment households will wish to purchase good 1 and sell good

2. But before the state is realized, there are additional gains from trade, as households will

wish to purchase insurance against the bad state. In fact, since all households are identical

and utility is concave, it is obvious that there is a unique first best allocation in which all

households consume (co, (1) + 0),(2)) / 2 of good 1, and w 2 of good 2.

Suppose, however, that the realization of the idiosyncratic risk is private

information, known only to the individual household. In this case, the first best solution is

not incentive compatible. In the first best arrangement, low endowment households

receive an insurance payment of (0),(2)— 0) 1 (1)) / 2 , while high endowment households

must make a payment of the same amount. So high endowment households will

misrepresent their endowment in order to receive a payment rather than make one.

One approach to this problem is to prohibit trading in insurance contracts, and

consider only trading that takes place ex post after the state is realized. The resulting

competitive equilibrium leads to an equalization of marginal rates of substitution between

the two goods for the two types of households, but the low endowment households will

have less utility than the high endowment households and there are unrealized gains from

ex ante trade in insurance contracts.
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A second approach to this problem is to observe that it is possible to trade in

insurance contracts, provided that no household buys a contract that would later lead it to

misrepresent its state. If endowments can be made public, but only voluntarily, then the

high endowment household can imitate the low endowment type, but not conversely.

Suppose that a household attempts to purchase x(1) in state one in exchange for x(2) in

state 2. In the high endowment state, utility will be it, (co, (2) + x, (2))+ (CO2 + x2 (2)). In

this case, the household may wish to pretend that the state is actually state 1. In order to

avoid detection, it must make the same spot market purchases that a household in state 1

would make, x1(1),x2(1). This results in utility I (co, (2) + x, (1)) + (co 2 + x,(1)).. So the

incentive compatibility constraint is

u (co, (2)+x, (2)) + /72 (co2 + x2 (2)) .� II, (co, (2) + x, (1))+112 (co2 + x2 (1)).

If this constraint is satisfied, the household will have no incentive to lie about its private

information.

Since the household strictly prefers its own trade to that of the low endowment

household

FA, (c, (2)) + ii2 (c2 (2)) > ui (c1 (1) — to, (1) + co, (2)) +u2 (C2 (1)- co2).

It follows that if the insurance purchase x, (1),x, (2) is sufficiently close to the incomplete

markets contract, the high endowment household will have no incentive to misrepresent.

So there are additional incentive compatible gains to trade that are not realized in the

incomplete markets model.

Suppose, more generally, that households trade goods contingent on

announcements. No household will ever deliver a bundle that is not incentive compatible.

If, in addition, there are rational expectations, then every household must know this fact,

and so only incentive compatible bundles can be traded. Notice, however, that this

stronger argument does not guarantee that all incentive compatible bundles actually will

be traded. However, if it is possible to write and enforce contracts that specify net trades

in every state, then all incentive compatible bundles will be traded. Notice, however, that

these contracts must prohibit some ex post trade. If a high endowment household can

receive an insurance payment by claiming a low endowment, and then turn around and

trade the insurance payment of good 1 for additional units of good 2, it certainly will
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prefer this to admitting a high endowment. The contract must specifically prohibit

households claiming to have a low endowment from trading good 1 for good 2. Contracts

of this type are not uncommon in insurance markets. It is quite common for insurance

contracts to specify that the insurance payment may be used only for a specific purpose,

such as replacing a structure on a specific location.

If ex post trade cannot be controlled, then the set of contracts that can be enforced

is smaller than the set of all incentive compatible contracts. This does not lead to great

complication in the results below. However, the set of contracts that can be enforced will

also in general depend on ex post prices, since it is these prices that determine the value

of trading following misrepresentation. The complications of the theory that ensue in a

setting of individual rationality constraints without incentive constraints are examined in

Kehoe and Levine [1990]. The main conclusion of that paper is that typically the welfare

theorems fail when spot market trading cannot be contractually controlled. We expect

similar results to hold in the setting of incentive constraints. However, for the remainder

of the paper we ignore this complication, and consider only incentive (and related)

constraints that are independent of market prices.

Let X denote the space of all triples of net trades that satisfy the incentive

constraint. If net trades can be contractually specified, these represent incentive feasible

net trades. Our program is to restrict households to trading plans in X and then do

ordinary competitive equilibrium theory. There are two complications with this program.

