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1. Introduction

This paper examines the evolution of the relationship between population growth,

technological change, and the standard of living. It develops a unified model that encom-

passes three distinct regimes that have characterized the process of economic develop-

ment. We call these regimes "Malthusian," "Post-Malthusian," and "Modern Growth."

The analysis focuses on two differences between these regimes: first, in the behavior of

income per capita, and second, in the relationship between the level of income per capita

and the growth rate of population.

The modern growth regime is characterized by steady growth in both income per

capita and the level of technology. In this regime there is a negative relationship between

the level of output and the growth rate of population: the highest rates of population

growth are found in the poorest countries, and many rich countries have population

growth rates near zero.

At the other end of the spectrum is the Malthusian regime. Technological progress

and population growth were glacial by modern standards, and income per capita was

roughly constant. Further, the relationship between income per capita and population

growth was the opposite of that which exists today: "The most decisive mark of the

prosperity of any country," observed Smith (1776), "is the increase in the number of its

inhabitants."

The Post Malthusian regime, which fell between the two just described, shared one

characteristic with each of them. Income per capita grew during this period, although

not as rapidly as it would during the Modern Growth regime. At the same time, the

Malthusian relationship between income per capita and population growth was still in

place. Rising income was reflected in rising population growth rates. The key event that

separates the Malthusian and Post-Malthusian regimes is the acceleration in the pace of

technological progress, while the event that separates the Post-Malthusian and Modern
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Growth eras is the demographic transition.

The most basic description of the relation between population growth and income

was proposed by Malthus (1798). The Malthusian model has two key components. The

first is the existence of some factor of production, such as land, which is in fixed supply,

implying decreasing returns to scale for all other factors. The second is a positive effect

of the standard of living on the growth rate of population. According to Malthus when

population size is small, the standard of living will he high, and population will grow as a

natural result of passion between the sexes. When population size is large, the standard

of living will be low, and population will be reduced by either the "preventive check"

(intentional reduction of fertility) or by the "positive check" (malnutrition, disease, and

famine).

The Malthusian model implies that, in the absence of changes in the technology or

in the availability of land, the population will be stable around a constant level. Further,

improvements in technology will, in the long run, be offset by increases in the size of the

population. Countries with superior technology will have denser populations, but the

standard of living will not be related to the level of technology, either over time or across

countries.

The Malthusian model's predictions are consistent with the evolution of technology,

population, and output per capita for most of human history. First, the standard of

living was roughly constant. Maddison (1982) estimates that the growth rate bf GDP

per capita in Europe between 500 and 1500 was zero. Lee (1980) reports that the real

wage in England was roughly the same in 1800 as it had been in 1300. Clark (1957)

concludes that income per capita in Greece in 400 BC was roughly equivalent to that in

Britain in 1850 or Germany and France in 1870. According to Chao's (1986) analysis,

real wages in China were lower at the end of the 18th century than they had been at

beginning of the first century. Mokyr (1990), Lucas (1996), and Pritchett (1997) argue
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that even in the richest countries, the phenomenon of trend growth in living standards

is only a few centuries old. Similarly, population growth was nearly zero, reflecting the

slow pace of technological progress. For example, Livi-Bacci (1997) estimates the growth

rate of world population from the year 1 to 1750 at 0.064 percent per year. And yet this

growth represented a great increase over the rates in earlier periods (Coale, 1974).1

Fluctuations in population and wages also bear out the predictions of the Malthu-

sian model. Lee (1997) reports positive income elasticity of fertility and negative income

elasticity of mortality from studies examining a wide range of pre-industrial countries.

Similarly, Wrigley and Schofield (1981) find that there was a strong positive correlation

between real wages and marriage rates in England over the period 1551-1801. Negative

shocks to population, such as the Black Death, were reflected in higher real wages and a

lower age of marriage (Livi-Bacci, 1997). In North-West Europe, the Malthusian "pre-

ventive check" was enforced by late marriage, as couples were forced to inherit or save up

to buy a shop, cottage, or farm before marrying. But settlers from that region who came

to the American colonies, where land was abundant, married early and bred prolifically.

(Stone, 1977; Haines, 1997).

Finally, the prediction of the Malthusian model that differences in technology

should be reflected in population density but not in standards of living is also borne

out. As argued by Easterlin (1981), Lucas (1996), and Pritchett (1997), prior to 1800

differences in standards of living among countries were quite small by today's standards.

And yet there did exist wide differences in technology. China's sophisticated agricultural

technologies, for example, allowed high per-acre yields, but failed to raise the standard of

living above subsistence. Similarly in Ireland a new productive technology – the potato

allowed a large increase in population over the century prior to the Great Famine

'Note that in the absence of a fixed factor of production, this near constancy of population would
require an unlikely specification of preference parameters.



without any improvement in standards of living. 2 Using this interpretation, Kremer

(1993) argues that changes in the size of population can be taken as a direct measure of

technological improvement.

Ironically, it was only shortly before the time that Malthus wrote that humanity

began to emerge from the trap that he described. Figure 1 shows the growth rate of total

output in Western Europe between the years 500 and 1990, as well as the breakdown

between growth of output per capita and growth of population.' The figure demonstrates

that the process of emergence from the Malthusian trap was a slow one. The growth

rate of total output in Europe was 0.3 percent per year between 1500 and 1700, and

0.6 percent per year between 1700 and 1820. In both periods : two-thirds of the increase

in total output was matched by increased population growth, so that the growth of

income per capita was only 0.1 percent per year in the earlier period and 0.2 percent per

year in the later one. In the United Kingdom, where growth was the fastest, the same

rough division between total output growth and population growth can be observed:

Total output grew at an annual rate of 1.1 percent in the 120 years after 1700, while

population grew at an annual rate of 0.7 percent.

Thus the initial effect of faster income growth in Europe was to increase population.

Income per capita rose much more slowly than did total output. And as income per capita

rose, population grew ever more quickly. Only the fact that output growth accelerated

allowed income per capita to continue rising. During this Post-Malthusian Regime, the

Malthusian mechanism linking higher income to higher population growth continued to

function, but the effect. of higher population on diluting resources per capita, and thus

lowering income per capita, was counteracted by technological progress, which allowed

income to keep rising.

2 Livi-Bacci (1997).
3 Data for 500-1820 are from Maddison (1982) and apply to all of Europe. Data for 1820-1990 are

from Maddison (1995), table C, and apply to Wmtern Europe.
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Both population and income per capita continued to grow after 1820, but increas-

ingly the growth of total output was expressed as growth of income per capita. Indeed,

while the rate of total output growth increased, the rate of growth of population peaked

in the 19th century and then began to fall. Population growth was 40 percent as large

as total output growth over the period 1820-1870, but only 20 percent as large as to-

tal output growth over the period 1929- 1990, Over the next several decades much of

Western Europe is forecast to have negative population growth.

The dynamics of population growth reflected both changes in constraints and quali-

tative changes in household behavior induced by the economic environment. The Malthu-

sian demographic regime had been characterized by high levels of both fertility and

mortality. As living standards rose, mortality fell. Between the 1740s and the 1840s,

life expectancy at birth rose from 33 to 40 in England and from 25 to 40 in France

(Livi-Bacci, 1997). Fogel (1997) estimates that 85 percent of the decline in mortality in

France between 1785 and 1870 was due simply to better nutrition. Mortality reductions

led to growth of the population both because more children reached breeding age and

because each person lived for a larger number of years. The initial effect of higher income

was also to raise fertility directly, primarily by raising the propensity to marry. Fertility

rates increased in most of Western Europe until the second half of the nineteenth century,

peaking in England and Wales in 1871 and in Germany in 1875. 4 Thus, in Malthusian

terms, the positive check was being weakened and the preventive check was being less as-

siduously enforced. But as income continued to rise, population growth fell further below

the maximum rate that could be sustained given the mortality regime. The reduction

in fertility was at its most rapid in Europe around the turn of the century. In England,

for example, live births per 1000 women aged 15-44 fell from 153.6 in 1871-80 to 109.0

'See Dyson and Murphy (1985), and Coale and Treadway (1986). The exception was France, where
fertility started to decline in the early 19th century.
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in 1901-10. 8 The reversal of the Malthusian relation between income and population

growth corresponded to an increase in the level of resources invested in each child. For

example, the average number of years of schooling in England and Wales rose from 2.3

for the cohort born between 1801 and 1805 to 5.2 for the cohort born 1852-56 and 9.1

for the cohort born 1897-1906. 6

The emergence from the Malthusian trap raises intriguing questions. How is it

that the link between income per capita and population growth, which had for so long

been a constant of human existence, was so dramatically severed? And how does one

account for the sudden spurt in growth rates?

