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Abstract

In this paper, we build a model where the presence of liquidity constraints tend
to magnify the economy�s response to aggregate productivity shocks. We consider
a decentralized model of trade, where agents may use credit or money to buy goods.
When agents do not have access to credit and the real value of money balances
is low, agents are more likely to be liquidity constrained. This makes them more
concerned about their short-term earning prospects when making their consump-
tion decisions and more concerned about their short-term spending opportunities
when making their production decisions. This generates a coordination element in
spending and production, which leads to greater aggregate volatility and to greater
comovement across di¤erent producers. We use the model to tell a story about
the decline in aggregate volatility in the U.S. after the mid 1980s, the so-called
Great Moderation. We show that our mechanism can explain a sizeable fraction
of the observed decline in volatility and it also captures the reduction in sectoral
comovement experienced in the U.S. during the same period.
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1 Introduction

Over the course of the postwar period, the U.S. has experienced a marked decline in

aggregate volatility, the so-called Great Moderation. Real output volatility has been

consistently lower in the period following the mid 1980s, after peaking in the high in�a-

tion period of the 1970s and early 1980s. A growing body of research, starting with Kim

and Nelson (1999), McConell and Pérez-Quirós (2000), Blanchard and Simon (2001),

and Stock and Watson (2002), documents this phenomenon and proposes a number of

possible explanations. A second stylized fact, pointed out by Comin and Philippon

(2005), is that the degree of comovement among di¤erent sectors in the economy has

also declined over the same period.1

In this paper, we explore formally the idea that structural changes which increase

access to liquidity in a broad sense, can lead both to lower aggregate volatility and to less

comovement. To this end, we build a model which focuses on the role of liquidity con-

straints and precautionary behavior in the transmission of aggregate shocks. We identify

a novel mechanism by which the relaxation of liquidity constraints can a¤ect aggregate

outcomes. If agents are less likely to be liquidity constrained, they are less concerned

about their short-term earnings prospects when making their spending decisions and

about their short-term consumption opportunities when making their production deci-

sions. This breaks the link between individual trading decisions and aggregate cyclical

conditions, dampening the e¤ect of aggregate shocks on aggregate output and reducing

the degree of comovement between di¤erent sectors.

We use this model to tell a story about the Great Moderation which emphasizes

two factors: the steady expansion of credit markets and the e¤ect of lower in�ation on

the real value of money balances. A number of researchers have suggested that �nancial

innovation and improved access to credit, for both households and businesses, are impor-

tant structural changes which may help explain the decline in volatility (Campbell and

Hercowitz, 2005, Cecchetti, Flores-Lagunes and Krause, 2005, and Dynan, Elmendorf

and Sichel, 2006). Many have also pointed to the reduction in in�ation that the U.S.

has experienced in the same period. We argue that both factors may have concurred

to relax liquidity constraints in the period following the mid 1980s, contributing to the

1In Section 4.1, we provide some summary evidence on both stylized facts.
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observed decline in volatility and comovement.

We consider a decentralized model of production and exchange in the tradition of

search models of money, where credit frictions arise from the limited ability to verify

the agents� identity. There is a large number of households, each with one consumer

and one producer. Consumers and producers from di¤erent households meet and trade

in spatially separated markets, or islands. In each island, the gains from trade are

determined by a local productivity shock. An exogenous aggregate shock determines

the distribution of local shocks across islands. A good aggregate shock reduces the

proportion of low productivity islands and increases that of high productivity islands,

that is, it leads to a �rst-order stochastic shift in the distribution of local productivities.

Due to limited credit access, households accumulate precautionary money balances to

bridge the gap between current spending and current income. Money is supplied by the

government and grows at a constant rate, which, in equilibrium, is equal to the rate of

in�ation. Higher in�ation reduces the equilibrium real value of the money stock in the

hands of the consumers.

In the model, we distinguish di¤erent regimes along two dimensions: credit access

and in�ation. In regimes with less credit access and higher in�ation agents are more

likely to face binding liquidity constraints. In such regimes, we show that there is a

coordination element in spending and production decisions: agents are less willing to

trade when they expect others to trade less. This leads both to greater comovement

between di¤erent sectors of the economy and to greater aggregate volatility.

We �rst obtain analytical results in two polar cases which we call �unconstrained�

and �fully constrained�regimes. An unconstrained regime arises when either households

have full access to credit or in�ation is su¢ ciently low. In this case, households are never

liquidity constrained in equilibrium. Our �rst result is that in an unconstrained regime

the quantity traded in each island is independent of what happens in other islands. The

result follows from the fact that households are essentially fully insured against idiosyn-

cratic shocks. This makes their expected marginal value of money constant, allowing

the consumer and the producer from the same household to make their trading decisions

independently. At the opposite end of the spectrum, a fully constrained regime arises

when households have no credit access and in�ation is su¢ ciently high that they expect

to be liquidity constrained for all realizations of the idiosyncratic shocks. In this case,
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the decisions of the consumer and the producer are tightly linked. The consumer needs

to forecast the producer�s earnings and the producer needs to forecast the consumer�s

spending in order to evaluate the household�s marginal value of money.

Next, we look at the aggregate implications of these linkages. In all regimes, a

good aggregate shock has a positive compositional e¤ect: as more islands have high

productivity, aggregate output increases. However, in an unconstrained regime there is

no feedback from this aggregate increase in output to the level of trading in an island

with a given local shock. In a fully constrained regime, instead, the linkage between the

trading decisions in di¤erent islands generates an additional e¤ect on trading and output.

A good aggregate shock raises the probability of high earnings for the producer, inducing

the consumer to increase spending. At the same time, the producer expects his partner

to spend more, increasing his incentive to produce. These two e¤ects imply that a higher

level of aggregate activity induces higher levels of activity in each island, conditional on

the local shock, leading to an ampli�ed response of aggregate activity. Numerical results

show that our mechanism is also at work in intermediate regimes, where the liquidity

constraint is occasionally binding, and that in this intermediate region increased credit

access and lower in�ation lead to lower volatility and lower comovement.

We then perform a simple quantitative exercise in order to evaluate how much our

mechanism can explain of the reduction in both output volatility and sectoral comove-

ment experienced in the U.S. during the Great Moderation. We look at U.S. data for

the period 1947-2007 and split the sample in two, pre-1984 and post-1984. These two

sub-samples are characterized by two di¤erent regimes in terms of average in�ation and

credit access, with lower in�ation and increased credit access in the second sub-sample.

We �rst choose the model�s parameters to match some relevant features of the U.S.

economy in the �rst sub-sample. We then compute the e¤ect of the regime change on

aggregate volatility and sectoral comovement and compare it to the changes observed in

the data. Our model can account for about 1=4 of the observed reduction in volatility

and for about 3=4 of the observed change in comovement.

This paper is related to the literature on search models of decentralized trading,

going back to Diamond (1982, 1984) and Kiyotaki and Wright (1989). In particular,

Diamond (1982) puts forth the idea that �the di¢ culty of coordination of trade�may

contribute to cyclical volatility. The contribution of our paper is to show that the pres-
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ence of this coordination problem depends crucially on credit market conditions and on

the monetary regime. This allows us to identify a novel connection between �nancial

development, liquidity supply, and aggregate dynamics. Our model allows for divisible

money and uses the Lagos and Wright (2005) approach to simplify the analysis. In

Lagos and Wright (2005) agents alternate trading in a decentralized market to trading

in a centralized competitive market. The combination of quasi-linear preferences and

periodic access to a centralized market ensures that the distribution of money holdings

across agents is degenerate when they enter the decentralized market. Here we use these

same two ingredients, with a modi�ed periodic structure. In our model, agents have

access to a centralized market every three periods. The extra period of decentralized

trading is necessary to make the precautionary motive matter for trading decisions in

the decentralized market of the previous period. This is at the core of our ampli�cation

mechanism. A three-period structure is also used by Berentsen, Camera and Waller

(2005) to study the short-run neutrality of money. They show that, away from the

Friedman rule, random monetary injections can be non-neutral, since they have a dif-

ferential e¤ect on agents with heterogeneous money holdings. Although di¤erent in its

objectives, their analysis also relies on the lack of consumption insurance. Our work is

also related to a large number of papers who have explored the implications of di¤erent

monetary regimes for risk sharing, in environments with idiosyncratic risk (e.g. Aiyagari

and Williamson, 2000, Reed and Waller, 2006) and is related to Rocheteau and Wright

(2005) for the use of competitive pricing à la Lucas and Prescott (1974) in a money

search model.

More broadly, the paper is related to the literature exploring the relation between

�nancial frictions and aggregate volatility, including Bernanke and Gertler (1989), Ben-

civenga and Smith (1991), Acemoglu and Zilibotti (1997), and Kiyotaki and Moore

(1997). In particular, Kiyotaki and Moore (2001) also emphasize the e¤ect of a limited

supply of liquid assets (money) on aggregate dynamics. Their paper studies a di¤erent

channel by which limited liquidity can a¤ect the transmission of aggregate shocks, fo-

cusing on the e¤ects on investment and capital accumulation. Campbell and Hercowitz

(2005) also explore the question whether �nancial deepening can account for the reduc-

tion in aggregate volatility in the U.S. after the mid 1980s. In particular, they consider a

model with collateral constraints and study the e¤ects of relaxing collateral constraints
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on the cyclical behavior of labor supply. Their argument is that when the collateral

constraint is tighter, an increase in durable goods spending in a boom raises the need

for funds for borrowing households in the short-run, which translates into a positive shift

of the labor supply schedule. Although developed in a very di¤erent environment, their

mechanism bears some relation to the one at work on the producer�s side of our model.

Our paper is also related to the vast literature on the e¤ect of liquidity constraints

on consumption decisions. In particular, our argument relies on the idea that when

liquidity constraints are binding less often, consumption becomes less sensitive to short-

term income expectations. Some evidence consistent with this idea is in Jappelli and

Pagano (1989), who show that the �excess sensitivity�of consumption to current income

is less pronounced in countries with more developed credit markets, and in Bacchetta

and Gerlach (1997), who show that excess sensitivity has declined in the United States

as a consequence of �nancial deregulation. Dynan, Elmendorf and Sichel (2006) argue

informally that a relaxation of credit constraints may lead to a reduction in the marginal

propensity to spend out of income in a standard keynesian model, and use this insight

as the basis for their empirical analysis of the Great Moderation.