First, fixing xi (2) , the set of xi (1) that satisfies the incentive constraint obviously fails to

be convex, so X itself is not a convex set. This means that despite the fact that we have

taken the underlying preferences to be risk averse, Pareto improvements may be possible

by using lotteries. The second complication is that we can use lotteries to weaken the

incentive constraints. If a household receives a random allocation contingent on its

announcement, then the incentive constraint need only hold in expected value. If we let

Ei denote the expectation conditional on the announcement of state i then the incentive

constraint becomes

El, (to, (2) + (2))+42 (to2 + x2 (2)) �,	 (col (2) + (1)) + (0)2 + x2 (1))

For these two reasons, once we introduce incentive constraints into general equilibrium it

is desirable also to consider lotteries.
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3 The Static Economy
Households may be of I types i =1,...,1 . There is a continuum of ex ante

identical households of each type. An individual household is denoted by h = [0,1].

A household's type is commonly known. There are J traded goods j = 1,...,J . There are

also two sources of uncertainty: a commonly observed sunspot, and household specific

idiosyncratic risk. A "sunspot" is a random variable o uniformly distributed on [0,1].

Idiosyncratic risk is represented by specifying that each household of type i may consume

in any one of a finite number of states s E S' . Each state has probability a' (s) where

E,,es .	 (s) =1.

We assume that households can contract for delivery of goods contingent on the

sunspot and the individual state of the household. 3 We write xi' (s, a, h) e 9t for the net

amount of good j delivered to household h of type i when the idiosyncratic state is s and

the sunspot state is a. The distribution of idiosyncratic shocks and sunspots are assumed

to be independent. The idiosyncratic shocks are such that the average net trade of all type

i households of good j when the sunspot is a is given by

i; (a) Eses. .71-1 (s)x;(s,cr,h)dh.

There are several justifications for this assumption. The easiest assumption is that

idiosyncratic shocks are independent across households. However, it is known that this is

inconsistent with average net trades defined by Lesbesgue integration and a space of

consumers on the unit interval; this is discussed in ???. Alternatively, we could define

average net trades by the Pettis integral, as in ??'?. Or we could simply assume that

idiosyncratic states are correlated across individuals. However, we prefer to avoid these

technical issues and simply justify the definition of aggregate consumption given as the

limit of average net trades in finite household economies, which, after all, is the purpose

in introducing continuum economies in the first place.

3 Strictly speaking households should be allowed to base contracts on the idiosyncratic states of other
households. However, utility depends only on household's own idiosyncratic states not on the idiosyncratic
states of other households. With idiosyncratic risk assumed to average out over the entire economy,
contracts based on other household's idiosyncratic states do not serve any purpose. We omit them to avoid
notational complication.
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Trading takes place before any uncertainty is realized. Then the idiosyncratic

states are realized and announcements of types are made. Next, sunspots are realized.

Finally, deliveries are made, and consumption takes place.

Fix a type i and household h. For each realization of the sunspot a this household

realizes a net trading plan x' (a, h) E . This trading plan specifies net trades

contingent on announcements of type. We assume that this trading plan must belong to

the feasible trading set X'. Notice endowments are incorporated directly into the feasible

net trade set and are not specified separately. In many examples the trading set has the

special form

Xi = x X l (s).ses,

Utility is given by ul : X' —> 9I .

In addition to restricting households to the consumption set X', we wish to

consider incentive constraints that have an expected value form. We assume for each

type i that there is a vector of k 1 continuous incentive functions g' (x l ). A sunspot

contingent trading plan x t (a) is called incentive compatible if

5 gl (x l (o))do- 0 .

In the insurance example if we take k' = 1 and

8' (x` ). ill (cm (2)+ x, (1))+ ii2 (co2 + x2 (0)— WI (co, (2) + x, (2)) — (co 2 + x2 (2)) ,

to measure the utility gain to the high endowment type from lying when the net trading

plan is x then this corresponds to the ex ante expected utility form of the incentive

constraint.

We do not assume that X' is convex, or that te is concave or non-decreasing. We

do assume:

Closed and Bounded Trades X' is closed and bounded below.

Voluntary Trade 0 E X i .

Continuity a' is continuous.

Nonsatiation for all x' E X' there exists la e	 , (1') 0 such that u' (.21 )> (x') .
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Utility Boundary if lk --> cc then bin sup u' (f)I 11X i .� 0 .4

Incentive Boundary if	 -4 cc then liminf g " (x' ) l	 °
With the exception of the boundary conditions, these assumptions are self-explanatory.

The utility boundary condition is kind of an asymptotic diminishing marginal utility or

asymptotic aversion to risk: it says that eventually utility increases less fast than a linear

function. The incentive boundary condition follows from the utility boundary condition in

cases where the incentive constraints are derived from the utility function.

There are several points to emphasize about the model

• Types are commonly known; the idiosyncratic states may or may not be private

information. It is important that contracting takes place prior to learning any private

information. If contracting is possible only after learning private information, or, what

amounts to the same thing, if types are private information, then incentives to

misrepresent information will depend on the net trades of rival households. This

represents an externality that will generally invalidate the welfare theorems.