The existing literature on the relation between population growth and output has

tended to focus on only one of the regimes described above. The majority of the literature

has been oriented toward the modern regime, trying to explain the negative relation

between income and population growth either cross-sectionally or within a single country

over time. Among the mechanisms highlighted in this literature are that higher returns

to child quality in developed economies induce a substitution of quality for quantity

(Becker, Murphy, and Tamura, 1990); that developed economies pay higher relative

wages of women, thus raising the opportunity cost of children (Galor and Weil, 1996);

and that the net flow of transfers from parents to children grows (and possibly switches

from negative to positive) as countries develop (Caldwell, 1976). 7 The negative effect

of high income on fertility is often examined in conjunction with a model in which high

fertility has a negative effect on income due to capital dilutions

Two recent papers concerned with the Malthusian regime are Lucas (1996) and

Kremer (1993). The former presents a Malthusian model in which households make

8 Wrigley (1969).
'Matthews, Feinstein, and Odling-Smee (1982), 'fable E.1.

7See Birdsall (1988), Ehrlich and Lui (1997), and Schultz (1997) aml for surveys of the literature in
this area.

8 1t is interesting to note that the effect of population growth on the level of natural resources per
capita, which is at the center of the Malthusian model, is absent in current growth literature.
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.1:

optimizing choices over fertility and consumption, but it does not model the transition

out of this regime. The latter develops a model in which the rate of technological progress

is proportional to the size of the population. The model produces an acceleration in the

growth rate of total output, as in the Post-Malthusian regime, but the level of output

per capita remains constant and the demographic transition does not follow .°

The goal of this paper is to describe the history described above - from the Malthu-

sian regime, through the Post-Malthusian regime and the demographic transition, to the

Modern Growth regime - in a single, unified model. At the heart of our model is a novel

explanation for the reduction in fertility that has allowed income per capita to rise so

far above subsistence. Most studies of the demographic transition focus on the effect

of a high level of income in inducing parents to switch to having fewer, higher quality

children. In our model, parents also switch out of quantity and into quality, but do so

not in response the level of income but rather in response to technological progress. In

particular, we argue that the "disequilibrium" brought about by technological change

raises the rate of return to human capital, and thus induces the substitution of quality

for quantity.

The argument that technological progress itself raises the return to human capital

was most clearly stated by Schultz (1964). Examining agriculture, Schultz argued that

when productive technology has been constant for a long period of time, farmers will

have learned to use their resources efficiently. Children will acquire knowledge of how to

deal with this environment directly from observing their parents, and formal schooling

9See also Eckstein, Stern, and Wolpin (1988). Another strand of literature has attempted to model
the acceleration of output growth at the time of the Industrial Revolution without considering the
determinants of population growth. Goodfriend and McDermott (1995) examine a model in which
the economy endogenously moves through periods of primitive home production and pre-industrial
specialization before experiencing an industrial revolution and a quickening in the growth of income
per capita. The driving force behind these transitions is the growth of population, which is taken as
exogenous. In the model of Acemoglu and Zilibotti (1997), there is a long period of slow, uneven growth
before an economy finally takes off into a regime of steady growth, but population growth plays no role
in the process.



will have little economic value. But when technology is changing rapidly, the knowledge

gained from observing the previous generation will be less valuable, and the trial-and-

error process which led to a high degree of efficiency under static conditions will not have

had time to function. New technology will create a demand for the ability to analyze and

evaluate new production possibilities, which will raise the return to education. Schultz

(1975) cites a wide range of evidence in support of this theory. Similarly, Foster and

Rosenzweig (1996) find that technological change during the green revolution in India

raised the return to schooling, and that school enrollment rates responded positively to

this higher return. Such an effect would be a natural explanation for the dramatic rise

in schooling in Europe over the course of the 19th century.

The effect of technology on the return to human capital in which we are most

interested is the short run impact of a new technology. In the long run, technologies

may either be "skill biased" or "skill saving." But we would argue that the introduction

of new technologies is mostly skill biased. rn For example, Williamson (1985; Table 3.7)

concludes that early industrialization raised the return to skills. The ratio of average

wages of skilled workers to unskilled workers in Britain rose from 2.45 in 1815 to 3.77 in

1851, whereas the 60 years after 1851 saw a significant reduction in wage inequality." If

technological changes are skill-biased in the long run, then the effect on which we focus

will be enhanced, while if technology is skill-saving then our effect will be diluted.

The second piece of the model is more straightforward: the choice of parents re-

garding the education level of their children has implication for the speed of technological

progress. Children with high levels of human capital are in turn more likely to advance

the technological frontier. For example, Cameron (1989) finds a high correlation between

the level of education and the speed of industrialization in Nineteenth century Europe. 12

mSee Galor and Tsiddon (1997) as well.
"The issue of whether technology has been skill-complementing is far from settled - See Goldin and

Katz (1996) for a discussion.
"Easterlin (1981) and Bartel and Lichtenberg (1987) find that educated individuals have a compar-
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We also allow the overall size of the population to positively influence the growth rate

of technology, as in Kremer (1993) and Jones (1995).

The final piece of our model is the most Classical: as population rises, the land

to population ratio falls, and the wage falls. If technology is static, then the size of the

population is self-equilibrating. But technological progress can undo this mechanism,

allowing wages to rise.

The model produces a Malthusian "pseudo steady state" that will be stable over

long periods of time, but will vanish endogenously in the long run. In this Malthusian

regime output per capita is stationary. Technology progresses only slowly, and is reflected

in proportional increases in output and population. Shocks to the land to labor ratio will

induce temporary changes in the real wage and fertility, which will in turn drive income

per capita back to its stationary, equilibrium level. Because technological progress is slow,

the return to human capital is low, and so parents have little incentive to substitute child

quality for quantity.

The key effect which makes the Malthusian pseudo steady state vanish in the

long run is the impact of population size on the rate of technological progress. At a

sufficiently high level of population, the rate of population-induced technological progress

will be high enough that parents will find it optimal to provide their children with some

human capital. At this point, a virtuous circle develops: higher human capital raises

technological progress, which in turn raises the value of human capital.

Increased technological progress initially has two effects on population growth. On

the one hand, improved technology eases households' budget constraints, allowing them

to spend more resources on raising children. On the other hand, it induces a reallocation

of these increased resources toward child quality. In the Post-Malthusian regime, the

former effect dominates, and so population growth rises. Eventually, however, more

ative advantage in implementing new technologies. Growth models in which a higher level of education
raises the speed of technological progress include Lucas (1988) and Azariades and Drazen (1990).



rapid technological progress due to the increase in the level of human capital triggers a

demographic transition: wages and the return to child quality continue to rise., the shift

away from child quantity becomes more significant, and population growth declines. In

the Modern Growth regime, technology and output per capita increase rapidly, while

population growth is moderate.

The rest of this paper is organized as follows. In Section 2, we formalize the

assumptions about the determinants of fertility and relative wages presented above, and

incorporate them into an overlapping generations model. Section 3 derives the dynamical

system implied by the model, and analyzes the evolution of the economy along transitions

to the steady state. Section 4 concludes by discussing possible extensions of the model.

2. The Basic Structure of the Model

Consider a small, open, overlapping-generations economy that operates in a per-

fectly competitive world where international capital movements are unrestricted and

economic activity extends over infinite discrete time.' In every period the economy pro-

(Imes a single homogeneous good that can be used for either consumption or investment.

The good is produced using physical capital, efficiency units of labor, and land.

In every period the three factors of production are supplied in competitive factor

markets. The supply of capital and labor are endogenously determined while the supply

of land is exogenous arid fixed over time. The stock of physical capital in every period

is given by the sum of the economy's aggregate saving and international borrowing, net

of the aggregate value of land purchases. The number of efficiency units of labor is

determined by households' decisions in the preceding period regarding the number and

level of human capital of their children.

"The assumption of capital mobility and an exogenous, constant world interest rate is made for
analytic tractability. As will become apparent, capital has no role in the mechanism that we examine
and the qualitative results would not be changed if the supply of capital were endogenously determined
in a closed economy.
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2.1 Production of Final Output

Production occurs within a period according to a constant-returns-to-scale neoclas-

sical production technology that is subject to endogenous technological progress. The

output produced at time t, Yt , is

Yt BtKfHt"(1-)3)x0--00(1-$),	 (1)

where K1 , H1 , and X are the quantities of capital, efficiency units of labor, and land,

employed in production at time t, a E (0,1) and p e (0, 1) are parameters which are

fixed over time, and B1 > 0, represents the endogenously determined technological level

at time t. The production function is therefore strictly increasing and concave, satisfying

the neoclassical boundary conditions which assure the existence of an interior solution

to the producer's profit-maximization problem.