Finally, numerous papers have argued that the conduct of monetary policy is in part

responsible for the higher volatility of the 1970s. However, these papers have focused

on the destabilizing e¤ects of poorly designed interest rate rules in environments with

nominal rigidities (e.g., Clarida, Gali, and Gertler, 2000). In this paper, we completely

abstract from these e¤ects, by considering a �exible price environment and only focusing

on the e¤ects of monetary policy on the supply of liquid monetary balances.

The rest of the paper is organized as follows. In Section 2, we introduce our model,

characterize the competitive equilibrium, and derive our main analytical results. Section

3 presents an extended version of the model which is used for the numerical analysis.

Section 4 presents our calibration exercise. Section 5 discusses an extension with imper-

fect information and public signals. Section 6 concludes. The appendix contains all the

proofs not in the text.
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2 The Model

2.1 Setup

The economy is populated by a unit mass of in�nitely-lived households, composed of two

agents, a consumer and a producer. Time is discrete and each period agents produce

and consume a single, perishable consumption good. The economy has a simple periodic

structure: each time period t is divided into three subperiods, s = 1; 2; 3. We will call

them �periods�whenever there is no risk of confusion.

In periods 1 and 2, the consumer and the producer from each household travel to

spatially separated markets, or islands, where they interact with consumers and pro-

ducers from other households. There is a continuum of islands and each island receives

the same mass of consumers and producers in both periods 1 and 2. The assignment

of agents to islands is random and satis�es a law of large numbers, so that each island

receives a representative sample of consumers and producers. In each island there is

a competitive goods market, as in Lucas and Prescott (1974). The consumer and the

producer from the same household do not communicate while traveling in periods 1 and

2, but get together at the end of each period. In period 3, all consumers and producers

trade in a single centralized market.2

In period 1 of time t, a producer located in island k, has access to the linear technology

yt;1 = �
k
tnt;

where yt;1 is output, nt is labor e¤ort, and �
k
t is the local level of productivity, which

is random and can take two values: 0 and � > 0. At time t, a fraction �t of islands is

randomly assigned the high productivity level �, while a fraction 1� �t is unproductive.
The aggregate shock �t is independently drawn and publicly revealed at the beginning of

period 1, and takes two values, �H and �L, in (0; 1), with probabilities � and 1��. The
island-speci�c productivity �kt is only observed by the consumers and producers located

in island k. In Section 3, we will generalize the distributions of local and aggregate

shocks.

In periods 2 and 3, each producer has a �xed endowment of consumption goods,

2The use of a household made of two agents, buyer and seller, who cannot communicate during a
trading period, goes back to Lucas (1990) and Fuerst (1992).
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yt;2 = e2 and yt;3 = e3. We assume that the value of e3 is large, so as to ensure that

equilibrium consumption in period 3 is strictly positive for all households.

The household�s preferences are represented by the utility function

E

" 1X
t=0

�t(u(ct;1)� v(nt) + U(ct;2) + ct;3)
#
;

where ct;s is consumption in subperiod (t; s) and � 2 (0; 1) is the discount factor. Both
u and U are increasing, strictly concave, with continuous �rst and second derivatives on

(0;1). The function u is bounded below, with u(0) = 0, has �nite right-derivative at 0
and satis�es the Inada condition limc!1 u

0 (c) = 0. The function U satis�es the Inada

conditions limc!0 U
0 (c) = 1 and limc!1 U

0 (c) = 0. The function v represents the

disutility of e¤ort, is increasing and convex, has continuous �rst and second derivatives

on [0; �n) and satis�es v0(0) = 0 and limn!�n v
0 (n) =1.

In this section, we analyze two versions of the model. First, we consider a monetary

version of the model where the consumers�identity cannot be veri�ed in the islands they

visit in periods 1 and 2, so credit contracts are not feasible. There is an exogenous supply

of perfectly divisible notes issued by the government, money, and the only feasible trades

in periods 1 and 2 are trades of money for goods. Each household is endowed with a

stock of money M0 at date 0. At the end of each subperiod 3, the government injects

(
 � 1)Mt units of money by a lump-sum transfer to each household (a lump-sum tax

if 
 < 1). Therefore, the stock of money Mt grows at the constant gross rate 
. In this

paper we make no attempt to explain the government�s choice of the monetary regime,

but simply explore the e¤ect of di¤erent regimes on equilibrium behavior. Second, we

consider a version of the model with perfect credit markets, where the consumers�identity

can be costlessly veri�ed in each period and credit contracts are perfectly enforced.

Let us comment brie�y on two of the assumptions made. First, the fact that in sub-

period 3 consumers and producers trade in a centralized market and have linear utility

is essential for tractability, as it allows us to derive an equilibrium with a degenerate

distribution of money balances at the beginning of (t; 1), as in Lagos and Wright (2005).3

Second, we assume that the household is split in a consumer and a producer who make

separate decisions in period 1, without observing the shock of the partner. This assump-

3See Shi (1997) for a di¤erent approach to obtain a degenerate distribution of money holdings.
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tion allows us to capture in a simple way the e¤ects of short-term income uncertainty

on consumption and production decisions.

2.2 First-best

The �rst-best allocation provides a useful benchmark for the rest of the analysis. Con-

sider a social planner with perfect information who can choose the consumption and

labor e¤ort of the households. Given that there is no capital, there is no real intertem-

poral link between time t and t+ 1. Therefore, we can look at a three-period planner�s

problem.

Each household is characterized by a pair (�; ~�), where the �rst element represents

the shock in the producer�s island and the second represents the one in the consumer�s

island. An allocation is given by consumption functions fcs(�; ~�; �)gs2f1;2;3g and an e¤ort
function n(�; ~�; �). The planner chooses an allocation that maximizes the ex ante utility

of the representative household

E[u(c1(�; ~�; �))� v(n(�; ~�; �)) + U(c2(�; ~�; �)) + c3(�; ~�; �)];

subject to the economy�s resource constraints. Given an aggregate shock �, in period 1

there is one resource constraint for each island �4

E[c1(~�; �; �)j�; �] � E[y1(�; ~�; �)j�; �];

where y1(�; ~�; �) = �n(�; ~�; �). In period s = 2; 3, the resource constraint is

E[cs(�; ~�; �)j�] � es:

The resource constraints for periods 1 and 2 re�ect the assumption that each island

receives a representative sample of consumers and producers.

The following proposition characterizes the optimal allocation.

Proposition 1 The optimal output level in period 1 is y1(�; ~�; �) = y�1 (�) for all ~� and

�, where y�1 (0) = 0 and y
�
1(�) satis�es

�u0(y�1(�)) = v
0(y�1(�)=�): (1)

Optimal consumption in period 2 is c2(�; ~�; �) = e2 for all �; ~� and �.

4From now on, �island ��is short for �an island with productivity shock �.�
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Due to the separability of the utility function, the optimal output level in a given

productive island is not a¤ected by the fraction � of productive islands in the economy.

Moreover, at the optimum, c2 is constant across households, that is, households are fully

insured against the shocks � and ~�. Finally, given linearity, the consumption levels in

period 3 are not pinned down, as consumers are ex ante indi¤erent among any pro�le

c3(�; ~�; �) such that E[c3(�; ~�; �)] = e3.

2.3 Monetary Equilibrium

Let us �rst concentrate on the monetary economy, where no credit contracts are feasible

in periods 1 and 2. We focus on stationary equilibria where all nominal variables grow at

rate 
. We can then normalize nominal prices and money holdings in period t, dividing

them by the aggregate money stockMt, and study stationary equilibria where quantities,

normalized prices and normalized money holdings only depend on the current shocks.

Therefore, from now on, we drop the time index t.

We begin by characterizing optimal individual behavior. Let p1 (�; �) denote the

normalized price of goods in period 1 in island �, and p2 (�) and p3 (�) denote the

normalized prices in periods 2 and 3. Consider a household with an initial stock of money

m (normalized), at the beginning of period 1 after the realization of �. The consumer

travels to island ~� and consumes c1(~�; �). Since money holdings are non-negative, the

budget constraint and the liquidity constraint in period 1 are

m1(~�; �) + p1(~�; �)c1(~�; �) � m;

m1(~�; �) � 0;

wherem1(~�; �) denotes the consumer�s normalized money holdings at the end of period 1.

In the meantime, the producer, located in island �, produces and sells y1 (�; �) = �n(�; �).

At the end of period 1, the consumer and the producer get together and pool their money

holdings. Therefore, in period 2 the budget and liquidity constraints are

m2(�; ~�; �) + p2 (�) c2(�; ~�; �) � m1(~�; �) + p1 (�; �) �n(�; �);

m2(�; ~�; �) � 0;

where consumption, c2(�; ~�; �), and end-of-period normalized money holdings,m2(�; ~�; �),

are now contingent on both shocks � and ~�. Finally, in period 3, the consumer and the
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producer are located in the same island and the revenues p3 (�) e3 are immediately avail-

able. Moreover, the household receives a lump-sum transfer equal to 
�1, in normalized
terms. The constraints in period 3 are then

m3(�; ~�; �) + p3c3(�; ~�; �) � m2(�; ~�; �) + p2 (�) e2 + p3 (�) e3 + 
 � 1;

m3(�; ~�; �) � 0:

A household with normalized money balances m3(�; ~�; �) at the end of subperiod 3,

will have normalized balances 
�1m3(�; ~�; �) at the beginning of the following subperiod

1, as the real rate of return on money between (t; 3) and (t+ 1; 1) is equal to the inverse

of the in�ation rate, 
�1. Let V (m) denote the expected utility of a household with

normalized money balances m at the beginning of period 1, before the realization of

the aggregate shock �. The household�s problem is then characterized by the Bellman

equation

V (m) = max
fcsg;n;fmsg

E[u(c1(~�; �))�v (n (�; �))+U(c2(�; ~�; �))+c3(�; ~�; �)+�V (
�1m3(�; ~�; �))];

(2)

subject to the budget and liquidity constraints speci�ed above. The solution to this

problem gives us the optimal household�s choices as functions of the shocks and of the

initial money balances m, which we denote by c1(�; �;m), c2(�; ~�; �;m), etc.

We are now in a position to de�ne a stationary competitive equilibrium.