• Households do not care about the private information of rival households. This

assumption could be relaxed, but it would then be necessary to allow contracting

based upon the announcements of the relevant rivals.

• Sunspots take place after idiosyncratic states are realized. We will show below that

there is no loss of generality in this assumption – adding an additional sunspot

variable after idiosyncratic states are realized does not change the set of equilibria.

3.1 Perfect Competition with Sunspots

A sunspot allocation is a measurable map for each type from households to

individual trading plans; that is z'(h,a)e X' . An allocation is socially feasible if for

each sunspot realization a

riti Les, j n (s),f (h, a)[s]dh _� 0.

Note that this definition incorporates free disposal. We say that an allocation has equal

utility if j u'(z2 (1t,cr))dcr f u (x'(h ,cr))do- almost surely.

' Notice the use of lim sup. This is necessary because we have not imposed sufficient monotonicity
conditions to assure that the limits exist.
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A price function is a non-zero measurable function p(6) E 91,1 Notice that the

price of a delivery contingent on an idiosyncratic state is 71) (s)p(o) since in the

aggregate 71 (s) represents the fraction of the population to whom the delivery will

actually be made.

A sunspot equilibrium with transfer payments consists of a socially feasible

sunspot allocation together with a price function p . For all types i and almost all

h e [0,1] 2' (h,-) must maximize 5 u' (x' (o-))do over sunspot contingent trading plans

(cr) satisfying the sunspot budget constraint

5 Les , 21.1 (s)p(6)x' (c)[s]cics f Les , e(s)p(a)z' (h, tirls]clu ,

and the incentive constraints f g' (x' (ci-))dcs 0. The transfer payments themselves must

satisfy the equal treatment condition that they depend only on types

f Les , it-r (s)p(o)t (h,c)[s]cla = f	 ;r1(s)p(o)t (it, cr)[s]dcr almost surely.
sES

A sunspot equilibrium with endowments is a sunspot equilibrium in which the

transfer payments are zero

.1Le, (s)p(cs)zt (h,c)[s]do = 0.

Finally, a sunspot allocation is Pareto efficient if no socially feasible allocation satisfying

the incentive constraints is Pareto preferred.

An immediate consequence of the fact that the transfer payments satisfy the equal

treatment condition, is the conclusion that the equilibrium allocation must be an equal

utility allocation. If it were not, then a positive measure of type i could increase their

utility by switching to a consumption plan used by others of the same type.

Lemma 3.1.1 A sunspot equilibrium allocation is an equal utility allocation.

Our main goal is to establish the main theorems of competitive general

equilibrium theory for the sunspot economy

Theorem 3.1.2 First Welfare Theorem Every sunspot equilibrium allocation is Pareto

efficient.

Theorem 3.1.3 Second Welfare Theorem For every Pareto efficient allocation with

equal utility there are prices forming a sunspot equilibrium.
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Theorem 3.1.4 Existence Theorem There is at least one sunspot equilibrium with

endowments.

The first welfare theorem is a relatively direct consequence of the nonsatiation

assumption and the standard proof of the first welfare theorem. The remaining results

follow are proven from equivalence theorems below.

32 Perfect Competition with Lottery Tickets

We now consider an alternative view of how the economy might operate. Notice

that the sunspot random variable and a trading plan x' (o-) c X' induce a probability

distribution over ,te over X' . We refer to this probability distribution as a lottery. From

the point of view of individual utility, all trading plans that induce the same lottery yield

the same utility, and the incentive constraints may also be computed directly from the

lottery. We now consider the Prescott and Towsend [1984] perspective, in which

households trade directly in lotteries. Our goal is to show that this formulation is exactly

equivalent to the sunspot formulation.

We should first note that in many applications utility and the incentive constraints

depend only on the idiosyncratic state contingent lotteries. That is, a trading plan can be

written as x 1 (s, a) e 91 .1 . Typically utility and the incentive constraints can be derived

from the random variables x' (s,.); for example, when u'(x 2 )= Ises, gl (s)re (x e . The

distribution of the random variables x'(s,.) can easily be computed from the lottery ,a'. In

addition, when the net trading sets have the special form X' =x ses , X' (s), an equivalent

definition of a lottery is as a probability distribution overthat satisfies theUses' Xi (-1)
constraint that the marginal distribution over S' is equal to 2z'. Much of the literature on

lotteries has used this formulation.

A lottery ticket allocation is simply a lottery p' for each type. It is said to be

socially feasible if

E7.1.1 Es • irt(s)ti(s )411' (x') �. 0 .