Producers operate in a perfectly competitive environment. Given the wage rate

per efficiency unit of labor, the interest rate on capital, and the rent on land, producers

determine the level of employment of labor, capital, and land so as to maximize profits.

Suppose that world interest rate is constant at a level r > 0. Since the small economy

permits unrestricted international lending and borrowing, its interest rate will also be

T. The amount of capital employed in production at time t is therefore a function of

Bt , Ht , X, 7, a and O. Substituting the level of capital into the production function yields:

Yt 	 HI(AtX)(1') ,	 (2)

where the state of technology at time t is represented by the technological parameter,

At ap(1-a) Romm1_,9)Btv(i-p)pio_aN./ 14 The multiplicative form in which tech-

nology, At , and land, Xt , appear in the production function implies that the relevant

ei n parameter At is a positive and stationary transformation of the original technological parameter
Bt . Thus changes in At can be used to measure changes in technology. In particular,

A14 1 	 / Bt+i il(1-13)(1-
At kThr
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factor for the output produced is the product of the two, which we define as "effective

resources."

Output per worker produced at time t, y,, is therefore

yr = hi Xt(I-(t)	 )Xtb
	

(3)

where

yb (iz t , x,) > 0 (1114 w(h t , :E t ) > 0, V(ht , xt ) >> 0.	 (4)

ht	 Ht/L, is the number of efficiency units of labor per-worker, and x t	 (AtX)I

is effective resources per worker at time t.

Given the structure of the production technology and the competitiveness of mar-

kets, the return to an efficiency unit, of labor at time t, WIT is

where

o(1 — )3)(xti/i.01-"

< 0 and ivi (ht ,x t )> 0, V(ht , x) » 0.

The total return to land (including appreciation) at time t, Pt , and the rate of return

to capital at time t, rt , are equal to one another, since individuals may save either by

purchasing capital or land. Hence, given the constancy of world interest rate at the level

7", it follows that pt = rt = T.15

2.2 Individuals: Fertility, Human Capital, Saving, and Consumption

In each period t a generation that consists of Lt individuals joins the labor force.

Each individual has a single parent. Individuals within a generation are identical in

In the rest of the paper we specify technological progress in terms of At , but we could have done so in
terms of Bt.

15The price of land is determined implicitly so as to assure that, given the marginal productivity of
land, the rate of return on land will be equal to f. As will become apparent, an explicit analysis of the
evolution of the. price of land is nut necessary.
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their preferences and their level of human capital. Members of generation t live for three

periods. I6 In the first period of life (childhood), t — 1, individuals consume a fraction of

their parent's time. The required time increases with children's quality. In the second

period of life (parenthood), t, individuals are endowed with one unit of time, which they

allocate between childrearing and labor force participation. They choose the optimal

mixture of quantity and quality of children and supply their remaining efficiency units

of labor in the labor market. They earn the competitive market wage per each efficiency

unit of labor and save their income for future consumption. In the third period of life

(old age), t + 1, individuals do not work. They consume their savings from the previous

period along with accrued interest.

2.2.1 Preferences

The preferences of members of generation t, which are defined over consumption in

old age, above a subsistence level 3 > 0, as well as over the potential aggregate income of

their children are depicted in Figure 2.' 7 They are represented by the utility function's

ut	 (c,±0(1-7)(wt+intht+i)7
	

(7)

where nt is the number of children of individual t, ht+/ is the level of human capital

of each child, and wt+1 is the wage per efficiency unit of labor at time t 1.19

/8 In order to simplify the notation, a generation is indexed by the period in which it participates in
the labor market (i.e., parenthood).

17The consumption set, i.e., the set of (physiologically) feasible consumption bundles, is:
{(ct-vi, wt+intht±i ) E	 :	 � al

18 The second component of the utility function may represent either intergenerational altruism, or
implicit concern about potential support from children in old age along the lines of the old-age security
hypothesis. The interpretation that emphasizes intergenerational altruism reflects an implicit bounded
rationality on the part of the parent. Alternative formulations according to which individuals generate

4 utility from the utility of their children, or from the actual aggregate income of their offspring would
require parental predictions about the chosen fertility mixture of their dynasty or offspring. These
approaches would greatly complicate the model without changing the qualitative results.

19 The introduction of consumption in the second period of life, t, does not change the qualitative
results. Maintaining the Cobb-Douglas specification, the fraction of output saved in period t would be
constant. Thus the dynamical system that governs the evolution of the economy would be altered only
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The utility function is strictly monotonically increasing and strictly quasi-concave,

satisfying the conventional boundary conditions that assure that, for sufficiently high

income, there exists an interior solution for the utility maximization problem. However,

as depicted in Figure 3, for a sufficiently low level of income the subsistence consumption

constraint is binding and there is a corner solution with respect to the consumption

level.20

2.2.2 Budget Constraint: Quantity-Quality of Children Vs. Consumption

Following the standard model of household fertility behavior (Becker. 1960) it is

assumed that the household chooses the number of children and their quality in the face

of a constraint on the total amount of time that can be devoted to child-raising and labor

market activities. We further assume that the only input required to produce both child

quantity and child quality is time.' Since all members of a generation are identical in

their endowments, the budget constraint is not affected if child quality is produced by

professional educators rather than by parents.

Let -r q + Teet+1 be the time cost for a member of generation t of raising a child

with an education level 6t4-1•22 That is, Tq is the fraction of the individual's unit time

endowment that is required in order to raise a child, regardless of quality, and re is the

fraction of the individual's (or of an equally educated teacher's) unit time endowment

that is required per each unit of education of each child.23

by a multiplicative constant.
2°As will become dear below, the presence of a subsistence consumption constraint provides the

Malthusian piece of our model. The formulation that we use implicitly stresses a "demand" explanation
for the positive income elasticity of population growth at low income levels, since higher income will
allow individuals to afford more children. However, one could also cite "supply" factors, such as declining
infant mortality and increased natural fertility, to explain the same phenomenon. See Birdsall (1988)
and Olsen (1994).

21 1f both time and goods are required in order to produce child quality, the process we describe would
be intensified. As the economy develops and wages increase, the relative cost of a quality child will
diminish and individuals will substitute quality for quantity of children

22 cen measures the level of education (quality) of the child in the second period of life t+ 1.
23The existence of economies of scale in raising quantity and quality children would raise the number

of children and their quality in every period, but the patterns of changes in these absolute magnitudes
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Consider members of generation t who are endowed with ht efficiency units of labor

at time t. Define potential income, zt , as the amount that they would earn if they devoted

their entire time endowment to labor force participation: Zt a wt ht . Since individuals

do not generate utility from consumption at time t, their potential income is divided

between expenditure on child rearing (quantity as well as quality), at an opportunity

cost of wt ht [rq + reet+i] per child, and savings for future consumption, s t . Hence, in

the second period of life (parenthood), the individual faces the budget constraint:

wthtnt(rq + reet+ i ) + st < wtht•	 (8)

In the third period of life, a member of generation t consumes the value of savings

with accrued interest. Hence,

ct1i	 st (1 + r).	 (9)

2.2.3 The Production of Human Capital

An individual's level of human capital is determined by his quality (education) as

well as by the technological environment. Incorporating the insight of Schultz (1964)

discussed above, technological progress is assumed to raise the value of education in

producing human capital?' The level of human capital of children of members of gener-

ation t, ht+i , is an increasing function of their quality (education), et+l , and a decreas-

ing function of the rate of progress in the state of technology from period t to period

t 1, ,gt+1 (At+t — At. The higher is children's quality, the smaller is the adverse

effect of technological progress.

ht-fri	 h(et-it 9t+i),	 (10)

would not differ qualitatively.
24Technological progress changes the nature of occupations, and reduces the adaptability of exist-

ing human capital for the new technological environment. That is, in the presence of technological
progress, the applicability of level of human capital that can be absorbed from the existing technological
environment erodes.
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where V(c,..4. 1	 ) > 0,

• h e (e t+1 , gt+i) > 0; hee(c14-1 , 9t+1) <

(Al)
	 • hg(et+i, gt+i) < 0; h99 ( et+1,9t+1) > 0; ite9 (et+1,9t+1) > 0.

• h(c t4. 1 , 9, 4. 1 ) > 0; lim9„,, h(O, 914. 1 ) = 0;

Hence, the individual's level of human capital is an increasing, strictly concave function

of the quality (education), and a decreasing strictly convex function of the rate of tech-

nological progress. 25 Furthermore, education lessens the adverse effect of technological

progress. That is, technology complements skills in the production of human capital.

The higher the rate of technological progress the higher the relative return to quality.