De�nition 1 A stationary competitive equilibrium of the economy with no credit is given

by prices fp1 (�; �) ; p2 (�) ; p3 (�)g, a distribution of money holdings with c.d.f. H (�)
and support M, and an allocation fn (�; �;m), c1(�; �;m), c2(�; ~�; �;m), c3(�; ~�; �;m),
m1 (�; �;m), m2(�; ~�; �;m), m3(�; ~�; �;m)g such that:

(i) the allocation solves problem (2) for each m 2M;

(ii) goods markets clearZ
M
E[c1(�; �;m)j�; �]dH (m) = �

Z
M
E[n(�; �;m)j�; �]dH (m) for all �; �;

Z
M
E[cs(�; ~�; �;m)j�]dH (m) = es for s = 2; 3 and all �;
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(iii) the distribution H (�) satis�es
R
MmdH (m) = 1 and

H (m) = Pr[(�; ~�; ~m) : 
�1m3(�; ~�; �; ~m) � mj�] for all m and �:

The last condition in (iii) ensures that the distribution H (�) is stationary. As we
will see below, we can focus on equilibria where the distribution of money balances

is degenerate at m = 1. Therefore, from now on, we drop the argument m from the

equilibrium allocations.

In order to characterize the equilibrium, it is useful to derive the household�s �rst

order conditions. From problem (2) we obtain three Euler equations, with respective

complementary slackness conditions,

u0(c1(~�; �)) � p1(~�; �)

p2 (�)
E[U 0(c2(�; ~�; �))j~�; �] (m1(~�; �) � 0) for all ~�; �; (3)

U 0(c2(�; ~�; �)) � p2 (�)

p3 (�)
(m2(�; ~�; �) � 0) for all �; ~�; �;(4)

1 � p3 (�) �

�1V 0(
�1m3(�; ~�; �)) (m3(�; ~�; �) � 0) for all �; ~�; �; (5)

the optimality condition for labor supply

v0 (n (�; �)) = �
p1 (�; �)

p2 (�)
E[U 0(c2(�; ~�; �))j�; �] for all �; �; (6)

and the envelope condition

V 0 (m) = E

"
u0(c1(~�; �))

p1(~�; �)

#
: (7)

Our assumptions allow us to simplify the equilibrium characterization as follows.

Since � = 0 with probability � > 0, the Inada condition for U implies that m1(~�; �)

and m3(�; ~�; �) are strictly positive for all �, ~�, and �. To insure against the risk of

entering period 2 with zero money balances, households always carry positive balances

into periods 1 and 2. This implies that (3) and (5) always hold as equalities.

Condition (5), holding with equality, shows why we obtain equilibria with a de-

generate distribution of money balances, as in Lagos and Wright (2005). Given that

the normalized supply of money is always equal to 1, a stationary equilibrium with a

degenerate distribution H (�) must satisfy


�1m3(�; ~�; �) = 1 for all �; ~�; �:
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In equilibrium, all agents adjust their consumption in period 3, so as to reach the same

level of m3, irrespective of their current shocks. The assumptions that utility is linear in

period 3 and that e3 is large enough imply that the marginal utility of consumption in

period 3 is constant, ensuring that this behavior is optimal.5 Moreover, equation (5), as

an equality, implies that in all stationary equilibria p3 (�) is independent of the aggregate

shock � and equal to 
=(�V 0(1)). From now on, we just denote it as p3.

This leaves us with condition (4). In general, this condition can be either binding or

slack for di¤erent pairs (�; ~�), depending on the parameters of the model. However, we

are able to give a full characterization of the equilibrium by looking at speci�c monetary

regimes, namely, by making assumptions about 
. First, we look at equilibria where the

liquidity constraint m2(�; ~�; �) � 0 is never binding. We will show that this case arises if
and only if 
 = �, that is, in a monetary regime that follows the Friedman rule. Second,

we look at equilibria where the constraint m2(�; ~�; �) � 0 is binding for all pairs (�; ~�)

and for all �. We will show that this case arises if and only if the rate of money growth

is su¢ ciently high, that is, when 
 � 
̂ for a given cuto¤ 
̂ > �.
These two polar cases provide analytically tractable benchmarks which illustrate the

mechanism at the core of our model. The quantitative analysis in Section 4 considers the

case of economies with 
 2 (�; 
̂), where the liquidity constraint in period 2 is binding
for a subset of agents.

2.3.1 Unconstrained equilibrium

We begin by considering �unconstrained equilibria,�that is, equilibria where the liquidity

constraint in period 2 is never binding. In this case, condition (4) always holds as an

equality. Combining conditions (3)-(5), all as equalities, and (7) gives

u0(c1(~�; �))

p1(~�; �)
= �
�1E

"
u0(c1(~�

0
; � 0))

p1(~�
0
; � 0)

#
; (8)

where ~�
0
and � 0 represent variables in the next time period. Taking expectations with

respect to ~� and � on both sides shows that a necessary condition for an unconstrained

5When 
 > �, all stationary equilibria are characterized by a degenerate distribution of money
holdings. One can show that, in this case, the value function V is strictly concave. This, together with
(5) implies that m3 is constant across households.
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equilibrium is 
 = �. The following proposition shows that this condition is also suf-

�cient. Moreover, under this monetary regime, the equilibrium achieves an e¢ cient

allocation.6

Proposition 2 In the economy with no credit, an unconstrained equilibrium exists if

and only if 
 = � and achieves a �rst-best allocation.

For our purposes, it is especially interesting to understand how the level of activity

is determined in a productive island in period 1. Let p1(�) and y1 (�) denote p1(�; �) and

y1(�; �). Substituting (4) into (3) (both as equalities), we can rewrite the consumer�s

optimality condition in period 1 as

u0(y1 (�)) =
p1(�)

p3
: (9)

Similarly, the producer�s optimality condition (6) can be rewritten as

v0(y1 (�) =�) = �
p1(�)

p3
: (10)

These two equations describe, respectively, the demand and the supply of consumption

goods in island �, as a function of the price p1(�). Jointly, they determine the equilibrium

values of p1 (�) and y1 (�) for each �. These equations highlight that, in an unconstrained

equilibrium, consumers and producers do not need to forecast the income/spending of

their partners when making their optimal choices, given that their marginal value of

money is constant and equal to 1=p3. This implies that trading decisions in a given

island are independent of trading decisions in all other islands. We will see that this is

no longer true when we move to a constrained equilibrium. Conditions (9) and (10) can

be easily manipulated to obtain the planner�s �rst order condition (1), showing that in

an unconstrained equilibrium y1(�) is independent of � and equal to its �rst-best level.

2.3.2 Fully constrained equilibrium

We now turn to the case where the liquidity constraint is always binding in period 2, that

is, m2(�; ~�; �) = 0 for all �; ~� and �. We refer to it as a �fully constrained equilibrium.�

We will show that such an equilibrium arises when in�ation 
 is su¢ ciently high.

6See Rocheteau and Wright (2005) for a general discussion of the e¢ ciency of the Friedman rule in
a wide class of search models of money.
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Again, our main objective is to characterize how output is determined in period 1.

First, however, we need to derive the equilibrium value of p2(�). At the beginning of

each period the entire money supply is in the hands of the consumers. Since in a fully

constrained equilibrium consumers spend all their money in period 2, market clearing

gives us a simple �quantity theory�equation

p2(�)e2 = m = 1; (11)

which pins down p2(�). To simplify notation, we choose units in period 2 such that

e2 = 1, so as to have p2(�) = 1.

Consider now a consumer and a producer in a productive island in period 1. Given

that the consumer will be liquidity constrained in period 2, his consumption in that

period will be fully determined by his money balances. In period 1, the consumer is

spending p1(�)y1(�) and expects his partner�s income to be p1(�)y1(�) with probability

�, and zero otherwise. Therefore, he expects total money balances at the beginning of

period 2 to be 1 in the �rst case and 1� p1(�)y1(�) in the second. Using p2(�) = 1, we
can then rewrite the Euler equation (3) as

u0(y1(�)) = p1(�) [�U
0 (1) + (1� �)U 0 (1� p1(�)y1(�))] : (12)

A symmetric argument on the producer�s side shows that the optimality condition (6)

can be written as

v0
�
y1(�)=�

�
= �p1(�) [�U

0 (1) + (1� �)U 0 (1 + p1(�)y1(�))] : (13)

These two equations correspond to (9) and (10) in the unconstrained case and jointly

determine p1(�) and y1(�) for each �. The crucial di¤erence with the unconstrained

case is that now �, the fraction of productive islands in the economy, enters the optimal

decisions of consumers and producers in a given productive island, since it a¤ects their

expected income and consumption in the following period. We will see in a moment how

this a¤ects aggregate volatility and comovement.

Notice that (12) and (13) implicitly de�ne a �demand curve�and a �supply curve,�

yD(p1; �) and y
S(p1; �).

7 It is easy to show that, for any �, there exists a price where

7These are not standard partial-equilibrium demand and supply functions, as they represent the
relation between the price p1 and the demand/supply of goods in a symmetric equilibrium where prices
and quantities are identical in all productive islands.
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the two curves intersect. For comparative statics, it is useful to impose an additional

restriction, ensuring that the supply curve is positively sloped at the equilibrium. We

then make the assumption

�(1� �H)cU 00 (c) =U 0 (c) � 1 for all c; (A1)

which ensures that the income e¤ect on labor supply is not too strong and that the

supply curve is positively sloped everywhere.

Lemma 1 The function yD(p1; �) is decreasing in p1. Under assumption A1, the func-

tion yS(p1; �) is increasing in p1 and, for given �, there is a unique pair (p1 (�) ; y1 (�))

which solves (12)-(13).

To complete the equilibrium characterization, it remains to �nd p3 and check that

consumers are indeed constrained in period 2, that is, that (4) holds. In the next

proposition, we show that this condition is satis�ed as long as 
 is above some cuto¤ 
̂.

Proposition 3 There is a 
̂ > � such that, in the economy with no credit, a fully

constrained equilibrium exists if and only if 
 � 
̂.