This simply says that in the aggregate the expected net trades used by the lottery

allocation is non-positive. Unlike a sunspot equilibrium, a lottery allocation is non-

specific about the particular circumstances under which a particular household gets a

particular net trade.
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A lottery ticket allocation is Pareto efficient if no socially feasible, incentive

compatible Pareto improvement is possible. A lottery ticket equilibrium with transfer

payments consists of a socially feasible lottery ticket allocation is together non-zero price

vector p e 91_7 . For all types i, Li must maximize (;u') over lotteries 11 satisfying the

lottery ticket budget constraint

p iLes, (s)x l [s]dk (xi ) �.	 IsEs , irt (s)x t [s]d p i (x1),

and the incentive constraints .1 g r (x')die (x')5_ . A lottery ticket equilibrium with

endowments is a lottery ticket equilibrium in which the transfer payments are zero

piLs, 2ta (s).y1 [s]d (x' )--= 0.

Notice that in this formulation, lotteries are priced according to the aggregate

resources they use. This is a non-arbitrage condition: two lotteries that use the same

aggregate resources must have the same price. If one lottery uses aggregate resources y

and another 9, if the cost of buying y and 9 separately exceeds the cost of buying y + ,

it would be profitable to by the joint lottery y + 9 and sell the pieces, while in the

opposite case, the pieces should be bought separately, then packaged and sold. Only

linear pricing in the aggregate resources guarantees that there are no arbitrage

opportunities.

We will establish the main theorems of competitive general equilibrium theory for

the lottery ticket economy, as well as the sunspot economy

Theorem 3.2.1 First Welfare Theorem Every lottery ticket equilibrium allocation is

Pareto efficient.

Theorem 3.2.2 Second Welfare Theorem For every Pareto efficient allocation there

are prices forming a lottery ticket equilibrium.

Theorem 3.2.3 Existence Theorem There is at least one lottery ticket equilibrium with

endowments.

In Prescott and Towsend [1984] these theorems were proven directly; we will give an

alternative proof below. Our results on sunspot equilibria will then follow from showing

that lottery ticket and sunspot allocations are equivalent.
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3.3 Sunspot Allocations versus Lottery Allocations

Sunspot allocations and lottery ticket allocations are rather different descriptions

of the possibilities of randomizing in the base economy. For example, suppose that there

are two identical types, and one good, automobiles, for which the consumption set is

either one automobile or zero. Suppose moreover, that each type is endowed with 1/2 an

automobile per capita. From the perspective of lotteries, the situation is rather simple;

there can be no trade between the two types, so each household should get a 50% chance

of an automobile. In other words, in equilibrium, each household of each type purchases a

lottery with a l/2 chance of 1 automobile, and a 1/2 chance of 0 automobiles.

This description by means of lotteries can be implemented in many ways by

means of sunspots. For example, we could imagine that the individual lotteries are

independent,5 and that in the aggregate the strong law of large number leads to social

feasibility. But an alternative formulation would be to have a simple sunspot allocation in

which when the sunspot variable o 5_1/ 2 the first type receives all the cars, and when

o > 1 / 2 the second type receives all the cars. From an individual point of view it makes

no difference which of these methods is used to allocate cars. However, the how the

economy operates in the large is quite different.

Begin with a sunspot allocation z(h,o). For each household, there corresponds a

lottery IT  (21 00). We can then average these lotteries over households to get a single

mean lottery for the entire type ,u ` [x] f fir (xi (h,.))dh . Notice that the resources used by

this lottery are obviously equal to the expected resources used by the sunspot allocation;

that is

I ;t idy: U(100 = f x' (h,o)dhdo-

Moreover, by definition, in an equal utility sunspot allocation households of type i must

be indifferent between the lotteries zi(h,•),zi(h',.) for almost all h,h' . Since their utility

is linear in probabilities, this means they must be indifferent between xi (h,.) and the

mean lottery p'[x] for almost all h. In a similar vein, since the incentive constraints hold

for almost all individual lotteries, and are also linear in probabilities, the mean lottery

must satisfy the incentive constraint. Consequently, the mean lottery corresponding to a