Moreover, although the number of efficiency units of labor per- worker is diminished

during the transition from one technological state to another - the 'erosion effect' - the

effective number of the efficiency units of labor per worker, which is the product of

the workers' level of human capital and the economy's technological state (reflected in

the wage per efficiency unit of labor), is presumably higher as a result of technological

progress. That is, the overall effect of technological progress from period t to period t +1

on the potential income of members of generation t + 1 may be positive. Furthermore,

once technology returns to a stationary state, the 'erosion effect' is eliminated, whereas

the positive 'productivity effect' is still in place.

2.2.4 Optimization

Members of generation t choose the number and quality of their children, and there-

fore their own savings and old-age consumption, so as to maximize their intertemporal

utility function. Substituting (8)-(10) into (7), the optimization problem of a member

25Strict convexity with respect to gt+t and the boundary condition are not essential. They are d esigned
to assure that the level of human capital will not become zero at high rates of technological progre ss .
Alternative assumptions will not affect the qualitative analysis.
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of generation t is:

{flt , et± i }	 argmax{ (1 ± T)Wt ht [1 — n.t (rq + reet4-1)]}	
r 

k Wii-Int h (et±/ 9t+1)}7 (11)

subject to:
	

(1 +f)wt ht (1 — n t (rq + rect.+1)1 > O.

(nt , et+i) �. 0.

The optimization with respect to nt implies that, as long as potential income at

time t is sufficiently high so as to assure that ct+J. > 6, the time spent by individual

t raising children is a fixed fraction y, whereas the remaining fraction 1 — 7 is devoted

for labor force participation. However, for low levels of potential income, the inequality

constraint binds. The individual consumes the subsistence level, e, and uses the rest of

the time endowment for childrearing. That is,

7	 if Ct+1 > e
nt[79 7eet+11 =
	

(12)
1 — rdAi -1-7)Wthti if et-F1 = E.

As follows from the budget constraint - (8) - the saving of individual t, st , is therefore

(1— 7)wt ht if ct+i > e
st	 (13)

e/(1 +T-)	 if et+i

Since c,t+i = st(1 rt+i), it follows from (13) that ,

>c	 if zt wt ht >
Ct+1
	 (14)

= c	 if zt wthi <

where,

	

:=7.- C/(1 — 7)(1 +T), 	 (15)
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is the critical level of potential income above which the individual chooses to consume

more than the subsistence level and below which the individual consumes the subsistence

level.

As long as the potential income of a member of generation t, z,	 is below

then the fraction of time necessary to assure subsistence consumption, is larger than

1 – ry and the fraction of time devoted for child rearing is therefore below 7. As the

wage per efficiency unit of labor increases, the individual can generate the subsistence

consumption with smaller labor force participation and the fraction of time devoted to

childrearing increases.' As will become apparent from Proposition 1, the entire increase

in the fraction of time devoted to childrearing is used to raise the quantity of children

without a change in quality. As long as potential income of a member of generation

t, uy,h„ is higher than the subsistence consumption constraint is not binding and

a constant fraction of the unit time endowment, 7, is devoted to child rearing regardless

of how high wages are. Hence further increases in wages are devoted entirely to increased

consumption.

Figure 3 shows the effect of an increase in potential income on the individual's

choice of total time spent on children and consumption. As is apparent from the diagram

the income expansion path is vertical until the level of income passes the critical level that

permits consumption to exceed the subsistence level. Thereafter, the income expansion

path becomes horizontal at a level 7 in terms of time devoted for childrearing.

Regardless of whether potential income is above or below increases in wages

will not change the division of child-rearing time between quality and quantity. What

does affect the division between time spent on quality and time spent on quantity is the

26 1)urand (1975) and Goldin (1994) report that, looking across a large sample of tomtits, the re-
lationship between women's labor force participation and income is U-shaped. The model presented
here explains the negative effect of income on labor force participation for poor countries, and further
predicts that this effect should no longer be operative once potential income has risen sufficiently high.
It does not, however, explain the positive effect of income on participation for richer countries. See,
however, Galor mid Weil (1997) for a model that doe.: explain this phenomenon.
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1et+i > 0
(16)

< 0	 if et+i. = 0,
G +1 , gt+i )	 (rq +re et+i)he(et+i, 9t+i) —re h(et+ i , gt+i)

=0 if

rate of technological progress, which changes the return to education. Specifically, using

(12), the optimization with respect to et± i implies that independently of the subsistence

consumption constraint

where as follows from (Al), Vgt± i > 0, and Vet+i > 0.

Ge(et+i, 9t+i) = (r + r e et÷i )h„(et+i , gt + 1) < 0;
(17)

G g(ei+t, 9t+i) = (7-Q + et+i )Iteg (et+i , gt+i ) — rehg(et+ii 9t+i) > 0.

In particular, as will become apparent from the proof of Lemma 1 , to assure the

existence of a positive level of gf+1 such that the chosen level of education is 0, it is

assumed that:

	

(A2)	 G(0, 0) = r9 he (0, 0)	 — r eh(0, 0) < 0.

The functional relationship between e t_14 and gt+i as depicted in Figure 4, is

derived in Lemma 1.

Lemma 1. If (Al) and (A2) are satisfied, then the level of education chosen by members

of generation t for their children is an increasing function of

	

= 0	 if 9t+i 59

	

et+i e(9t+i) 
1 > 0	 if gt+i >

where, a > 0, and

ei (9t+i) > 0	 V9t+1>
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Proof. As follow from (Al) and (16), G(0, gr+i ) is monotonically increasing in 9,4_1.

Furthermore, (Al) implies that lim m „,„ G(0, gt+ r) > 0, whereas (A2) imples that

G(0, 0) < 0. Hence, there exists g > 0 such that G(0, g) = 0, and therefore, as follows

from (16) e t + i = 0 for	 <	 Furthermore, it follows from (17) that e t+i is a single

valued function of gt4.1, where e i-ii(gt+1) = — Gg( e t+11 ih+1)/Ge( et+1) gt-F1) > 0.	 0

As is apparent from (17), e"(g t+i ) depends upon the third derivatives of the pro-

duction function of human capital. A concave reaction of the level of education to the

rate of technological progress appears plausible economically, hence it is assumed that'

(43)
	

C"(gt+i) < 0	 V97-1-1 >

Furthermore, substituting e t .+. 1 = e(gtifj ) into (12), using (14), it follows that rt, is

a single-valued function:

79-t-T-e(gt+t)

n t =

	  — na (gt+1,zt) ifTc.,--recgt+t)

where as follows from (5), (10), and the definition of zt,

‘	 -a)
zt	 Wt ht = a(1 – pait(t

1
	z(e,,gt,xt),	 (19)

where as follows from (Al) V(et,gt,xt) >> 0 , 28

'Alternatively, if e(gt+i ) is strictly convex we may assume that for physiological or other reasons,
the maximum amount of education that a child can receive is bounded from above. In the model we
ignore integer constraints on the number of children, so that absent a constraint on the quality per child,
parents might choose to have an infinitesimally small number of children with infinitely high quality.
Thus the existence of integer constraints in the real world may be taken as one justification for an upper
bound on level of education.

28 1t should be noted that while the partial derivative of h with respect to gt is negative (holding xt
and thus A, constant), the total derivative of zt with 'aspect to sit (holding A t _ I constant) may positive.

116(gt+1)	 if z, >'Y 

zt

(18)
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ze(et , gt , it ) > 0, 23;(et; gt,	 > 0, 29 (et, 9t; xt) < 0,	 (20)

The following proposition summarizes the properties of the intertemporal func-

tions e(gt+i), na (xt.,9t+i); and nb (gt+i) and their significance for the evolution in the

substitution of quality for quantity in the process of development:

Proposition 1. Under (A1)-(A4)

(a) Technological progress that is expected to occur between the first and second periods

of children's lives results in a decline in the parents' chosen number of children and an

increase in their quality.

• ant /agt+i < 0

• aei+11 agt.+1 � 0;

(b) If parental potential income is below 2 (i.e., if the subsistence consumption constraint

is binding), an increase in parental potential income raises the number of children, but

has no effect on their quality.

• ant/ Ozt >.0 if zt <

• aet±i / O.; = 0 i f zt <

(c) If parental potential income is above an increase in parental potential income does

not change the number of children or their quality.

• Orti lazt = 0 if zt >

• Det+1,/azt =- 0 if zt >

Proof. Follows directly from Lemma 1, (12)-(18), and assumptions (A1)-(A4). 	 q

Corollary 1. Under (A1)-(A4)

(a) If parental potential income is below 2 (i.e., if the subsistence consumption constraint

is binding), an increase in the effective resources per worker raises the number of children,

but has no effect on their quality.