It is useful to clarify the role of the in�ation rate 
 in determining whether we are

in a constrained or unconstrained equilibrium. Notice that in an unconstrained equi-

librium the household�s money balances at the beginning of period 1 must be su¢ cient

to purchase both p1(�)y1(�) and p2(�)e2, in case the consumer is assigned to a produc-

tive island and the producer to an unproductive one. Therefore in an unconstrained

equilibrium the following inequality holds for all �

1

p2(�)
� e2 +

p1(�)

p2(�)
y1(�):

On the other hand, (11) shows that 1=p2(�) is constant and equal to e2 in a fully

constrained equilibrium. That is, the real value of money balances in terms of period 2

consumption is uniformly lower in a fully constrained equilibrium. This lower real value

of money balances is sustained by the fact that in�ation is high and the real rate of

return on money is low. This reduces the agents�willingness to hold money, reducing

the equilibrium real value of money balances. Through this channel high in�ation reduces

the households�ability to self-insure.
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2.4 Perfect credit markets

The economy with perfect credit markets is formally equivalent to the monetary economy

under the Friedman rule and achieves a �rst-best allocation. To prove this claim it is

su¢ cient to consider the case where households trade real non-state-contingent bonds

in periods 1 and 2, which pay o¤ in period 3. Let b1(~�; �) and b2(�; ~�; �) denote the

bond holdings in the hands of consumers at the end of periods 1 and 2 and pC1 (�; �) and

pC2 (�) denote goods�prices in terms of period 3 consumption.
8 The household�s budget

constraints are then

b1(~�; �) + p
C
1 (�; �)c1(

~�; �) � 0;

b2(�; ~�; �) + p
C
2 (�) c2(�;

~�; �) � b1(~�; �) + p
C
1 (�; �)�n(�; �);

c3(�; ~�; �) � b2(�; ~�; �) + p
C
2 (�) e2 + e3:

The analysis of the household�s problem can then be developed as in the monetary

economy, where b1(~�; �) and b2(�; ~�; �) take the place of m1(~�; �) �m and m2(�; ~�; �) �
m. The crucial di¤erence is that here there are no non-negativity constraint on bond

holdings, which implies that the Euler equation (4) will always hold as an equality. This

observation is behind the following result.9

Proposition 4 The economy with perfect credit markets has a stationary equilibrium,

which achieves the same consumption allocation as the economy with no credit under the

Friedman rule.

Allowing for intertemporal trade between periods (t; 3) and (t + 1; 1) or, more gen-

erally, for any set of state-contingent securities, would not change this result.

2.5 Coordination, ampli�cation and comovement

We now turn to the e¤ects of the aggregate shock � on the equilibrium allocation in the

various regimes considered. Aggregate output in period 1 is given by

Y1 (�) = �y1(�): (14)

8Using period 3 consumption as numeraire, bond prices are always equal to 1.
9The proof follows closely that of Proposition 2, and is omitted.
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Consider the proportional e¤ect of a small change in � on aggregate output,

d log Y1 (�)

d�
=
1

�
+
d ln y1(�)

d�
: (15)

When � increases, there is a larger fraction of productive islands, so aggregate output

mechanically increases in proportion to �. This �composition e¤ect�corresponds to the

�rst term in (15). The open question is whether a change in � also a¤ects the endogenous

level of activity in a productive island. This e¤ect is captured by the second term in

(15) and will be called �coordination e¤ect.�

In an unconstrained equilibrium, we know that y1(�) is independent of �. Therefore,

if money growth follows the Friedman rule or if there are perfect credit markets the

coordination e¤ect is absent. What happens in a fully constrained equilibrium, that

is, when credit contracts are not available and in�ation is high enough? Consider the

demand and supply curves in a productive island, yD(p1; �) and y
S(p1; �), derived above.

Applying the implicit function theorem to (12) and (13) yields

@yD(p1(�); �)

@�
= p1

U 0 (1)� U 0(1� p1(�)y1(�))
u00(y1(�)) + (p1(�))

2 (1� �)U 00(1� p1(�)y1(�))
> 0;

and

@yS(p1(�); �)

@�
= p1

U 0 (1)� U 0(1 + p1(�)y1(�))
v00(y1(�)=�)=� � �(p1(�))2 (1� �)U 00(1 + p1(�)y1(�))

> 0:

Both inequalities follow from risk aversion in period 2, that is, from the concavity of

U . On the demand side, the intuition is the following. In period 1, a consumer in

a productive island is concerned about receiving a bad income shock. Given that he

is liquidity constrained, this shock will directly lower his consumption from 1 to 1 �
p1(�)y1(�). An increase in � lowers the probability of a bad shock, decreasing the

expected marginal value of money and increasing the consumer�s willingness to spend,

for any given price. On the supply side, as � increases, a producer in a productive

island expects his partner to spend p1(�)y1(�) with higher probability. This generates a

negative income e¤ect which induces him to produce more, for any given price. These

two e¤ects shift both demand and supply to the right and, under assumption A1, lead

to an increase in equilibrium output.10 This proves the following result.

10If is useful to mention what would happen in an environment where the producer and consumer
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Proposition 5 (Coordination) Under assumption A1, in a fully constrained equilib-

rium, the output in the productive islands, y1 (�), is increasing in �.

This is the central result of our paper and shows that when liquidity constraints are

binding there is a positive coordination e¤ect, as consumers and producers try to keep

their spending and income decisions aligned. Consumers spend more when they expect

their partners to earn more, and producers work more when they expect their partners to

spend more. This has two main consequences. First, the impact of an aggregate shock on

the aggregate level of activity is magni�ed, leading to increased volatility. Second, there

is a stronger degree of comovement across islands. Let us analyze these two implications

formally.

Since y1 (�) is independent of � in an unconstrained equilibrium and increasing in

� in a fully constrained one, equation (15) implies immediately that @ log Y1 (�) =@� is

larger in a fully constrained equilibrium than in an unconstrained equilibrium. This

leads to the following result.

Proposition 6 (Ampli�cation) Under assumption A1, V ar [log Y1 (�)] is larger in a

fully constrained equilibrium than in an unconstrained equilibrium.

To measure comovement we look at the coe¢ cient of correlation between local output

in any given island and aggregate output. In an unconstrained equilibrium, there is some

degree of correlation between the two, simply because � is an aggregate shock which

increases aggregate output and increases the probability of the high productivity shock

in any given island. However, in a fully constrained equilibrium the correlation tends to

be stronger. Now, even conditionally on the island receiving the high productivity shock,

an increase in � tends to raise both local and aggregate output, due to the coordination

e¤ect. This leads to the following result.

Proposition 7 (Comovement) Under assumption A1, Corr[y1 (�; �) ; Y1 (�)] is larger in

a fully constrained equilibrium than in an unconstrained equilibrium.

from the same household can communicate (but not exchange money) in period 1. In that case, in
a productive island there will be two types of consumers and producers, distinguished by the local
shock of their partners. Consumers (producers) paired with a low productivity partner, will have lower
demand (supply). So also in that case an increase in � would lead to a reduction in activity in the
productive island. However, that case is less tractable, due to the four types of agents involved, and it
fails to capture the e¤ect of uncertainty on the agents�decisions.
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An alternative measure of comovement is the correlation between the level of activ-

ity in any given pair of islands, that is, Corr[y1 (�; �) ; y1(~�; �)]. In a setup with i.i.d.

idiosyncratic shocks the two measures are interchangeable as there is a simple monotone

relation between them.11

3 The Extended Model

We now enrich the model by generalizing the distributions of local and aggregate shocks

and by allowing a fraction of households to have access to credit. We will use this version

of the model to extend the analytical results of the previous section and to set the stage

for the quantitative analysis in Section 4.

3.1 Setup

The setup is as in Section 2 except for two di¤erences. First, we generalize the dis-

tribution of the shocks. The aggregate shock �t is i.i.d. with cumulative distribution

function G(�) continuous on the support [�; �]. Conditional on �t, the local productivity,
�kt , is randomly drawn from the cumulative distribution function F (�j�t) and support
� =

�
0; �
�
. We assume that F (�j�) has an atom at 0, i.e., F (0j�) > 0, and is continuous

on (0; �]. Moreover, F (�j�) is continuous and non-increasing in �, for each �. This
implies that a distribution with a higher � �rst-order stochastically dominates a distrib-

ution with lower �. As before, a law of large numbers applies, so F (�j�) also represents
the distribution of productivity shocks across islands for a given �.

Second, we assume that a fraction � 2 [0; 1] of the households have access to credit.
These households all travel to a given subset of islands, so they behave as described in

section 2.4 and always produce and consume the �rst-best level of output. A fraction

1�� of the households, instead, are anonymous and travel to a di¤erent subset of islands,
so they behave as in the monetary equilibrium described in Section 2.3. The parameter

� can be interpreted as the degree of �nancial development of the economy.

We focus on stationary equilibria, de�ned along the lines of De�nition 1. The su-

perscripts C and M refer, respectively, to the households who have access to credit and

to the anonymous households who need money to trade goods. In equilibrium credit

11In particular, it is possible to prove that Corr[y (�; �) ; y(~�; �)] = (Corr[y(�; �); Y (�)])2:
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households never hold money and we focus on equilibria where the distribution of money

balances of anonymous households is degenerate at m = 1= (1� �).
In a stationary equilibrium, anonymous households behave as in Section 2.3 and

their behavior is characterized by the optimality conditions (3)-(6). The assumption

that F (�j�) has an atom at 0, together with the Inada condition for U , ensures that (3)

and (5) always hold as equalities, as in the binary case. In general, (4) can hold with

equality or not depending on the shocks � and ~� and on the monetary regime.

The optimal behavior of credit households is described by the same equations (3)-

(6), with the di¤erence that (3) and (4) always hold as equalities, while (5) is always

slack, consistently with credit households being at a corner solution mC
3 (�;

~�; �) = 0.

Notice that in this model, credit access makes money completely unnecessary. We make

this modelling choice to focus on the simple idea that both increased credit access and

a better monetary environment contribute to relax borrowing constraints. However, it

would be clearly interesting to investigate environments with a richer interaction between

credit and money.

In the rest of this section, we focus on the polar cases of unconstrained and fully

constrained equilibria, we generalize the main analytical result of the previous section,

the coordination result in Proposition 5, and we discuss its implications for ampli�cation

and comovement. In the appendix, we characterize the equilibrium for general monetary

and credit regimes, that is, for any 
 2 (0;1) and � 2 [0; 1], which will be used in the
numerical analysis.

