Liquidity, Business Cycles, and Monetary Policy

Nobuhiro Kiyotaki and John Moore
1 Question

How does economy fluctuate with shocks to productivity and liquidity?

→ Want to develop a canonical model of monetary economy in which money is essential for smooth running of the economy

What are the roles of monetary policy?
Approach: Real business cycles model $+$ limited commitment

present goods

original lender \leftrightarrow borrower

resell \downarrow claim \downarrow claim to future goods

new lenders

How much can the original lender enforce the borrower to repay? \rightarrow borrowing constraint

How much can new lenders enforce the borrower to repay? \rightarrow limited resaleability
2 Model

homogeneous output Y_t, capital K_t and fiat money M_t at each date

agents, measure 1: $E_t \sum_{s=t}^{\infty} \beta^{s-t} \log c_s$

All agent use their capital to produce goods:

k_t capital $\rightarrow \begin{cases} r_t k_t \text{ goods} \\ \lambda k_t \text{ capital} \end{cases}$

start of date t \rightarrow end of date t

individually constant returns & decreasing returns in aggregate

$$r_t = a_t K_t^{\alpha-1},$$

$$Y_t = r_t K_t = a_t K_t^\alpha$$
Fraction π of agents can invest in producing new capital:

$$i_t \text{ goods} \rightarrow i_t \text{ new capital}$$

start of date t \rightarrow end of date t

investment opportunities are i.i.d., across people, through time

no insurance market against arrival of investment opportunity
Equity:

capital is specific to the agent who produce it, but he can mortgage future returns by issuing equity

one unit of equity issued at date t promises

$$r_{t+1}, \lambda r_{t+2}, \lambda^2 r_{t+3}, \ldots$$

Borrowing Constraint: an investing agent can mortgage at most θ fraction of the future returns from his new capital production

Resaleability Constraint: at each date, an agent can resell at most ϕ_t fraction of his equity holdings $\rightarrow (a_t, \phi_t)$ follows a stationary Markov process
balance sheet at the end of date t

<table>
<thead>
<tr>
<th>money: $ptmt_{t+1}$</th>
<th>own equity issued: $q^i_t n^i_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>equity of others: $q^o_t n^o_{t+1}$</td>
<td></td>
</tr>
<tr>
<td>own capital stock: $q^i_t k_{t+1}$</td>
<td>net worth</td>
</tr>
</tbody>
</table>

Simplification: at every date, an agent can mortgage up to a fraction ϕ_t of his unmortgaged capital stock

\rightarrow equity of the others and unmortgaged capital stock become perfect substitutes: $q^o_t = q^i_t = q_t \& n^o_t + k_t - n^i_t = n_t$

Flow-of-funds and liquidity constraints:

$$c_t + i_t + q_t(n_{t+1} - i_t) + ptmt_{t+1} = (r_t + \lambda q_t)n_t + ptmt$$

$$n_{t+1} \geq (1 - \theta)i_t + (1 - \phi_t)\lambda n_t$$

$$m_{t+1} \geq 0$$
Government chooses M_{t+1} (money supply), N_{t+1}^g (government equity holding) and G_t (government net spending/transfers), subject to the budget constraint:

$$G_t + q_t(N_{t+1}^g - \lambda N_t^g) = r_t N_t^g + p_t(M_{t+1} - M_t)$$

Claim 1: In the neighborhood of the steady state,

$$(1 - \lambda) \theta + \pi \lambda \phi \geq (1 - \lambda)(1 - \pi) \iff \text{unconstrained, first best allocation, no money}$$

$$E_t MPK = \text{rate of return on equity} \simeq \text{time preference rate}$$

$$(1 - \lambda) \theta + \pi \lambda \phi < (\beta - \lambda)(1 - \pi) \Rightarrow \text{liquidity constrained, monetary equilibrium exists}$$
Equilibrium: \((p_t, q_t, I_t, K_{t+1}, M_{t+1})\) as functions of aggregate state \((K_t, a_t, \phi_t, G_t, N_{t+1}^g)\) satisfying:

\[
\alpha_t K_t = I_t + G_t + (1 - \beta) \left\{ [r_t + (1 - \pi + \pi \phi_t) \lambda q_t + \pi (1-\phi_t) \lambda q_t^R] N_t + p_t M_t \right\}
\]

\[
I_t = \pi \frac{\beta [(r_t + \lambda \phi_t q_t) N_t + p_t M_t] - (1 - \beta) (1 - \phi_t) \lambda q_t^R N_t }{1 - \theta q_t}
\]

\[
(1 - \pi) E_t\left[\frac{(r_{t+1} + \lambda q_{t+1}) / q_t - p_{t+1} / p_t}{C_{t+1}^{ss}} \right] = \pi E_t \left[\frac{p_{t+1} / p_t - [r_{t+1} + \lambda \phi_{t+1} q_{t+1} + \lambda (1 - \phi_{t+1}) q_{t+1}^R] / q_t}{C_{t+1}^{si}} \right]
\]

\[
K_{t+1} = \lambda K_t + I_t = N_{t+1} + N_{t+1}^g
\]

\[
q_t^R \equiv \frac{1 - \theta q_t}{1 - \theta} < 1
\]
Figure 1: Deterministic Productivity Shifts

A

ln q

ln p

ln I

ln C
Figure 3: Open Market Operation against Productivity Shifts

- A
- $\ln q$
- $\ln p$
- $\ln I$
- $\ln C$
Liquidity Shock under Laissez-Faire
Figure 4: Open Market Operation against Liquidity Shocks

- ϕ_i
- $\ln q$
- $\ln p$
- $\ln I$
- $\ln C$
Normal features of "monetary economy"

- interest rates spread between assets with different liquidity

rate of return on money < rate of return on equity < time
preference rate < expected marginal product of capital

- quantities and asset prices react to liquidity shock

Policy: Can use open market operation to accommodate pro-
ductivity shock and to offset shocks to liquidity (resaleability)

Needs to buy (or lend against) partially resaleable assets which
has liquidity premium