• ant / axt > 0 if zt <
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• Det±i /art = 0 if zt <

(b) if parental potential income is above 	 an increase in the effective resources per-

worker does not change the number of children or their quality.

• ant /ax, --= 0 if zt >

• ae, +1 /0x, --= 0 if zt>

Proof. In light of parts (b) and (c) of Proposition 1, the corollary follows directly from

the fact that z, increases in xt as established in (20).	 q

2.3 Technological Progress

Suppose that technological progress, gt+i , that takes place between periods t and

t + 1 depends upon the education per capita among the working generation in period

e t , and the population size in period t, L t . 29

9(et)f (Li)
	

(21)

where3"

g(0) > 0, !IVO> 0, and g"(e,) < 0, Vet > 0;
(22)

f(Lt) >	 f'(L,) > 0, and f"(L t ) < 0, Wit > 0;

Hence, the rate of technological progress between time t and t + 1 is a positive,

increasing, strictly concave function of the size and level of education of the working

generation at time t. Furthermore, the rate of technological progress is positive even if

labor quality is zero.

As will become apparent, the dynamical system of the described economy is rather

complex. Population size does not play a qualitative role in the evolution of the economy,

2°We consider a modific&ton of equaiton (21) along the lines suggested lv Jones (1995) in Section
3.2.2.

30 1t should be noted that since e t is pre-determined in period t — 1, the state of technology that will
be used for production in period t + I is known prior to the time in which members of generation t
choose the education level of their children.

Yeti
At+1

At
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except for its significant role in the takeoff from the Malthusian Regime. Hence, in

order to simplify the exposition without affecting the qualitative results, the dynamical

system is analyzed initially under the assumption that population size has no effect on

technological progress. In particular, let

(A4)
	

f (Li) = 1
	

` t > O.

In later stages of the analysis the effect of the size of population on the relationship be-

tween technological progress and the level of education as specified in (21) is considered.

2.4. The Evolution of Population, Technology, and Effective Resources

The size of population at time t + 1, Lt+ 1 , is

Lt+i	 ntLt ,	 (23)

where Lt is the size of population at time t, nt is the number of children per person,

and nt — 1 is the rate of population growth. The size of the population at time 0 is

historically given at a level Lo.

The state of technology at time t + 1, A t4.1 , as derived from (21), is

At+i = (1 ±	 (24)

where the state of technology at time 0 is historically given at a level Ao.

The evolution of effective resources per worker, x t	(AtXt)/Lt , depends on the

evolution in the technological level and the rate of population growth:

+ ,gt+1
Xt-1-1	 Mt 7	 (25)

rit

where xo A0X11/0 is historically given.

Substituting (19),(21) and (A4) into (18), and (18),(A4),(21) into (25), it follows

that,
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04-2(edift g -f-Te rwed)Ixt = 06 (et)x,	 if zt > 21
.2;14-1 =	 (26)

11+9(edurg+rte(g(conxt 	 ("Net , yt,xt)xti_v/(14-Fiztos,,x0i

where as follows from Lemma 1, (20), and (22) 061 (et ) > 0, and Oc;(et , g,, x,) <	 Vet >

0.

3. The Dynamical System

The development of tile economy is characterized by the evolution of output per

worker, population, technological level, education per worker, human capital per worker,

and effective resources per worker. The evolution of the economy, given (A4) is fully

determined by a sequence {ei , gt , x t }r10 that satisfies (21), (26), and Lemma 1 in every

period t.

The dynamical system is characterized by two regimes. In the first regime the sub-

sistence consumption constraint is binding and the evolution of the economy is governed

by a three dimensional non-linear first-order autonomous system:

xt+1	 95"(er,	 Xr)Xt

et	 = e(g(et))

9t4_1	 9(e(11t),

if zi < z	 (27) 

where the initial conditions eo, go, xo are historically given.

In the second regime the subsistence consumption constraint is not binding and

the evolution of the economy is governed by a two dimensional non-linear first-order

autonomous system:

if z, <
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xt+1 = Ob (et, xt)xt

et+i = e(9(et)).

if zt >	 (28)

In both regimes, however, the analysis of the dynamical system is greatly simpli-

fied by the fact that, as follows from Lemma 1, (21), and (A4), the joint evolution of et

and gt is determined independently of the xt . Furthermore, the evolution of et and gt is

independent of whether the subsistence constraint is binding, and is therefore indepen-

dent of the regime in which the economy is located. The education level of workers in

period t + 1 depends only on the level of technological progress expected between period

I, and period t +1, while technological progress between periods t and t + I depends only

on the level of education of workers in period t. Thus we can analyze the dynamics of

technology and education independently of the evolution resources per capita.

3.1 The Evolution of Technology and Education

The evolution of technology and education, given (A4), is characterized by the

sequence {gt , et } t10 that satisfies in every period t the equations gt+i g(et ), and et±i --c

-e(gt+i ). This dynamical sub-system consists in fact of two independent one dimensional,

non-linear first-order difference equations that can be written as,

et+i = € (9(et)),	 (29)

where the quality of labor in period 0, eo, is historically given, and

gt-Ft = g (e(9t)),
	 (30)

where the rate of technological change from period 0 to period 1, 	 is determined

uniquely by e0 ; g1 = g(eo). Hence, the optimal sequence {et }110 , can be derived di-
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rectly from (29) and the sequence. {g1+1 } 0 , can be generated via (30), or via the static

relationship gi .4. 1 = iget+i).

Although the evolution of the sequences {e t },20, and Igt+i Ma, are fundamentally

disjoint, and hence can be analyzed in either the plain (et+1, et), or the plain (gt+t, lit ), the

structure of this sub-system becomes more apparent in the context of the two dimensional

system depicted in the plain (e,, g t).

In light of the properties of the functions e(ge +1 ) and g(et ) given in Lemma 1,

(A3)-(A4), and (21)-(22), it follows that in any time period, if population size does

play a role in technological progress, this dynamical sub-system is characterized by three

qualitatively different configurations, which are depicted in Figure 4. The economy shifts

endogenously from one configuration to another as population increases and the curve

fAct) shifts upward to account for the effect of an increase in population.

In Figure 4a, for a range of small population sizes, the dynamical system is char-

acterized by globally stable steady-state equilibria. For a given population size in this

range, the steady-state equilibrium is (E, = (0, g 2 ). As implied by (21), the rate of

technological change in a temporary steady state increases monotonically with the size

of population, while the level of education remains unchanged.

In Figure 4b, for a Lange of moderate population sizes, the dynamical system

is characterized by three steady-state equilibria. For a given population size in this

range, there exist two locally stable steady-state equilibria: (e,il)	 (0, gl ) and (E,-g-) =

(0, y"), and an interior unstable steady-state 	 g)	 (e",g"). (eh , gh ) and ge increase.

monotonically with the size of population.

Finally, in Figure 4c, for a range of large population sizes, the dynamical system is

characterized by globally stable steady-state equilibria. For a given population size in this

range, there exists a unique globally stable steady-state equilibrium: (e, g) = (el , ga).

These temporary steady-state levels increase monotonically with the size of population.
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3.2 Global Dynamics

This section analyzes the evolution of the economy from the Malthusian Regime,

through the Post-Malthusian Regime, to the demographic transition and the Modern

Growth regime.

3.2.1 Phase Diagrams

The global analysis is based a sequence of phase diagrams that describes the evolu-

tion of the system within each regime and in the transition between the different regimes.

The phase diagrams, as depicted in Figure 5, are based on three central elements:

The Malthusian Frontier

As was established in (27) and (28) the economy exits from the subsistence con-

sumption regime when potential income, zt , exceeds the critical level 2 ER1 — ey)(1+71.

This switch of regime changes qualitatively the nature of the dynamical system from a

two to a three dimensional system.

Let The Malthusian Frontier be the set of all triplets of (et,xt,th) for which indi-

viduals income equal 2. 31 Using the definitions of zt and 2, it follows from (10), (15)

and (19) that the The Malthusian Frontier, MM, is

MM	 { (et, xt, 9t) a(1 — ,3)ael l-a) h (go gt)Q	(1 7- 7)( 1 + 7)}.	 (31)

Let The Conditional Malthusian Frontier be the set of all pairs (et , xt) for which,

conditional on a given technological level gt , individuals incomes equal 2. Following

the definitions of zt and 2, equations (10), (15) and (19) imply that The Conditional

31 As was shown in Proposition One, below the Malthusian Frontier, the effect of income on fertility will
be positive, while above the frontier there will be no effect of income on fertility. Thus the Malthusian
Frontier separates the Malthusian and Post-Malthusian regimes, on the one hand, from the Modern
Growth regime, on the other.
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Malthusian Frontier, Al Mig„ as depicted in each of the panels of Figure 5, is

MMI9,{(er, xi) a( 1 —0)4')it(et,g/)" = e/( 1 7)( 1 T) I fit).	 (32)

Lemma 2. If (A I) is satisfied, and (e t ,x t ) E M Mfg, then x t is a decreasing strictly

convex function of et.

