Discussion of Lester, Postlewaite and Wright’s “Information, Liquidity and Asset Prices”

Ricardo Lagos

New York University
The model

Euler equations

Comments

Nice comment/Suggestion

The diagram represents a model with a timeline from time t to $t+1$. It includes two main players: Buyer and Seller. The diagram shows the decision-making process for the Buyer, who can be in one of three states: informed, uninformed, or neither. The Buyer can pay with cash or equity:

$$\phi_t M_t + (\psi_t + \delta) a_t$$

or use cash only:

$$\phi_t M_t$$

The diagram also includes elements labeled D.M. and C.M., indicating different decision-making processes or states at times t and $t+1$. The arrows and nodes represent the flow of decisions and payoffs in the model.
\[\psi_t = \beta L_{t+1}^a [\psi_{t+1} + \delta] \]
\[\phi_t = \beta L_{t+1}^m \phi_{t+1} \]

\[L_{t+1}^a \equiv 1 + \lambda \rho [\ell (q_{t+1}^2) - 1] \]
\[L_{t+1}^m \equiv L_{t+1}^a + \lambda (1 - \rho) [\ell (q_{t+1}^1) - 1] \]

\[\ell (q_t^i) - 1 = \frac{u'(q_t^i)}{z'(q_t^i)} - 1 \geq 0, \text{"=" if } q_t^i = \tilde{q} \]

In eq.: \[q_t^1 = q (\phi_t M_t) \text{ and } q_t^2 = q (\phi_t M_t + (\psi_t + \delta) A) \]

where \[q(x) \equiv \min \{z^{-1}(x), \tilde{q}\} \text{ and } z(q) \text{ given by bargaining} \]
The model

Euler equations

\[
\begin{align*}
\psi_t &= \beta L_{t+1}^a [\psi_{t+1} + \delta] \\
\phi_t &= \beta L_{t+1}^m \phi_{t+1}
\end{align*}
\]

\[
\begin{align*}
L_{t+1}^a &= 1 + \lambda \rho [\ell (q_{t+1}^2) - 1] \\
L_{t+1}^m &= L_{t+1}^a + \lambda (1 - \rho) [\ell (q_{t+1}^1) - 1]
\end{align*}
\]

\[
\ell (q_t^i) - 1 = \frac{u'(q_t^i)}{z'(q_t^i)} - 1 \geq 0, \quad \text{“=” if } q_t^i = \tilde{q}
\]

In eq.: \(q_{t+1}^1 = q (\phi_t M_t) \) and \(q_{t+1}^2 = q (\phi_t M_t + (\psi_t + \delta) A) \)

where \(q (x) \equiv \min \left\{ z^{-1} (x), \tilde{q} \right\} \) and \(z (q) \) given by bargaining
The model

Euler equations

Comments

Suggestion

\[
\psi_t = \beta L_{t+1}^a [\psi_{t+1} + \delta]
\]

\[
\phi_t = \beta L_{t+1}^m \phi_{t+1}
\]

\[
L_{t+1}^a \equiv 1 + \lambda \rho [\ell (q_{t+1}^2) - 1]
\]

\[
L_{t+1}^m \equiv L_{t+1}^a + \lambda (1 - \rho) [\ell (q_{t+1}^1) - 1]
\]

\[
\ell (q_t^i) - 1 = \frac{u'(q_t^i)}{z'(q_t^i)} - 1 \geq 0, \text{ "=" if } q_t^i = \tilde{q}
\]

In eq.: \(q_{t}^1 = q(\phi_t M_t) \) and \(q_{t}^2 = q(\phi_t M_t + (\psi_t + \delta) A) \)

where \(q(x) \equiv \min \{ z^{-1}(x), \tilde{q} \} \) and \(z(q) \) given by bargaining
The model

Euler equations

\[
\begin{align*}
\psi_t &= \beta L^a_{t+1} [\psi_{t+1} + \delta] \\
\phi_t &= \beta L^m_{t+1} \phi_{t+1}
\end{align*}
\]

\[
\begin{align*}
L^a_{t+1} &\equiv 1 + \lambda \rho [\ell (q^2_{t+1}) - 1] \\
L^m_{t+1} &\equiv L^a_{t+1} + \lambda (1 - \rho) [\ell (q^1_{t+1}) - 1]
\end{align*}
\]

\[
\ell (q^i_t) - 1 = \frac{u'(q^i_t)}{z'(q^i_t)} - 1 \geq 0, \quad \text{“=” if } q^i_t = \tilde{q}
\]

In eq.: \(q^1_t = q (\phi_t M_t)\) and \(q^2_t = q (\phi_t M_t + (\psi_t + \delta) A)\)

where \(q (x) \equiv \min \{z^{-1}(x), \tilde{q}\}\) and \(z(q)\) given by bargaining
Introduction promises a theory of differential liquidity
Introduction promises a theory of differential liquidity

- The theory is: Every agent can instantaneously produce a worthless equity share at zero cost, so the $1 - \rho$ fraction of “uninformed” sellers do not accept shares.
Introduction promises a theory of differential liquidity

- The theory is: Every agent can instantaneously produce a worthless equity share at zero cost, so the $1 - \rho$ fraction of “uninformed” sellers do not accept shares.

- **Question**: When is a *story* the same as a *theory*?
Introduction promises a theory of differential liquidity

- The theory is: Every agent can instantaneously produce a worthless equity share at zero cost, so the $1 - \rho$ fraction of “uninformed” sellers do not accept shares.

- Question: When is a *story* the same as a *theory*?

Proposition 1 (characterization of equilibrium) and Proposition 2 (effects of liquidity on equity price and return)
Introduction promises a theory of differential liquidity

- The theory is: Every agent can instantaneously produce a worthless equity share at zero cost, so the $1 - \rho$ fraction of “uninformed” sellers do not accept shares.

- **Question:** When is a *story* the same as a *theory*?

Proposition 1 (characterization of equilibrium) and Proposition 2 (effects of liquidity on equity price and return)

- **Comment:** maybe these liquidity considerations could give us a new angle on the *stock-return/inflation puzzle*? e.g., Fama and Schwert (1977)
Endogenous ρ is both interesting, and new in this literature

Maybe the whole paper should be about that...

- Elaborate on the idea that what looks like a cash-in-advance constraint is not policy-invariant.

- As you mention, some people have done this in CIA models... could you get something new or different?
Endogenous \(\rho \) is both interesting, and new in this literature

Maybe the whole paper should be about that...

- Elaborate on the idea that what looks like a cash-in-advance constraint is not policy-invariant

- As you mention, some people have done this in CIA models...could you get something new or different?
Endogenous ρ is both interesting, and new in this literature. Maybe the whole paper should be about that...

- Elaborate on the idea that what looks like a cash-in-advance constraint is not policy-invariant.

- As you mention, some people have done this in CIA models...could you get something new or different?
Endogenous ρ is both interesting, and new in this literature. Maybe the whole paper should be about that...

- Elaborate on the idea that what looks like a cash-in-advance constraint is not policy-invariant

- As you mention, some people have done this in CIA models...could you get something new or different?
Endogenous ρ is both interesting, and new in this literature.

Maybe the whole paper should be about that...

- Elaborate on the idea that what looks like a cash-in-advance constraint is not policy-invariant

- As you mention, some people have done this in CIA models...could you get something new or different?