3.2 Unconstrained and fully constrained equilibria

The equilibrium characterization is a natural generalization of that in Section 2. First,

we look at unconstrained equilibria, which arise when either monetary policy follows the

Friedman rule or when all households have access to credit, that is, when either 
 = �

or � = 1. Second, we look at fully constrained equilibria where anonymous households

are always liquidity constrained in period 2 and there are no credit households, that is,

when 
 � 
̂ and � = 0.

Proposition 8 In the extended model, an unconstrained equilibrium exists if and only if

either � = 1 or � < 1 and 
 = � and it always achieves a �rst-best allocation. Output in
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period 1 is yC1 (�; �) = y
M
1 (�; �) = y

�
1 (�) where y

�
1 (�) satis�es �u

0 (y�1 (�)) = v
0(y�1 (�) =�)

for all � > 0, is increasing in �, and is independent of �.

In an unconstrained equilibrium the real allocation is the same for all households,

regardless of their access to credit. In particular, they consume and produce the �rst-

best level of output in all islands. As in the binary model, the separability of the

utility function implies that equilibrium output in island � depends only on the local

productivity and is not a¤ected by the distribution of productivities in other islands.

The characterization of a fully constrained equilibrium is also analogous to the binary

model, but the analysis is richer because of the continuous distribution of �. In a fully

constrained equilibrium, all households are liquidity constrained in period 2. Hence,

in that period, their consumption depends on both the consumer�s and the producer�s

shock in period 1. Following similar steps to Section 2.3.2, we can show that pM2 (�)

is constant and equal to 1 (under the normalization e2 = 1). The consumer�s budget

constraints in periods 1 and 2 then yield

cM2 (�;
~�; �) = 1� pM1 (~�; �)yM1 (~�; �) + pM1 (�; �) yM1 (�; �) : (16)

Consider a consumer and a producer in island �. The consumer�s Euler equation and

the producer�s optimality condition can be rewritten as

u0(yM1 (�; �)) = pM1 (�; �)

Z �

0

U 0(cM2 (
~�; �; �))dF (~�j�); (17)

v0
�
yM1 (�; �) =�

�
= �pM1 (�; �)

Z �

0

U 0(cM2 (�;
~�; �))dF (~�j�); (18)

where cM2 (�; ~�; �) is given by (16). These two equations are analogous to (12) and (13)

and represent, for a given �, the demand and supply in island �, taking as given prices

and quantities in other islands. They de�ne two functional equations in pM1 (�; �) and
yM1 (�; �). In the Appendix, we show that this pair of functional equations has a unique
solution. To do so, we de�ne nominal income x(�; �) � pM1 (�; �)yM1 (�; �) and we solve a
�xed point problem in terms of the function x (�; �).
To solve our �xed point problem, we use a contraction mapping argument, making

the following assumption:

�cu
00 (c)

u0 (c)
2 [�; 1) for all c; (A2)
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for some � > 0. The upper bound on �cu00 (c) =u0 (c) is needed to ensure that the
demand elasticity in a given island � is high enough. This guarantees that in islands

where productivity is higher prices do not fall too much, so that nominal income is

increasing in �. That is, producers in more productive islands receive higher earnings.

This property is both economically appealing and useful on technical grounds, as it

allows us to prove the monotonicity of the mapping used in our �xed point argument.12

The lower bound � is used to prove the discounting property of the same mapping.13

As in the binary model, we can then characterize a fully constrained equilibrium and

�nd a cuto¤ 
̂ such that such an equilibrium exists whenever 
 � 
̂.

Proposition 9 In the extended model, under assumption A2, there is a cuto¤ 
̂ > �

such that a fully constrained equilibrium exists if and only if 
 � 
̂. In a fully constrained
equilibrium, both output yM1 (�; �) and nominal income p

M
1 (�; �)y

M
1 (�; �) are monotone

increasing in �.

We could prove existence under weaker conditions, using a di¤erent �xed point ar-

gument. However, the contraction mapping approach helps us derive the coordination

result in Proposition 10 below.

3.3 Aggregate implications

We now turn to the analysis of the impact of the aggregate shock � on the equilibrium

allocation. Summing over credit and money islands, aggregate output in period 1 is

given by

Y1 (�) �
X
i=C;M

!i
Z �

0

yi1 (�; �) dF (�j�) ; (19)

12It is useful to mention alternative speci�cations which can deliver the same result (nominal income
increasing in �) without imposing restrictions on risk aversion in period 1. One possibility is to introduce
local shocks as preference shocks. For example, we could assume that the production function is the
same in all islands while the utility function takes the form �u (c1) where � is the local shock. In this
case, it is straightforward to show that both pM1 (�; �) and y

M
1 (�; �) are increasing in �, irrespective

of the curvature of u. This immediately implies that nominal income is increasing in �. Another
possibility is to use more general preferences, which allow to distinguish risk aversion from the elasticity
of intertemporal substitution. For example, using a version of Epstein and Zin (1989) preferences, it is
possible to show that this result only depends on the elasticity of substitution between c1 and c2 and
not on risk aversion.
13This assumption is minimally restrictive, as � is only required to be non-zero.
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where the weight !i is equal to the average share of nominal output produced in islands

of type i. The proportional response of output to a small change in �, can be decomposed

as in the binary case,

d lnY1
d�

=
1

Y1

X
i=C;M

!i
Z �

0

yi1 (�; �)
@f (�j�)
@�

d� +
1

Y1

X
i=C;M

!i
Z �

0

@yi1 (�; �)

@�
dF (�j�) : (20)

The �rst term is the mechanical composition e¤ect of having a larger fraction of more

productive islands. This e¤ect is positive both in an unconstrained and in a fully con-

strained equilibrium. This follows from the fact that an increase in � leads to a �rst-order

stochastic shift in the distribution of � and that yi1 (�; �) is increasing in � in both regimes,

as shown by Propositions 8 and 9.

The second term in (20) is our coordination e¤ect. As in the binary case, this e¤ect

is zero in an unconstrained equilibrium, since, by Proposition 8, output in any island

� is independent of the economy-wide distribution of productivity. Turning to a fully

constrained equilibrium, we can generalize Proposition 5 and show that yM1 (�; �) is

increasing in �, for any realization of the local productivity shock �. For this result, we

make a stronger assumption than the one used in the binary model, that is, we assume

that U has a coe¢ cient of relative risk aversion smaller than one

�cU
00 (c)

U 0 (c)
� 1 for all c: (A1�)

This condition is su¢ cient to prove that the labor supply in each island is positively

sloped. Assumption A1�is usually stronger than needed. In the simulations of Section

4, we check numerically that labor supply is positively sloped also for parametrizations

with a coe¢ cient of relative risk aversion greater than 1, so our coordination result

extends to those cases. In fact, as we will see, the coordination e¤ect can be stronger

when agents are more risk averse.14

Proposition 10 (Coordination) Consider the extended model. Under assumption A1�

and A2, in a fully constrained equilibrium, for each � > 0, the output yM1 (�; �) is in-

creasing in �.

14A way of relaxing this assumption on risk aversion could be to consider more general preferences
that distinguish between risk aversion and the elasticity of substitution between consumption and leisure
(see footnote 12).
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To understand the mechanism behind this result, it is useful to consider the following

partial equilibrium exercise. Let us focus on island � and take as given pM1 (~�; �) and

yM1 (
~�; �) for all ~� 6= �. Consider the demand and supply equations for island �, (17)

and (18). Proposition 9 shows that pM1 (�; �) y
M
1 (�; �) is an increasing function of �.

It follows that U 0(cM2 (~�; �; �)) is decreasing in ~�, while U
0(cM2 (�;

~�; �)) is increasing in
~�. Hence, when � increases the integral on the right-hand side of (17) decreases, while

the integral on the right-hand side of (18) increases.15 The intuition is similar to the

one for the binary model. On the demand side, when a liquidity constrained consumer

expects higher income from his partner, his marginal value of money decreases. Then,

he reduces his reserves and increases consumption for any given price pM1 (�; �). On

the supply side, when a producer expects higher spending by his partner, he faces a

negative income e¤ect and hence produces more for any given pM1 (�; �). The �rst e¤ect

shifts the demand curve to the right, the second shifts the supply curve to the right.

The combination of the two implies that equilibrium output in island � increases.

On top of this partial equilibriummechanism, there is a general equilibrium feed-back

due to the endogenous response of prices and quantities in islands ~� 6= �. This magni�es
the initial e¤ect. As the nominal value of output in all other islands increases, there is a

further increase in the marginal value of money for the consumers and a further decrease

for the producers, leading to an additional increase in output.

Summing up, the coordination e¤ect identi�ed in Proposition 10 is driven by the

agents� expectations regarding nominal income in other islands. This e¤ect tends to

magnify the output response to aggregate shocks in a fully constrained economy and to

generate more comovement across islands, as in the binary case.

Going back to equation (20), we have established that the coordination e¤ect is zero

in the unconstrained case and positive in the fully constrained one. However, this is

not su¢ cient to establish that output volatility is greater in the constrained economy,

since we have not compared the relative magnitude of the compositional e¤ects, which

are positive in both cases. In the binary model, the comparison was unambiguous,

given that this e¤ect was identical in the two regimes. However, except in speci�c

cases, it is di¢ cult to compare the relative size of this e¤ect in the two regimes and to

15This follows immediately from the fact that an increase in � leads to a shift of the distribution of
� in the sense of �rst order stochastic dominance.
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obtain the analog of Proposition 6. In fact, it is possible to construct examples where

this e¤ect is larger in the unconstrained economy and where it is strong enough to

dominate our coordination e¤ect. Similar problems limit our ability to generalize the

analytical result on comovement in Proposition 7. However, the numerical analysis in the

next section shows that, under realistic parametrizations, the coordination mechanism

identi�ed in Proposition 10 tends to generate higher volatility and higher comovement

in more liquidity constrained regimes.

4 The Great Moderation

In this section, we use a simple calibrated version of the model to evaluate to what extent

our mechanism can explain the changes in output volatility and sectoral comovement

associated to the Great Moderation. We �rst choose the model�s parameters to match

some basic features of the U.S. economy pre-1984. Then we only change the values of �

and 
, to re�ect observed changes in credit access and average in�ation after 1984, and

look at their e¤ect on aggregate volatility and comovement.