Proof. Since ht	 ket ,gt ) is an increasing, strictly concave, function of et , the lemma

follows from (32). 	 q

Hence, the Conditional Malthusian Frontier, as depicted in Figure 5, is a strictly

convex, downward sloping, curve in the (e t ,xt ) space. Furthermore, it intersects the xt

axis and approaches asymptotically the et axis as x t approaches infinity. The frontier

shifts upward as th increases in the transition to a modern growth regime.

The XX Locus

Let X X he the locus of all triplets (et , fit , xt ) such that the effective resources per

worker, xt , is in a steady-state:

XX r- {(e,,XtIgt) 2:t4.1 = 30.
	 (33)

In order to simplify the exposition without affecting the qualitative nature of the

dynamical system, the parameters of the model are restricted so as to assure that the

XX Locus is non-empty when xt >	 That is,

(A5)
	

< (VT') — 1 < f(Lo)9(e1(L0))•

Lemma 3. If (A I)-(A5) are satisfied, then for z t >	 there exists a unique value

0 < e < ea , such that xt E XX. Furthermore, for zt >
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>0 if et > e

x i+1 — xt --= 0 if et = e

<0 if et < e

Proof. For zt > it follows from (26) that xt#1 = xt if and only if

oe (et) _ 	 + 9(et)i[TI ree(g(et))) — 1.	 (34)
7

Since cbb (et) is strictly monotonic increasing in e t and since (A5) implies that for all

Lt > 0, 0(0) < 1 and tpb (eH ) > 1, there exists a unique value 0 < e < e l', such that

06(0 = 1 and hence xt E XX. Furthermore, since Ob (et) is strictly monotonically

increasing in et , it follows from (26) that i t.“ > it if and only if 9b (et) > 1 and hence

et > 6, whereas i t .fi < xt if and only if cbb (et) < 1 and hence et < "6.	 q

Hence, the XX Locus, as depicted in Figure 5 in the space (et , xt ), is a vertical line

above the Conditional Malthusian Frontier at a level e.

Lemma 3 holds as long as consumption is above subsistence. In the case where the

subsistence constraint is binding, the evolution of it , as determined by equation (26), is

based upon the rate of technological change, g t , the effective resources per-worker, xt as

well as the quality of the labor force, et.

Let XXig, be the locus of all pairs (e t , it) such that xti4 = it for a given level of

th. That is,

X4,	 {(et, it) : 'try ' 	 it I gt }.	 (35)

Lemma 4. If (A1)1,45) are satisfied, then for zt < and for 0 < et < é, there exists a

single-valued function i t x(et ) such that (x(et ), et ) E X Xlg,. Furthermore, for zt <
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x,,, — it

<

={ >

0

0

0

if

if

if

(et , xi ) > (et , x(et))	 for

3: t =- x(ct )	 for

ke,,x,) < (et , x(et ))	 for

0 < et < I:,

0 < et < 'é,

0 < et < .O. ,1	 or	 fat > al

Proof. As follows from (26), xt . t.,	 xt if and only if

,	 11 + g(et Thrq ree(g(et))) 
ck"(et, gt,	 — 	 1.

1 — [c/(1+71z(et,.9rixf)1

Since ( e t, gt ,:c t ) is strictly monotonic decreasing in x, there exists a single valued func-

tion, :E t x(et ), such that 0"(el , x,I 91 ) = 1 and therefore (e t , x(et )) c X Xtg,. Moreover,

since 4(e t, x t ) is not necessarily monotonic, "Act ) is not necessarily monotonic as

well. Furthermore, since e(e t , x, I gt ) is strictly monotonic decreasing in xt it follows from

(26) that for 0 < c, < a, and for zt < i : (a) xi+ , > x, if and only if it < maxi x(et),

where (et ,xr) E Al Itilig„ and (b) xt4i < x, if and only if xt > x(et ).	 q

Hence, without loss of generality, the locus X4, is depicted in Figure 5, as an

upward slopping curve in the space (et , it ), defined for e t < a. X4, is strictly below

the Conditional Malthusian Frontier for value of e t < a, and the two coincides at a.

Lemma 5. let (e!, -1) E MM Igi . If (Al) and (A5) are satisfied, then (é,i) = X X ig, n
M11/1i 9, n XX

Proof. Let (a,	 E Ali14 19,. It follows from the definition of MME ,,, that z(6,11g,) =

Hence, Lemma 2 implies that (6,1) E XX. Furthermore, since Lemma 2 and 3 are both

valid for z,	 2. , it follows that x(e) 1 and hence (a,1) E X4,.

Hence, the Conditional Malthusian Frontier, the XX Locus, and the X Xig, Locus,

as depicted in Figure 5 in the (e,,x t ) space, coincide at (a,1).

(36)
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The EE Locus

Let EE be the locus of all triplets (e t , gt , xt ) such that the quality of labor, et , is

in a steady-state. That is,

EE	 {(et , xt , gt) : et+i	 (37)

As follows from the analysis in section ' 3.1, the steady-state values of e t are inde-

pendent of the values of x t and gt . The locus EE evolves through three phases in the

process of development, corresponding to the three phases that describe the evolution of

education and technology depicted in Figures 4(a), 4(b), and 4(c).

Panel a. In early stages of development, when population size is sufficiently small,

the joint evolution of education and technology is characterized by a globally stable

temporary steady-state equilibrium, (E, = (0, gt ), as depicted in Figure 4a. The

corresponding EE Locus, depicted in the space (et , xt ) in Figure 5a, is vertical at the

level e 0, for a range of small population sizes. Furthermore, for this range, the global

dynamics of e t in this configuration are given by:

1=-- 0 if et = 0
et+1 — et

	

	 (38)
<0 if et > O.

Panel b. In later stages of development as population size increases sufficiently, the

joint evolution of education and technology is characterized by multiple locally stable

temporary steady-state equilibria, as depicted in Figure 4b. The corresponding EE

Locus, depicted in the space (et , xt) in Figure 5b, consists of 3 vertical lines corresponding

the three steady-state equilibria for the value of e t . That is, e = 0, e e", and e = eh.

The vertical lines e = e", and e eh shift rightward as population size increases.

Furthermore, the global dynamics of e t in this configuration are given by:
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> 0 if

e t+1 r = 0 if

0 if

0 < et < Ch

e t = e h

et > eh.

(40)

et+i – e t

<

=

>

0

0

0

if 0 < e, < e" or et > ch

if	 e t = (0, c",	 eh)

if e" < a < eh .

(39)

Panel c. In mature stages of development when population size is sufficiently large, the

joint evolution of education and technology is characterized by globally stable steady-

state equilibrium at the point (-6, Ti) = (eh , gh ), as depicted in Figure 4c. The correspond-

ing EE Locus, as depicted in Figure 5c in the space (e,, xt ), is vertical at the level e e".

This vertical line shifts rightward as population size increases. Furthermore, the global

dynamics of a in this configuration are given by:

Conditional Steady-State Equilibria

In early stages of development, when population size is sufficiently small, the dy-

namical system, as depicted in Figure 5a in the space (et , xt ), is characterized by a unique

and globally stable conditional steady-state equilibrium. 32 It is given by a point of in-

tersection between the LE Locus and the X X Locus. That is, conditional on a given

technological level, g,, the Malthusian steady-state (0, 727(gt )) is globally stable.33

32Since the dynamical system is discrete, the trajectories implied by the phase diagrams do not
necessarily approximate the actual dynamic path, unless the state variables evolve monotonically over
time. As shown in section 3.1 Coe evolution of c, is monotonic, whereas the evolution and convergence
of x, may be oscillatory. Non-monotonicity may arise only if c < Non-monotonic:Ay in the evolution
of x t does not affect the qualitative description of the system. Plathermorc, if 0` 2 (c t ,gi ,x0x, > –1 the
conditional dynamical system b: locally non-oscillatory. The phase diagrams in Figure 5a-5c are drawn
under the assumptions that assure that there are no oscillations.

3" The loud stability of the steady-state equilibrium (0,31 .90) can be derived formally. The eigenvidues
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In later stages of development as population size increases sufficiently, the dy-

namical system as depicted in Figure 5b is characterized by two conditional steady-state

equilibria. The Malthusian conditional steady-state equilibrium is locally stable, whereas

the steady-state equilibrium (e", e) is a saddle point. 34 In addition for education levels

above e" the system converges to a stationary level of education eh and possibly to a

steady-state growth rate of xt.