5 Subject to usual caveats about a continuum of independent random variables; see the discussion above.
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sunspot equilibrium allocation is a natural candidate to be an equilibrium of the lottery

ticket economy. If p(o) is a price function in the sunspot economy, we can in a similar

way define the mean price p = 5 p(a)da . Although it is not transparent, we will show

below that the mean price is in fact the correct way to price the mean lottery in the lottery

ticket economy

We define a sunspot allocation to be equivalent to a lottery ticket allocation if the

mean lottery of the sunspot allocation is equal to the corresponding lottery in the lottery

ticket allocation. We define a sunspot price function to be equivalent to a lottery ticket

price if the mean price of the sunspot price function is equal to the lottery ticket price. By

definition, there is only one lottery ticket allocation and price that is equivalent to a given

sunspot allocation and price function. However, as we have already noted, there is not a

unique way to construct a sunspot allocation (or price function) from a lottery ticket

allocation. However, there is one important construction that plays a key theoretical role

in moving from lottery ticket economies to sunspot economies. For a given lottery ticket

price p we define the canonical sunspot price function to be the constant function

p(o)=T . For a given lottery ticket allocation p we define the canonical sunspot

allocation to be a particular allocation in which the aggregate resources used by each type

are independent of the sunspot state, Specifically, corresponding to the lottery p' is a

random variable x` (6) . We then define the canonical sunspot allocation by

(h, a) = ((o-+ h) mod 1) .

These simple constructions show that for every lottery ticket allocation and price

there is at least one equivalent sunspot allocation and price. Because the constructions

preserve utility, social feasibility and the incentive constraints, we can draw an immediate

conclusion about Pareto efficiency.

Theorem 3.3.1 An equal utility allocation is Pareto efficient in the sunspot economy if

and only if the equivalent allocation in the lottery ticket economy is Pareto efficient.

Moreover, the socially feasible, incentive compatible equal utility set in the sunspot

economy is exactly the same as the socially feasible incentive compatible utility set in the

lottery ticket economy.

Less immediately obvious is the equivalence of equilibria in the two economies.
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Theorem 3.3.2 An allocation and price are a transfer payment equilibrium in the lottery

ticket economy if the equivalent allocation and price function are a transfer payment

equilibrium in the sunspot economy. An allocation and constant price function are a

transfer payment equilibrium in the sunspot economy if the equivalent allocation and

price function are a transfer payment equilibrium in the lottery ticket economy. In both

cases the size of the transfer payments are the same in the two economies.

Proof Consider a sunspot allocation % and price function p , and an equivalent lottery

ticket allocation ft and price 17. Suppose first that p is constant (so in particular

p(o) = [5) and that p, -pi are a transfer payment equilibrium. Then it is transparent from

the fact that households care only about their individual lottery, and the fact that

p(o) = ji that g, p is a transfer payment equilibrium. Since in both cases, each type pays

only for the aggregate resources used, which is the same in both economies, the transfer

payments must be the same in both cases.

Now suppose that instead g, p are a transfer payment equilibrium, and that

possibly p is not constant. By definition these transfer payments have to satisfy the equal

treatment condition that net income is the same for almost all households; letting h be a

typical household that receives the same net income as almost all other households, we

denote the transfer payment by

Les , re (s)p(Q)h' (h,c)[s]icr

The key observation is that if

tijL3Er tri (s)x l [s]dil l (x l ) k

so that a lottery is affordable with the transfer payment, then it can yield no more utility

than the common amount %' gives almost all households. For suppose not. Consider the

canonical sunspot allocation ," corresponding to . This gives every household in i

more utility than g'. Morover,

L	 (s)p(o-)x (h,o-)[s]clo-dh 5 K

so it is affordable for some positive measure set of type i households, contradicting the

fact that	 was optimal at prices p equilibrium.
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This observation shows that at prices p type i cannot get more utility than p' . So

to complete the proof that p, p is an equilibrium transfer payments 12 1 , we need only

show that p` is affordable. If for some household

PJE=Es na(s)xs[s]clg(x1)< R' ,

this household could find an affordable and utility improving ,u ` , which we already

showed is impossible. So for all households,

Eses , (s)f[s]dit'	 )	 .

Since from social feasibility I, R' = 0 , and Ej Les , le (S).1 1 NO' ( ) 0, we conclude

that

jE,Es, (*I [s]dp' (x')= R',

so it is in fact affordable.

3.4 The Stand-in Consumer Economy

We now wish to prove the welfare theorems and the existence of an endowment

equilibrium; from the equivalence of the sunspot and lottery ticket equilibria, it is

sufficient to do so in either of the two types of economies. Each, however, poses its own

complications. The sunspot economy has a net trade set that is complicated and non-

convex. The lottery ticket economy has a net trade set that is convex but infinite

dimensional. One approach is that of Prescott and Towsend [1984], which is to work

directly with theorems for infinite dimensional economies. An alternative that leads to

finite dimensional and mathematically simpler proofs is to observe that the household

problem of maximizing utility subject to a budget constraint can be broken in two parts.

Since the cost of a lottery is simply the cost of the expected net trades it uses, we can

think of the household as first purchasing an expected net trade vector. Having done so it

then chooses the lottery that maximizes utility subject to the constraint of expected net

trades. This utility depends only on the expected net trade vector, which is finite

dimensional, so in effect reduces the economy to a finite one.