4.1 Stylized facts

Let us �rst summarize the stylized facts which motivate our exercise. The �rst is the

decline in aggregate volatility in the U.S. after the mid 1980s, a well-established fact in

the literature.16 The �rst panel in Figure 1 shows the path of the volatility of real GDP

from 1951 to 2003. To measure volatility, we use HP �ltered series for real GDP (in logs)

from the National Income and Product Account (NIPA) and compute rolling standard

deviations over a 9 year window.17 The second fact is the decline in sectoral comovement

over the same time period, a fact documented by Comin and Philippon (2005), using the

35-sector KLEM dataset of Jorgenson and Stiroh (2000). The second panel in Figure 1

shows the path of sectoral comovement from 1951 to 2003. To measure comovement, we

look at real value added industry-level data from NIPA and compute rolling coe¢ cients

16See references in the introduction.
17We begin in 1951 because the �rst available observation for chain-weighted GDP is 1947. We look

at yearly data and use a smoothing parameter of 10 in the HP �lter, which is appropriate for capturing
volatility at business-cycle frequency, as suggested by Baxter and King (1999) (see also Ravn and Uhlig,
2002).
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of correlation with aggregate GDP over a 9 year window. Our measure of comovement

is the average coe¢ cient of correlation across sectors.18

Figure 1 shows a marked drop in both volatility and comovement occurring in the

mid 1980s. Splitting the sample in two, before and after 1984, we �nd that the standard

deviation of real GDP decreased from 1:86% in the �rst subsample to 0:92% in the

second one, while sectoral comovement went from 0:56 to 0:39. These are the numbers

we will try to explain. The �gure also shows an increase in volatility in correspondence

to the high in�ation period of the 1970s and �rst half of the 1980s. Comovement displays

a similar, if less dramatic, increase in the same period.19 We will also explore the ability

of our model to capture these patterns.

To explain these facts, we focus on two underlying changes in the U.S. economy. First,

the steady expansion of credit markets, documented extensively in Dynan, Elmendorf

and Sichel (2006). Here, given our focus on households�liquidity management, we look at

the evolution of revolving consumer credit. Panel (a) of Figure 2 shows that the ratio of

revolving credit over GDP has risen steadily over time from 1968 to 2007.20 Second, the

high in�ation of the 1970s and early 1980s. In panel (b) we plot the behavior of average

CPI in�ation and of the nominal interest rate over a 9 year window, from 1951 to 2003.

The path of both variables clearly shows that in the intermediate part of the sample

both realized in�ation and in�ation expectations (re�ected in the nominal interest rate)

were higher.

4.2 Calibration

For our numerical analysis, we choose isoelastic functional forms for the instantaneous

utility functions, u (c) = c1��1= (1� �1) and U (c) = c1��2= (1� �2), and for the disutility
of labor e¤ort, v (n) = n1+�= (1 + �). There are two aggregate states, �L and �H , with

probabilities � and 1� �. Conditional on the aggregate state, the island speci�c shock
� are log-normally distributed with mean �H in state �H , �L in state �L, and variance

18We use 22-industry level data, which go back to 1947, excluding the last two sectors (federal and
state government). As for aggregate GDP, we use real value added, chain-weighted series, in logs, HP
�ltered with a smoothing parameter of 10.
19Similar patterns are found in the literature. See, e.g., Figure 1 in Blanchard and Simon (2000) and

Figure 9 in Comin and Philippon (2005).
20The data are from the Federal Reserve Board, Table G.19.
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Figure 1: Volatility and comovement.
Panel (a): Rolling standard deviation of real GDP over 9 year window from t � 4 to t + 4
(in percentage points). Chain-weighted yearly data, HP �ltered with smoothing parameter 10.
Panel (b): Rolling average coe¢ cient of correlation between 20 sectors and aggregate GDP over
9 year window from t � 4 to t + 4. Chain-weighted yearly data, HP �ltered with smoothing
parameter 10. Source: BEA.
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Figure 2: Revolving credit, in�ation and nominal interest rates.
Panel (a): Total consumer revolving credit owned and securitized, over GDP. Source: Federal
Reserve Board. Panel (b): CPI in�ation and 3-month nominal interest rate, rolling averages
from t� 4 to t+ 4 (percentage points). Sources: BLS and Federal Reserve Board.
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�2.21

We interpret each sequence of three subperiods as a year and set the discount factor

� equal to 0:97. In our baseline parametrization, we set the coe¢ cient of relative risk

aversion �2 equal to 1 and the inverse Frisch elasticity � to 0. Later, we will present var-

ious robustness checks with di¤erent values for these parameters. Given the assumption

of isoelastic preferences, we can normalize e2 = 1. The dispersion of local shocks, �2,

is chosen to match observed income volatility at the household level. In particular, in

the model we identify transitory idiosyncratic income volatility with the average stan-

dard deviation of nominal income in the �rst two periods conditional on �. We choose

�2 = 0:1971 to obtain a standard deviation of income equal to 0:17, consistently with

estimates in Hubbard, Skinner and Zeldes (1994).

The remaining parameters are calibrated to match relevant features of the U.S. econ-

omy for the period pre-1984. The values of �1, e3 and E [�] are chosen to match the
shape of the empirical relation between money velocity and the nominal interest rate

in the period 1947-1984. This approach follows Lucas (2000), Lagos and Wright (2005)

and Craig and Rocheteau (2007). In the data, inverse money velocity is obtained as

the ratio of M1 to nominal GDP and the nominal interest rate is measured by the

short-term commercial paper rate. In the model, inverse money velocity is measured as

1=Y Nt , where Y
N
t is aggregate nominal output in periods 1 to 3 at time t. To derive

the nominal interest rate in the model, we assume that the real interest rate is 1=�,

so that the nominal interest rate is equal to 1 + i = 
=�. Notice that the Friedman

rule corresponds, as it should, to i = 0.22 The parameters we obtain are �1 = 0:2005,

e3 = 4:0101 and E [�] = 0:5768. The value of �, the fraction of consumers with credit
access, is chosen to match the average ratio of revolving credit to GDP in 1947-1984,

which is equal to 0:0073.23 This gives us a value of � = 0:0465. We then calibrate the

volatility of aggregate shocks to match average volatility in 1947-1984. We interpret

21Even though this distribution does not have an atom at 0, our numerical results show that in
equilibrium consumers never exhaust their money balances in period 1.
22For each yearly observation of i, we compare the empirical value of the inverse money velocity and

the one generated by the model. We choose the model parameters to minimize the mean quadratic
distance between the two. Given that the distribution of � has a negligible e¤ect on money velocity,
for this estimation we compute money velocity setting � at its mean value E [�].
23Data before 1968 are not available, so we make the conservative assumption that the ratio was at

its 1968 value in all previous periods. In the model, the average stock of credit in the economy is equal
to 2

3

R
pC1 (�) y

C
1 (�) dF (�) +

1
3p
C
2 e2.
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the bad aggregate state �L as a recession and choose � = 0:8 to match the frequency

of recessions as de�ned by the National Bureau of Economic Research (NBER), in the

subsample 1947-1984. The size of the shock, �H��L, is chosen equal to 0:0157 to match
the average volatility of aggregate output in the same subsample, 1:86%, under a con-

stant nominal interest rate equal to the subsample average of 5:53%. Finally, to compare

the model�s predictions on comovement to evidence from sectoral data, we assume that

islands are grouped in sectors made of N islands. We choose N = 5; 050 to match our

evidence on sectoral comovement in 1947-1984, that is, a coe¢ cient of correlation equal

to 0:56.

4.3 Results

Having calibrated the model to match volatility and comovement pre-1984, we look

at the e¤ects of improved credit access and lower in�ation in the second subsample,

1985-2007. Splitting the sample in two, before and after 1984, the ratio of revolving

consumer credit over GDP goes from 0:73% to 5:37%. To match this increase, in the

model we increase � from 0:0465 to 0:4376. The data on money velocity provide a useful

consistency check for our estimated change in �. Figure 3 shows the relation between

inverse money velocity and the nominal interest rate in the data (scatter plot) and in the

model (solid and dashed lines) for the two subsamples. The increase in � in the second

period implies that the model-generated curve shifts downwards because of the lower

money demand from credit households. Changing � from 0:0465 to 0:4376 generates a

downward shift which is roughly consistent with the shift in the data.

In terms of monetary regimes, given the structure of the model and the way we

have calibrated the �money demand�relation in Figure 3, we focus on changes in the

nominal interest rate, which re�ect underlying changes in expected in�ation. The results

are similar if we use realized in�ation, given the similar path of the two variables (see

panel (b) of Figure 2). Splitting the sample in two, before and after 1984, the average

nominal interest rate goes from 5:53% to 5:19%. Overall, the high rates of the 1970s

and 1980s have a small e¤ect on the period�s average in 1947-1984, so this period only

displays slightly higher rates than 1985-2007. Therefore, in order to better gauge the

e¤ects of a high in�ation regime, we also consider three separate regimes, with nominal
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Figure 3: Money demand pre-1984 and post-1984.
The scatter plot represents the data: dots for 1947-1984, stars for 1985-2007. The lines rep-
resent the simulated relation between the nominal rate and the inverse velocity in the model:
solid line for 1947-1984, dashed line for 1985-2007.

interest rates equal to 3:31%, 8:65%, and 5:19%, corresponding, respectively, to 1947-

1969, 1970-1984, and 1985-2007.24

We then simulate the model under the di¤erent regimes and compute the volatility

of aggregate output and our measure of sectoral comovement, equal to the average

coe¢ cient of correlation between sectoral output and aggregate output. Given that

in subperiods 2 and 3 output is constant by assumption, we focus on volatility and

comovement in subperiod 1. In our three-period exercise, we take the middle period as

our reference point, and re-calibrate �H��L and N to match volatility and comovement

in this period.

Table 1 shows the results of our benchmark calibration. On the left, we report the

observed values of volatility and comovement in the U.S. in the di¤erent subsamples, on

the right, the values generated by the model. In our two-period exercise, the model is

able to explain approximately 1=4 of the observed decline in volatility and more than 3=4

24Given that the data on revolving consumer credit are available only from 1968, we only consider
two credit regimes, before and after 1984.
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of the decline in sectoral comovement. In our three-period exercise, the model is able to

explain almost half of the increase in volatility between the �rst and the second period,

due to the substantial increase in in�ation, and about 1=4 of the subsequent decline,

from the second to the third period. The model-generated changes in comovement are,

again, quite close to the observed ones.