In mature stages of development when population size is sufficiently large, There

system convergence globally to an educational level eh and possibly to a steady-state

growth rate of xt.

3.2.2 Analysis

The transition from the Malthusian Regime through the Post-Malthusian regime

to the demographic transition and a Modern Growth regime emerges from Proposition

1, Corollary 1, and Figures 2-5. Consider an economy in early stages of development.

Population is low enough that the implied rate of technological change is very small, and

parents have no incentive to provide education to their children. As depicted in Figure

4a in the space (et , gt ), the economy is characterized by a single temporary steady-state

equilibrium in which technological progress is very slow and children's level of education

is zero. This temporary steady-state equilibrium corresponds to a globally stable condi-

tional Malthusian steady-state equilibrium, drawn in Figure 5a in the space (et , xt ). For

a given rate of technological progress, effective resources per capita, as well as the level

of education are constant, and hence as follows from (3) and (10) output per-capita is

constant as well. Moreover, shocks to population or resources will be undone in a classic

Malthusian fashion. Population will be growing slowly, in parallel with technology. As

long as the size of the population is sufficiently small, no qualitative changes occurs in the

of the Jacobian matrix of the conditional dynamical system evaluated at the conditional steady-state
equilibrium are both smaller than one (in absolute value) under (A1)-(A4).

34 Convergence to the saddle point takes place only if the level of education is e". That is, the saddle
path is the entire vertical line that corresponds to e t = e",

33



dynamical system described in Figures 4a, and 5a. The temporary steady-state equilib-

rium depicted in Figure 4a gradually shifts vertically upward reflecting small increments

in the rate of technological progress, while the level of education remains constant at

zero. Similarly, the conditional Malthusian steady-state equilibrium drawn in Figure 5a

for a constant rate of technological progress, shifts upward vertically. However, output

per-capita remains constant at the subsistence level.

Over time, the slow growth in population that takes place in the Malthusian regime

will raise the rate of technological progress and shift the g(et+i ) locus in Figure 4a upward

so that it has the configuration shown in Panel 13. At this point, the dynamical system

of education and technology will be characterized by multiple, history-dependent steady

states. One of these steady states will be Malthusian, characterized by constant resources

per capita, slow technological progress, and no education. The other will be characterized

by a high level of education, rapid technological progress, growing income per capita,

and moderate population growth. For the story that we want to tell in this paper,

however, the existence of multiple steady states turns out not to be relevant. Since the

economy starts out in the Malthusian steady state, it will remain there. if we were to

allow for stochastic shocks to education or technological progress, it would be possible

for an economy in the Malthusian steady state of panel B to jump to the Modern Growth

steady state, but we do not pursue this possibility.

Panel C of figure 4 shows that the increasing size of the population continues to

raise the rate of technological progress, reflected in a further upward shift of the g(et)

function. At a certain level of population, the steady state vanishes, and the economy

transitions out of the Malthusian regime. Increases in the rate of technological progress

and the level of education feed back on each other until the economy converges to the

single, stable steady state shown in the figure.

While the evolution of education and technological progress traced in panel C of

34



Figure 4 are monotonic once the Malthusian steady state has been left behind, the evo-

lution of population growth and the standard of living, which can be seen in Panel C of

figure 5, are more complicated. The reason for this complication is that technological

progress has two effects on the evolution of population, as shown in proposition one.

First, by inducing parents to give their children more education, technological progress

will ceteris paribus lower the rate of population growth. But, second, by raising potential

income, technological progress will increase the fraction of their time that parents can

afford to devote to raising children. Initially, while the economy is in the Malthusian

region of Figure 5, the effect of technology on the parent's budget constraint will domi-

nate, and so the growth rate of the population will increase. This is the Post-Malthusian

regime.'

The positive income effect of technological progress on fertility only functions in

the Malthusian region of Figure 5, however. As the figure shows the economy eventually

crosses the Malthusian frontier. Once this has happened, further improvements in tech-

nology no longer have the effect of changing the amount of time devoted to child-rearing,

while faster technological change will continue to raise the quantity of education that

parents give each child. Thus once the economy has crossed the Malthusian frontier,

population growth will fall as education and technological progress rise.36

35Taking our model literally, income per capita does not change at all during the Post-Malthusian
regime, but rather remains fixed at the subsistence level. But this result follows from the assumption
that the only input into child quality is parental time, and that this time input does not produce
measured output. A more reasonable description would be that all child-rearing, but especially the
production of quality, requires goods or time supplied through a market. The most obvious example
of this expenditure is schooling. Thus the shift toward higher child quality that takes place during the
post-Malthusian regime would be reflected in higher market expenditures (as opposed to parental time
expenditures) on child quality, and thus rising measured income.

36Note that in the Post-Malthusian regime, population will be increasing, and so the g(e) curve in
Figure 4 will continue to shift upward. In the Modern Growth regime the model gives no concrete
prediction about how population size will be changing. It is possible that there will be a steady state
with constant population size and education level, and constant growth rates of technology and income
per capita. But it is also possible that in the steady state population will be constantly shrinking or
growing, with the rate of technological progress also shrinking or growing.
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In the modern growth regime, resources per capita will rise, as technological

progress outstrips population growth. Figure 4C shows that the levels of education

and technological progress will be constant in the steady state, provided that population

size is constant (i.e., population growth is zero). This implies that the growth rate of

resources per capita, and thus the growth rate of output per capita, will also be con-

stant. However, if population growth is positive in the Modern Growth regime, then

education and technological progress will continue to rise, and, similarly, if population

growth is negative they will fall. In fact, the model makes no firm prediction about what

the growth rate of population will he in the Modern Growth regime, other than that

population growth will fall once the economy exits from the Malthusian region. It may

be the case that population growth will he zero, in which case the Modern growth regime

would constitute a global steady state, in which e and g were constant. Alternatively,

population growth could be either positive or negative in the Modern Growth regime,

with e and g behaving accordingly.37

4. Concluding Remarks

This paper develops a unified endogenous growth model in which the evolution

of population, technology, and output growth is largely consistent with the process of

development in the last millennia. The model generates an endogenous take-off from a

Malthusian Regime, through a Post-Malthusian Regime, to a demographic transition and

a Modern Growth Regime. In early stages of development - the Malthusian Regime - the

economy remains in the proximity of a Malthusian trap, where output per capita is nearly

stationary and episodes of technological change bring about proportional increases in

output and population. In the intermediate stages of development - the Post-Malthusian

37 Jones (1995) has argued for a model of technology creation in which the s 'Wady state growth rate of
tedinology is related to the growth rate of population, rather than to its level. Under such a specification,
our model would have a steady state modern growth regime in which the growth rates of population
and technology would be constant. 'Anther, such a steady state would be stable: if population growth
fell, the rate of technological progress would also fall, inducing a rise in fertility.
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Regime - the intensified pace of technological change that is caused by the increase in

the size of population during the Malthusian regime permits the economy to take off.

Production takes place under a state of technological disequilibrium in which the relative

return to skills rises, inducing the household to shift its spending on children toward

quality and away from quantity. Output per capita increases along with an increase

in the rate of population growth and human capital accumulation. Eventually, rapid

technological progress which results from high human capital accumulation triggers a

demographic transition in which fertility rates permanently decline.

The model abstracts from several factors that are relevant for economic growth.

Differences between countries in the determination of population growth or in the process

of technological change (due to cultural factors, for example) would be reflected in their

ability to escape the Malthusian trap and in the speed of their takeoff. Similarly, differ-

ences in policies, such as the public provision of education, would change the dynamics

of the model. One interesting possibility that the model suggests is that colonialism, by

effectively expanding the stock of land available for production, may have played a role

in facilitating Europe's emergence from the Malthusian trap.

While our model presents a unified description of the development process followed

by Europe and its offshoots, it is clearly not fully applicable to countries that are devel-

oping today. For currently developing countries, a large stock of pre-existing technology

is available for import, and so the relationship between population size and technology

growth, which helped trigger the demographic transition in Europe, is no longer relevant.

Similarly, the relationship between income and population growth has changed dramat-

ically, due to the import of health technologies. Countries that are poor, even by the

standards of Nineteenth Century Europe, are experiencing growth rates of population

far higher than those ever experienced in Europe.

37



Bibliography

Acemoglu, Daron, and Fabrizio Zilibotti. "Was Prometheus Unbound by Chance? Risk,

Diversification, and Growth." Journal of Political Economy 105:4, August 1997,

709-751.
Aghion, Philippe and Howitt, Peter. "A Model of Growth Through Creative Destruc-

tion." Economctrica, March 1992, 60(2), pp. 323-52.