Specifically, we consider net trade vectors y' e 9t . The set of interest are those

net trade vectors that are consistent with feasible trading plans of type i households:
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Y' Closure(ConvexHull ly' E	 e X', y = Les, It'(s)x`[s] 1).

Given that a bundle y' e Y' has been purchased, how much utility may a type i household

get? The answer is given by

v'	 sup I	 (i)

subject to supportp' c X' , j E, e(s)x icliti'(x r ) y'	 g' (i)dp' (x') 5. 0.

This construct will be most useful if we can replace the sup with a max, so that there is at

least one lottery that actually yields the utility (y)

Lemma 3.4.1 If the consumption and production boundary condition hold, then

vt (y`)= max f ut (xl )clpi (xl ) subject to support p' c X', Les, R-1 (s)x l [s]dp' (x1 ) y',

J g l (xl )dp' (x') O.

Sketch of Proof- There is at least a sequence of lotteries converging to the sup; by

Caratheodory's Theorem we may assume that these lotteries have support at in' + lc' +2

points. Let p' be the points and probabilities in this sequence of finite lotteries. This

has a convergent subsequence on the extended real line. Because x' is bounded below,

any component of z' that converges to ±«, has corresponding probability converge to

zero. By the consumption boundary condition the limit of expected utility for such a point

is also zero. So the limit lottery places weight only on finite points, and gives the same

utility and satisfies the same feasibility condition. It is the optimal lottery.

We may now study trade in the economy, by considering I consumers with utility

functions v' and consumption sets If' . We refer to consumer i as the stand-in consumer,

as he represents all households of type i. In effect the stand-in consumer makes purchases

on behalf of the ex ante identical households he represents, then allocates the purchases

to individual households by means of an optimal lottery. Notice the role played here by

the assumption the all households of a given type are ex ante identical: there is no

ambiguity about how a lottery should be chosen to allocate resources among individual

households.

In the stand-in consumer economy, an allocation y is a vector y' E Y' for each

type. The allocation is socially feasible if E, 	 . An stand-in consumer equilibrium
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with transfer payments consists of a non-zero price vector /7 e 91 m , and a socially

feasible allocation y. For each type i y` should maximize v (3) subject to

i • 3).-‘ 5..)5• y‘ , y' e . An endowment equilibrium and Pareto efficiency are defined in

the obvious way. Notice that equilibria in the stand-in consumer economy are equivalent

to equilibria in the lottery ticket economy in a direct and simple way. Given a lottery

ticket equilibrium	 , we can compute the expected resources used by the equilibrium

lottery y' Les, ri (s)x' (s)dµ' (x' ) . Clearly y, p is a stand-in consumer equilibrium.

Conversely, given a stand-in consumer equilibrium y, )5 , we can by Lemma 2.6.1 find for

each stand-in consumer an optimal lottery ,u', and it is clear that it, p is a lottery ticket

equilibrium.

To prove the welfare and existence theorems for the sunspot economy and lottery

ticket economy, it suffices to prove them for the stand-in consumer economy. As this is a

finite dimensional pure exchange economy, this follows from verifying standard

properties of utility functions and consumption sets.

Lemma 3.4.2 Utility v' is continuous, concave and if non-satiation holds, strictly

increasing. The net trade set has 0 E Y and is convex and bounded below.

4 The Role of Lotteries and Incentive Constraints

4.1 The Insurance Problem

Recall our motivating example. There are two goods j =1,2 , one type i = 1 and

two states s =1,2 . Utility for net trades is

it' (.4 ) =Silt (co t (1) + (1))+512 (a2 +x4(1))+51-4 (0; 1 (2) +4 (2))+552 (co 2 + (2)),

where wi (1) < w (2) . The net trade set is X 1	 > –a t ) and the incentive function

is

g I (x 1 )=5- ui (co l (2)+ x:(1))+ 112 (0 2 + (0) – (02, (2) + x; (2)) – U2 (66 2	 (2))

The aggregation operator is given by A ix'	 (1)+5x' (2) .

Proposition 4.1.1 Suppose that 5, exhibits declining absolute risk aversion, and that 112

is strictly concave. If ,ue solves the stand-in consumer problem

v 1 (y 1 )= max u1(x))d,u1(xl)
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subject to support,u 1 g K' , J Les, (s)4 clp'	 ) y l 	(x` )du ` ) 0,

then p' is a point mass on a single point.