Table 1: Benchmark Calibration

US Data
Benchmark Calibration

�2 = 1; � = 0
Volatility Comovement Volatility Comovement

1947-1984 1:86 0:56 1:86 0:56
1985-2007 0:92 0:39 1:62 0:43
1947-1969 1:67 0:54 1:93 0:52
1970-1984 2:15 0:58 2:15 0:58
1985-2007 0:92 0:39 1:86 0:43

Note: Data from NIPA. The remaining model parameters are � = 0:97, �1 = 0:2005,
e2 = 1, e3 = 4:0101, E [�] = 0:5768, � = 0:8, �2 = 0:1971. In the two-period exercise we
set �H � �L = 0:0157 and N = 5; 050. In the three-period exercise �H � �L = 0:0166 and
N = 4; 550: The regimes for credit access are �47�84 = 0:0465 and �85�07 = 0:4376. The
monetary regimes are 
47�84 = � � 1:0553, 
47�69 = � � 1:0331, 
70�84 = � � 1:0865%; and

85�07 = � � 1:0519.

We then consider some alternative parametrizations, both to check the robustness

of our results and to investigate how they depend on di¤erent features of the model.

Table 2 reports the values of volatility and comovement pre- and post-1984 generated

by our model when we vary � or �1. For each pair of values of � and �1, we re-calibrate

all the remaining parameters following the steps outlined above. Therefore, volatility

and comovement in the reference periods are, by construction, equal to their empirical

counterpart. The table shows that our results remain qualitatively unchanged and that

the quantitative e¤ects remain sizeable.

Increasing � tends to reduce the size of our e¤ect, as it makes the labor supply in each

island less elastic, thus reducing the response of labor e¤ort to the demand shifts driven

by our coordination motive. However, when we increase �, our calibration requires that

we reduce �1 in order to match the money demand relation plotted in Figure 3. This
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makes the consumers�demand in each island more elastic, and it magni�es the e¤ects of

the supply shift due to our coordination motive on the producer�s side. This combination

of e¤ects, implies that changing � and re-calibrating the model can, in general, have non-

monotone e¤ects on the size of our ampli�cation e¤ect. This is illustrated in Table 2,

which show that the reduction in volatility in the post-84 period is bigger at � = 0:25

than at � = 0:1.25

Table 2: Changing the elasticity of labor supply �

�2 = 1; � = 0:1 �2 = 1; � = 0:25
Volatility Comovement Volatility Comovement

1947-1984 1:86 0:56 1:86 0:56
1985-2007 1:75 0:43 1:64 0:42
1947-1969 1:90 0:48 2:00 0:53
1970-1984 2:15 0:58 2:15 0:58
1985-2007 1:71 0:39 1:83 0:42

Note: The model�s parameters are calibrated for each value of �, as described in the text.
The values of �H � �L and N are separately calibrated in the two-period and three-period
exercises, so as to match volatility and comovement, respectively, in 1947-1984 and in 1970-
1984.

Table 3: Changing risk aversion �2

�2 = 0:5; � = 0 �2 = 2; � = 0
Volatility Comovement Volatility Comovement

1947-1984 1:86 0:56 1:86 0:56
1985-2007 1:52 0:42 1:72 0:42
1947-1969 1:97 0:53 1:98 0:48
1970-1984 2:15 0:58 2:15 0:58
1985-2007 1:69 0:41 1:90 0:42

Note: The model�s parameters are calibrated for each value of �2, as described in the
text. The values of �H � �L and N are separately calibrated in the two-period and three-
period exercises, so as to match volatility and comovement, respectively, in 1947-1984 and in
1970-1984.
25Notice also that our calibration approach places e¤ectively an upper bound on �. As we increase

�, the calibrated value of �1 is smaller. For values of � around 0:35 and higher, the calibrated value
of �1 hits a corner at 0, and the �t of the money demand relation gets worse for larger values of �.
Furthermore, as usual in real business cycle models, larger values of � tend to worsen the performance
of the model in terms of labor supply volatility.
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Figure 4: Risk aversion and volatility

Table 3 shows that the e¤ects remain sizeable when we experiment with di¤erent

values of �2, the coe¢ cient of relative risk aversion in period 2. The e¤ects of changing

�2 are also subtle. Let us focus on the columns on the right, with �2 = 2. When we do

our two-periods exercise, the model with �2 = 2, displays a smaller reduction in volatility

and comovement from the �rst to the second period, relative to the baseline case �2 = 1.

However, in the three-period exercise, the model with �2 = 2 displays a larger run up

in volatility and comovement from the �rst to the second period. Therefore, depending

on the speci�c regimes we are comparing, a larger risk aversion can lead to smaller or

bigger e¤ects. Figure 4 con�rms this observation, by plotting volatility against di¤erent

values of the nominal interest rate for �2 = 1 (solid line) and �2 = 2 (dashed line). Each

line is derived using the respective values of the calibrated parameters and keeping �

at its pre-1984 value. On the one hand, the e¤ect of going from relative low in�ation

towards the Friedman rule is smaller when �2 = 2. On the other hand, the e¤ect of

going towards a high in�ation regime is larger.

To understand this result, notice that when �2 increases two e¤ects are at work. First,

given the value of money balances in period 2, 1=p2(�), an increase in �2 tends to increase

our coordination e¤ect. If consumers are more risk averse, an increase in the probability

of high income realizations, tend to increase their current demand more. A symmetric
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mechanism is at work on the producers�side. So both demand and supply in a given

island � tend to shift more to the right under larger risk aversion. However, an increase

in risk aversion also a¤ects the endogenous value of money balances. In particular, as

agents have a stronger precautionary motive, 1=p2(�) tends to be larger. This reduces

the severity of the liquidity problem in period 2, possibly making the liquidity constraint

not binding for some realizations of the local shocks, and it reduces the relevance of our

coordination e¤ect. Therefore, the net e¤ect of changing �2, is, in general ambiguous.

Figure 4 shows that, under our parametrization, the second e¤ect dominates near the

Friedman rule, while the �rst one dominates for higher in�ation rates.26

Table 4: Uniform distribution

Volatility Comovement
1947-1984 1:86 0:56
1985-2007 1:66 0:46
1947-1969 1:78 0:48
1970-1984 2:15 0:58
1985-2007 1:75 0:45

Note. The model parameters are � = 0:97, �1 = 0:1819, �2 = 1, � = 0, e2 = 1, e3 = 3:4482,
� = 0:8, � = 1:1098. For the two-periods exercise � = 0:0331 and N = 1; 895, while for the
three-periods one � = 0:0349 and N = 1; 500. The regimes for credit access are �47�84 =
0:0428 and �85�07 = 0:4426. The monetary regimes are the same as above.

Finally, we experiment with di¤erent assumptions on the distribution of �. Namely,

we assume that in the high aggregate state, �H , the island speci�c shock � has a discrete

uniform distribution, with 10 equally spaced observations on the interval [0; �]. In the

low state, �L, the probability of � = 0 increases by � > 0, and the probability of

all positive realizations of � decrease proportionally. The two parameters � and � are

calibrated, respectively, to match transitory idiosyncratic income volatility and aggregate

volatility, while the remaining parameters are calibrated to match the money demand

26Notice that this discussion of the e¤ects of changing �2 is quite unrelated to our use of the assumption
�2 � 1 in the proof of Proposition 10. That assumption was only made as a su¢ cient condition for a
positively sloped labor supply curve in each island. In our numerical examples, we checked that the
labor supply is always positively sloped, even when we experiment with larger values of �2. So the
coordination result in Proposition 10 applies in all our examples.

35



relation, as in the baseline calibration. Table 3 reports the results of both the two-period

and the three-period exercises described above. In the two-period exercise, we obtain

results similar to the ones obtained with a log-normal distribution. In the three-period

exercise, the model with the uniform distribution can actually explain a larger fraction

of the observed changes in volatility and comovement.

5 News shocks

Consider now the general model of Section 3, with the only di¤erence that the aggregate

shock � is not observed by the households in period 1. Instead, they all observe a public

signal � 2 [�; �], which is drawn at the beginning of each period, together with the

aggregate shock �, from a continuous distribution with joint density function g (�; �).

Take an agent located in an island with productivity �, his posterior density regarding

� can be derived using Bayes�rule:

g (�j�; �) = f (�j�) g (�; �)R �
�
f(�j~�)g(~�; �)d~�

:

The distribution g (�j�; �) is then used to derive the agent�s posterior beliefs regarding ~�
in the island where his partner is located

F (~�j�; �) =
Z �

�

F (~�j�)g (�j�; �) d�:

We will make the assumption that F (~�j�; �) is non-increasing in �, for any pair (�; ~�).
This means, that conditional on �, the signal � is �good news� for ~�, in the sense of

Milgrom (1981). We also make the natural assumption that F (~�j�; �) is non-increasing
in �. In period 2, the actual shock � is publicly revealed.

In this environment, we study a stationary equilibrium, along the lines of the one

described in Section 3, where credit households never hold money, and the distribution

of money holdings for anonymous households at the beginning of period 1 is degenerate.

Prices and allocations now depend on the local shocks and on the aggregate shocks �

and �. In particular, prices and quantities in period 1 depend only on � and �, given

that � is not in the information set of the households in that period. Aggregate output
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in period 1 becomes

Y1 (�; �) �
X
i=C;M

!i
Z �

0

yi1 (�; �) dF (�j�) : (21)

We can now look separately at the output response to the productivity shock � and to

the news shock �. In particular, next proposition shows that the output response to �

is positive both in an unconstrained and in a fully constrained equilibrium, while the

output response to the signal � is positive only in the fully constrained case.

Proposition 11 Consider an economy with imperfect information regarding the aggre-

gate shock. Under assumptions A1�and A2, in an unconstrained equilibrium @Y1(�; �)=@� >

0 and @Y1(�; �)=@� = 0. In a fully constrained equilibrium @Y1(�; �)=@� > 0 and

@Y1(�; �)=@� > 0.

This result is not surprising, in light of the analysis in the previous sections. Com-

pare the expression for aggregate output under imperfect information (21) with the

correspondent expression in the case of full information (19). By de�nition, the produc-

tivity shock � a¤ects the distribution of local shocks F (�j�) in both cases. However, the
trading decisions of anonymous households in island � are a¤ected only by the agents�

expectations about that distribution, which, in the case of imperfect information, are

driven by the signal �. It follows that the e¤ect of � is analogous to the mechanical com-

position e¤ect in the model with full information on �, while the e¤ect of � is analogous

to the coordination e¤ect. The advantage of an environment with imperfect information,

is that these two e¤ects can be disentangled. In an unconstrained economy, as we know

from Proposition 8, output in island � is independent of the economy-wide distribution

of productivity and thus does not respond to �. The result that the output response

to � is positive in a fully constrained economy is a natural extension of Proposition 10.