Bartel, Ann P. and Lichtenberg, Frank R. "The Comparative Advantage of Educated

Workers in Implementing New Technologies." Review of Economics and Statistics,

February 1987, 69(1) ; pp. 1-11.

Becker, Gary S. "An Economic Analysis of Fertility" in Ansley J. Coale, ed., Demo-

graphic and Economic Change in Developed Countries. Princeton, N.J.: Princeton

University Press, 1960, pp. 209-240.
Becker, Gary S.; Murphy, Kevin M.; and Tamura, Robert. "Human Capital, Fertility,

and Economic Growth," Journal of Political Economy, October 1990 98(5) Part 2,

pp. 512-537.
Birdsall, Nancy. "Economic Approaches to Population Growth," in Hollis Chenery and

T. N. Srinivasan, eds., Handbook of Development Economics, Amsterdam: North

Holland, 1988, pp. 477-542.

Caldwell, John. "Toward a Restatement of Demographic Transition Theory." Population

and Development Review 2(3 and 4), Sept-Dec, 1976, 321-66.

Cameron ; Rondo. A Concise Economic history of the World from Paleolithic Times to

the Present New York: Oxford University Press, 1989.

Chao, Kang. Man and Land in Chinese History: .4n Economic Analysis. Stanford, CA:

Stanford University Press, 1986.

Clark, Colin. The Conditions of Economic Progress London: Macmillan and Co., 1957.

Coale, Ansley, "The History of Human Population" in The Human Population published

by Scientific American, 1974.

Coale, Ansley; and Roy Treadway, "A Summary of the Changing Distribution of Overall

Fertility, Marital Fertility, and the Proportion Married in the Provinces of Europe"

in A. Coale and S. Watkins, eds, The Decline of Fertility in Europe Princeton

University Press, 1986.

Durand, John D. "The Labor Force in Economic Development awi Demographic Tran-

sition," in Leon Tabah, ed., Population Growth and Economic Development in the

Third World. Dolhain, Belgium: Ordina Editions, 1975, pp. 47-78.

38



Dyson, Tim, and Mike Murphy "The Onset of Fertility Transition," Population and
Development Review 11:3, 399-440, 1985.

Easterlin, Richard, "Why Isn't the Whole World Developed?" Journal of Economic
History 41(1), March 1981, pp. 1-19.

Eckstein, Zvi, Steven Stern, and Kenneth Wolpin, "Fertility Choice, Land, and the
Malthusian Hypothesis." International Economic Review 29:2, May 1988.

Ehrlich, Isaac, and Fracis Lui, "The problem of population and growth: A review of

the literature from Malthus to contermporary models of endogenous population

and endogenous growth" Journal of Economic Dynamics and Control 21 (1997)
205-242.

Fogel, Robert. "New Findings on Secular Trends in Nutrition and Mortality: Some

Implications for Population Theory." in Mark Rosenzweig and Oded Stark, eds.

The Handbook of Population and Family Economics Volume IA Amsterdam: North
Holland, 1997.

Foster, Andrew D. and Mark R. Rosenzweig, "Technical Change and Human-Capital Re-

turns and Investments: Evidence from the Green Revolution." American Economic

Review, 86:4, September 1996,86 (4), pp. 931-953.

Galor, Oded, and David N. Weil, "The Gender Gap, Fertility, and Growth," American
Economic Review, June 1996, 86 (3), pp. 374-387.

Galor, Oded, and Daniel Tsiddon, "Technological Progress, Mobility, and Growth,"

American Economic Review, June 1997, 87 (3), pp. 363-382.

Goodfriend, Marvin, and John McDermott. "Early Development." American Economic

Review 85:1, March 1995, 116-133.

Goldin, Claudia. "The U-Shaped Female Labor Force Function in Economic Develop-

ment and Economic History." NBER Working Paper 4707, April 1994.

Goldin, Claudia and Lawrence F. Katz, "The Origins of Technology-Skill Complemen-

tarity" NBER working paper 5657, July 1996.

Haines, Michael R. Haines "Long-Term Marriage Patterns in the United States from

Colonial Times to the Present," working paper, Department of Economics, Colgate

University, 1997.

Jones, Charles "R D- Based Models of Economic Growth," journal of Political Econ-

omy August 1995, 108(4), pp. 759-784.

Kremer, Michael. "Population Growth and Technological Change: One Million B.C. to

1990." Quarterly Journal of Economics August 1993, 108(3), pp. 681-716.

39



Lee, Ronald D. "A Historical Perspective on Economic Aspects of the Population Explo-
sion: The Case of Preindustrial England." in Richard A. Easterlin, ed. Population

and Economic Change in Developing Countries. Chicago: University of Chicago

Press, 1980.
Lee, Ronald D. "Population Dynamics: Equilibrium, Disequilibrium, and Consequences

of Fluctuations" in Oded Stark and Mark Rosenzweig, eds. The Handbook of

Population and Family Economics, Volume 1B Amsterdam: Elsevier, 1997.

Livi-Bacci, Mass.:no. A Concise History of World Population second edition, translated

by Carl Ipsen. Oxford: Blackwell, 1997.

Lucas Robert E. Jr. "On the Mechanics of Economic Development." Journal of Mone-

tary Economics, July 1988, 22(1), pp. 3-42.

Lucas, Robert. "Ricardian Equilibrium: A Neoclassical Exposition" mimeo, Techniou

Israel Institute of Technology, Economics Workshop Series, 1996.

Maddison, Angus. Monitoring the world economy, 1820-1992. Paris : OECD, 1995.

Maddison, Angus. Phases of capitalist development. Oxford University Press, 1982.

Malthus, T. R. An Essay on the Principle of Population. 1798.

Matthews, R..C.0, C. H. Feinstein, and J. C. Odling-Smee, British Economic Growth

1856-1973 Stanford University Press, 1982.

Mokyr, Joel. The Lever of Riches, New York: Oxford University Press, 1990.

Olsen, Randall .1. "Fertility and the Size of the U.S. Labor Force." Journal of Economic

Literature March 1994, 32(1), pp. 60-100.

Pritchett, Lant. "Divergence, Big Time." Journal of Economic Perspectives 11:3, Sum-

mer 1997, pp. 3-17.

Romer, Paul M. "Endogenous Technological Change," Journal of Political Economy,

October 1990, 98(5), pp. S71-S102.

Schultz, T. W., Transforming Traditional Agriculture, New Haven: Yale University Press,

1964.

Schultz, T.W., (1975), "The Value of the Ability to Deal with Disequilibria," Journal of

Economic Literature, 13, 827-846.

Smith, Adam. The Wealth of Nations. 1776.
Stone, Lawrence. Family, Sex, and Marriage in England: 1500-1800 New York: Harper

and Row, 1977.

Williamson, Jeffrey, Did British Capitalism Breed Inequality? Boston: Allen and Unwin,
1985.

40



Wrigley, E. A. Population and History New York: McGraw-Hill, 1969.
Wrigley, E. A. and R. S. Schofield. The Population History of England 1541-1871: A

Reconstruction Cambridge: Harvard University Press, 1981.

41



2.5
2

1.5
C
0)

0.5

x
\ A
\ \
\	 \•	 \;

-\ \\\ \ ,
N\\

L \\ \ \
\

Fram
r ' '/A'//// /a_

# t,# &%ea ///1"1/ ' 204 :d /,PT i
500-1500 1500-1700 1700-1820 1820-1870 1870-1929 1929-1990

Growth Rate of Population
7 Growth Rate of Output per Capita

Figure 1
Output Growth in Western Europe
3

0



()



Income Expansion Path
HH111/111111INNH1111111111/101111041111110114101.0/1111111111411N11111111111/11114H11 .... 1111114.1111.11111•

• at

C

I

Figure 3

Time Spent
Raising
Children

E/(14-y)= -1/2(1+0	 slope -1 / (z,(1+0)



et+i = e(gt+i)g

gt+ i = g(et)

Figure 4
Panel A

e



Figure 4
Panel B

eu 	e ''



Figure 4
Panel C

et+, = e(gt+i)

gt+1 = g(e)



4_1

N N
e

00
#

000
.00

coo

= oio .stoo0.• . 
00 . 

foe 	 IL Conditional
Malthusian
Frontier

Figure 5
Panel A

xt+i = x t

xt

et+1 = et

A/

Conditional
Malthusian
Steady State
Equilibrium

e	 et



4	

4f

<4)

0.)

1:



ct

0•C7
co

•—	 •-0 4, 4g	 a)2u

I
II

0
1 

-1-_
0

In

ct
1:1.4

CL4	 / 

t

/1

al•IMINIPOINA•01••••

_t

'0


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