Proof: Let p ` be a non-degenerate solution to the stand-in consumer problem

corresponding to y l . Consider the allocation

(1) = fx1(1)d,u1(x`(1))

= fxr(l)diti(x1(1))—z

2' (2) = f x l (2)01(x1(2))

where z is chosen so that

[iii (to, (2) + 4 (1)) + u2 (o2 + 4(1))1cipt (4) = (to, (2) + it; (1)) + u2 (to2 + ."Z , (1)) .

Since u, is strictly concave, z is strictly positive, so satisfies the resource constraint.

Moreover, it also satisfies the incentive constraint, since replacing g' with its expected

value increases utility in the good state. Indeed, not only does utility in the good state

increase, but because u, exhibits declining absolute risk aversion, is increases in the bad

state as well. So 'X i satisfies the constraints of the stand-in consumer problem, this

contradicts the fact that ju' solves the problem.

Under the assumption that there are no lotteries involved, we find the competitive

equilibrium (since there is only one type) by solving the optimization problem

max t7,(co (1) + x;(1)) + i72. (co 2 + (1)) + (to ,(2)— x; (1))+ 172 (co, — (1))

subject to ill (w, (2) + x; (1))+172 (co, + xz (1)) — (a, (2) — 0)) — u2 (a 2 — xz (1)) � 0,

where we have substituted out the social feasibility constraint x)(1) = —xii (s). From the

first order conditions, we can find

Du, (a, (1)+4(1))—(1	 Du, (w, (2) — 4 (1)) + 2  Du, (col (2) + 4 (1))2)

Di12(co2 + 4 (1)) 	Dit2(co2— 4 (1))	 Dii2(w 2 + 4 (1))

where A is the Lagrange multiplier on the incentive constraint. Since the constraint must

bind, and

Diti(to,(2)— x;(1)) Dii,(co, (2) + x; (1)) 
D12 (w, — 4 (1))	 Dt72(co2 + (1))
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we conclude that

Di71 (0),(1) + (1)) < 	 (co, (2) – 4(1)) 
(co2 + 4 (1))	 D112(0)2–x; (1))

This means that at the equilibrium there are unexploited gains from trade between the two

types. If, for example, a spot market were to open, the two types would carry out trade

with each other. So the equilibrium contracts must specify, for example, that additional

amount of good 1 acquired by the poor type beyond that paid as an insurance settlement

can be claimed by the insurer.

4,2 Ex Post Trading

Lemma 4.2.1 Suppose that -13 supports V at y , that support g c X' , that

I zins)xr[s]dtinx1)5_ y', that v'COdit (x 1 ). (y') and that g'(x')djur(x')< 0.

Let e E ConvexHull X' be such that for every e> 0 fink(e))>0. Then there is a

solution :Li' to the problem of maximizing 14 1 (72') subject to support 1.-/ g X',

Pf Eses, zi (*I	 (x?) � PE sest (s)zi[s] in which	 (xi) z'.

Proof Let V-1 (x').max jut (xi )diti (xi )	 subject
	

to	 support if c X' ,

xi d,i11 (xl ) 5_ . This is well defined by the proof of Lemma 2.6.1, and also satisfies the

conclusion of Lemma 3.1.1. Suppose conversely to the Lemma that there is

E ConvexHull xi with	 > v' (z') , and	 (±4 – z') .5. 0 . Since 94 is continuous,

for some sufficiently small e Unkal ))> 17' (Be (e)) . Consider	 constructed by

replacing fil ls (zi) by that same measure translated by rf 	 . Notice that for

sufficiently close to z' the support of the translated measure is contained in

ConvexHull X i . Moreover by translating a small enough probability, since the incentive

constraints were strictly satisfied, they will remain satisfied. Set w fxe diti(xl ). Then

p•(Al wl –yi ).S 0 and iY ( (wl ) >V (yt ), a contradiction.

0

Notice that this result holds only if the incentive constraints do not bind. We will

comment further on this below.
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4.3 Risk Aversion and Lotteries

We now specialize to the case where there are no indivisibilities in an effort to

generalize the idea that with declining absolute risk aversion incentive constraints do not

require lotteries. We do this in the setting of the stand-in consumer economy. We assume

that X' = xs X' (s) X' (s) c 9i m is a closed convex set bounded below. For every pair of

states (s, g) we are given a continuous, concave, strictly increasing utility function

U'Ls, g1. This is to be interpreted as the utility of a type s masquerading as a type 1. Then

type i's utility function in the base economy is given by the expected utility over states

u l (x')=LU'Ls,slix'(s))11' (s),

and the incentive functions are indexed by pairs of states (s, g) where s t 1; and have the

special form

g' [s , '4x) = 1) 1 [s, :s](x (g)) —	 [s , s](x' (s)).

We further assume the existence of certainty equivalents in the following sense: if

[I] is a lottery on X' (g), we say that is (u1 [1]) is the certainty equivalent of ,u 1 [ g] for

U [s, 1] if for some A > 0

Tf i (te[1])= AT xidgrikx1 ) e r(1), and

U 'Ls ,	 [g])) = I ' [s, gl(x)d g[s](x')

Notice that since the utility functions U' are concave and strictly increasing, it must be

that A. 1.

We now consider the stand-in consumer problem for fixed yr

max u1(x)d,u1(x1)

subject to support/Al	 X l ,A'xidtis (x1 ) _� y' , g l (f)d,u1 (x' )5. O.

We say that the constraint (s, g) is potentially binding, if for some 31 1 and some solution

to this problem J g'[s, g](xl )d,te (x'). 0. We say that utility exhibits declining absolute

risk aversion if for every potentially binding constraint (s, s1) the certainty equivalent of

any lottery for Ul [s,S1 is larger then that for CLEM. That is, any type s who is

constrained from masquerading as a type g will be less risk averse than
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Theorem 4.1.1 With declining absolute risk aversion, there exists a solution to the stand-

in consumer problem that is a point mass on a single point.

Sketch of proof We start with a lottery that solves the consumer problem. We replace it

with a lottery that gives each state the certainty equivalent for that state. By assumption

this is in X', and by construction gives exactly the same utility as the optimum.

Moreover, the utility from truth telling is unchanged. For potentially binding incentive

constraints, the assumption of declining absolute risk aversion and strictly increasing

utility shows that the utility from the masquerade has not been increased, so the constraint

is still satisfied. Consider the collection of constraints that are not potentially binding,

but are violated by the certainty equivalent, and consider lotteries that are a convex

combination of the original lottery and the certainty equivalent. If sufficient weight is

placed on the original lottery, none of these potentially non-binding constraints are

violated. So consider the supremum of weights with this property. For this lottery, all

incentive constraints are satisfied, utility is optimal, but on of the constraints that is not

potentially binding does bind, contradicting the fact that is was not potentially binding.

5 Time and Production
In this section we consider extensions of the basic ex post pure exchange

framework.

We have assumed so far that sunspots occur after households discover and

announce their state. An alternative assumption is that the sunspots occur first, as in [??].

However, for any lottery that occurs prior to the announcement of states, we can find an

equivalent lottery that occurs after the announcement of states – just let the lottery be

independent of the state. More specifically, let ov a, E [0,1] be uniform i.i.d. sunspots

occurring before and after the realization of the idiosyncratic state. So an allocation is

now x",(s,a 0 ,0,, h) E 9I , and the incentive constraints

5 g i (x` (a 0 , 0-0)do-, 0 for all a 0

must hold for each realization of the ex ante sunspot.

Theorem 5.1.1 An allocation and price are a transfer payment equilibrium in the lottery

ticket economy if the equivalent allocation and price function are a transfer payment
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equilibrium in the two-period sunspot economy. An allocation and constant price function

are a transfer payment equilibrium in the sunspot economy if the equivalent allocation

and price function are a transfer payment equilibrium in the two-period lottery ticket

economy. In both cases the size of the transfer payments are the same in the two

economies.

Next we consider production. All production is assumed to take place at the level

of the household. Of critical importance to the model is whether production takes place

before or after the realization of idiosyncratic shocks. If it takes place after the realization

of shocks, then it can be incorporated directly into the consumption set X`, but allowing

net trades that can be achieved through a feasible household production plan. However,

the traditional model of moral hazard involves production that takes place prior to the

realization of private information. In the standard moral hazard model, observed output is

produced from unobserved effort; more effort increases the probability of producing high

levels of output. Notice that the assumption that inputs change the probability of states is

not consistent with the usual general equilibrium formulation in which states and their

probabilities are exogenously fixed. This can be understood through a simple example:

effort may be between 0 and 1; output may be either 0 or 1, and the probability of getting

a unit of output is equal to the amount of effort expended. To eliminate probabilities from

the production function, we use a standard trick of imagining that there are a continuum

of states s e [0,1]. If the effort level is e then output in states s 5 e is 1 and in states s > e

is O.



22

Figure 5.1: Output as a Function of Effort in State s

Notice that this production technology is not convex, which is why lotteries may plan an

important role with production. Since effort is unobservable, and can be inferred from the

state, we should assume here that the state is private information. Here an announcement

of the state is equivalent to an announcement of the effort level.

Notice that in this setting with production ex ante lotteries play a distinct role

from ex post lotteries: ex ante lotteries can be used to coordinate production decisions,

while ex post lotteries can be used to weaken the incentive constraints; in the previous

setting ex post lotteries can substitute for ex ante lotteries but not conversely. Here,

neither type of lottery can substitute for the other.
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