In island �, trading is higher the more optimistic agents are about trading in all other

islands. The only di¤erence is how expectations are formed. The perceived distribution

of productivities for an agent in island � depends now on the signal �, instead that on

the actual �. A positive signal � makes both consumers and producers in island � more

optimistic about trading in other islands, even if the underlying � is unchanged. This

highlights that expectations are at the core of our ampli�cation result.
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6 Concluding Remarks

In this paper, we have analyzed how di¤erent liquidity regimes a¤ect the response of

an economy to aggregate shocks. A liquidity regime depends both on the households�

access to credit and on the value of their money holdings. In regimes where liquidity

constraints are binding more often, we show that there is a coordination motive in the

agents�trading decisions. This generates both an ampli�ed response to aggregate shocks

and a larger degree of comovement.

Our mechanism is driven by the combination of risk aversion, idiosyncratic uncer-

tainty, and decentralized trade. All three ingredients are necessary for the mechanism

to operate. Risk aversion and idiosyncratic risk give rise to an insurance problem. De-

centralized trade implies that agents with no access to credit can only self-insure using

their money holdings.27 A nice feature of our setup is that simply by changing the

credit and monetary regimes, we move from an environment in which idiosyncratic risk

is perfectly insurable (unconstrained equilibrium) to an environment in which idiosyn-

cratic risk is completely uninsurable (fully constrained equilibrium). In this sense, the

mechanism identi�ed in this paper speaks more broadly about the e¤ect of uninsurable

idiosyncratic risk on aggregate behavior.

In our model, money is the only liquid asset available to households. This is clearly

a strong simpli�cation. It was motivated by the fact that money balances constitute

a major fraction of liquid savings for many households (especially for middle-low in-

come households, who are plausibly more likely to be constrained), and by the fact

that there is a well understood channel relating in�ation to the real value of money

balances. Nonetheless, it would be interesting to expand the model to allow for a richer

menu of liquid assets. On the empirical side, the period following the 1980s has seen

the development of many highly liquid alternatives to checking accounts (e.g. money

market accounts), which arguably have contributed to better liquidity management at

the household level. Including these assets into the picture may thus lead to larger

quantitative e¤ects than those documented in Section 4.

In this paper, we have focused on liquidity problems at the household level. However,

27Reed and Waller (2006) also point out the risk sharing implications of di¤erent monetary regimes
in a model à la Lagos and Wright (2005).
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the mechanism described could also be applied to �rms�liquidity problems. In particular,

one can think of extending our mechanism to an input-output framework, where �rms

buy intermediate goods from each other and where the spending decisions of liquidity

constrained �rms a¤ect the rest of the economy through a channel similar to the one in

our model.

For analytical tractability, we have developed our argument in a periodic framework

à la Lagos and Wright (2005). This framework is clearly special in many respects,

and, in particular, displays no endogenous source of persistence. Therefore, it would be

interesting to investigate, numerically, the quantitative implications of our mechanism

in a version of the model that allows for richer dynamics of individual asset positions.28

A similar extension would also help to clarify the relation between our results and the

literature on the aggregate implications of imperfect risk sharing, such as Krusell and

Smith (1989).29

Finally, in terms of empirical applications, it would be interesting to investigate

the behavior of volatility and comovements in countries other than the U.S., who have

either experienced periods of fast �nancial innovation or periods of high in�ation. For

example, the cross-country evidence in Cecchetti, Flores-Lagunes and Krause (2005)

shows a negative e¤ect of �nancial deepening on aggregate volatility, which is consistent

with our story.

Appendix

Proof of Proposition 1

For any � and ~�, the �rst order conditions for c1(�; �; �) and n(�; ~�; �) are

�u0(c1(�; �; �)) = �(�; �);

�v0(n(�; ~�; �)) = ��(�; �);

where �(�; �) is the Lagrange multiplier of the resource constraints in island �. Substi-

tuting c1(�; �; �) = y�1(�); n(�; �; �) = y�1(�)=�; and � (�; �) = �u0(y�1(�)) con�rms that

28See, for example, the computational approach in Molico (2006).
29In Krusell and Smith (1989) the entire capital stock of the economy is a liquid asset and the presence

of uninsurable idiosyncratic risk has minor e¤ects on aggregate dynamics. To explore our mechanism,
it would be interesting to assume that capital is at least partially illiquid.
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the proposed allocation in period 1 for productive islands is optimal. Similar derivations

show the optimality of the allocation in period 1 for unproductive islands and in period

2 for all island.

Proof of Proposition 2

In the main text we show that 
 = � is a necessary condition for an unconstrained

equilibrium and that an unconstrained equilibrium achieves �rst-best e¢ ciency in period

1. In period 2, if the liquidity constraint is slack, all households� consume the same

amount, as U 0(c2(�; ~�; �)) = p2(�)=p3 for all � and ~�. By market clearing c2(�; ~�; �) must

then be equal to e2. Since any stationary allocation c3(�; ~�; �) is consistent with �rst-

best e¢ ciency, this completes the proof of e¢ ciency. It remains to prove that 
 = �

is su¢ cient for an unconstrained equilibrium to exist. To do so, we construct such an

equilibrium. Let the prices be

p1(�) = p3u
0(y�1(�)) for � 2

�
0; �
	
;

p2 = p3U
0(e2);

and p3 take any value in (0; p̂3], where

p̂3 � 1=
�
u0(y�1(�))y

�
1(�) + U

0 (e2) e2
�
:

From the argument above, the consumption levels in periods 1 and 2 must be at their

�rst-best level. Substituting in the budget constraints the prices above and the �rst-best

consumption levels in periods 1 and 2, we obtain

c3(�; ~�; �) = e3 � u0(y�1(~�))y�1(~�) + u0(y�1(�))y�1(�):

The assumption that e3 is large ensures that c3(�; ~�) > 0 for all � and ~�. Moreover, it is

easy to show that money holdings are non-negative, thanks to the assumption p3 � p̂3.
It is also easy to check that the allocation is individually optimal and satis�es market

clearing, completing the proof.
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Proof of Lemma 1

Applying the implicit function theorem, to (12) and (13) we obtain

@yD(p1; �)

@p1
=

�U 0 (e2) + (1� �)U 0(e2 � p1y1)� p1y1 (1� �)U 00(e2 � p1y1)
u00(y1) + p

2
1 (1� �)U 00(e2 � p1y1)

; (22)

@yS(p1; �)

@p1
= �

�U 0 (e2) + (1� �)U 0(e2 + p1y1) + p1y1 (1� �)U 00(e2 + p1y1)
v00
�
y1=�

�
=� � p21 (1� �)U 00(e2 + p1y1)

: (23)

The concavity of u and U imply that the numerator of (22) is positive and the numerator

is negative, proving that @yD(p1; �)=@p1 < 0. The concavity of U and the convexity of

v show that the denominator of (23) is positive. It remains to show that the numerator

is also positive. The following chain of inequalities is su¢ cient for that:

�U 0 (e2) + (1� �)U 0(e2 + p1y1) + (1� �) p1y1U 00(e2 + p1y1) >

U 0(e2 + p1y1) + (1� �) (e2 + p1y1)U 00(e2 + p1y1) � 0:

The �rst inequality follows because the concavity of U implies U 0 (e2) > U 0(e2 + p1y1)

and e2U 00(e2+ p1y1) < 0. The second follows from assumption A1, completing the proof

that @yS(p1; �)=@p1 > 0. Existence can be shown using similar arguments as in the proof

of Lemma 2 below. Uniqueness follows immediately.

Proof of Proposition 3

First, we complete the characterization of a fully constrained equilibrium, presenting the

steps omitted in the text. Then, we will de�ne 
̂ and prove that such an equilibrium

exists i¤ 
 � 
̂. Suppose for the moment that (12) and (13) have a unique solution,

p1(�; �) and y1(�; �). In unproductive islands, output and nominal output are zero,

y1 (0; �) = 0 and p1 (0; �) y1 (0; �) = 0. From the consumer�s budget constraint in period

2, we obtain

c2(�; ~�; �) = e2 � p1(~�; �)y1(~�; �) + p1 (�; �) y1 (�; �) :

The price level in unproductive islands is obtained from the Euler equation (3),

p1(0; �) = u
0(0)

�
E[U 0(c2(0; ~�; �))j~�; �]

��1
:

From the consumer�s budget constraint in period 3 we obtain c3 = e3. Combining the

Euler equations (3) and (5) and the envelope condition (7), p3 is uniquely pinned down

41



by
1

p3
= �
�1E[U 0(c2(�; ~�; �))]: (24)

The only optimality condition that remains to be checked is the Euler equation in pe-

riod 2, (4). Notice that given our construction of c2(�; ~�; �) and the concavity of U ,

U 0(c2(�; ~�; �)) � min~� U
0(c2(�; �; ~�)) for all �; ~�; �. It follows that a necessary and su¢ -

cient condition for (4) to hold for all �; ~�; � is

min
�
U 0(c2(�; �; �)) �

1

p3
: (25)

We now de�ne the cuto¤


̂ � � E[U 0(c2(�; ~�; �))]
min� U 0(c2(�; �; �))

and prove the statement of the proposition. Using (24) to substitute for p3, condition

(25) is equivalent to 
 � 
̂. Therefore, if an unconstrained equilibrium exists, (25)

implies 
 � 
̂, proving necessity. If 
 � 
̂, the previous steps show how to construct a
fully constrained equilibrium, proving su¢ ciency. In the case where (12) and (13) have

multiple solutions, one can follow the steps above and �nd a value of 
̂ for each solution.

The smallest of these values gives us the desired cuto¤.

Proof of Proposition 6

The argument in the text shows that d log Y1 (�) =d� is larger in a fully constrained equi-

librium, for all � 2 [�L; �H ], which implies that log Y1 (�H)� log Y1 (�L) is larger as well.
This proves our statement, since V ar [log Y1 (�)] = � (1� �) [log Y1 (�H)� log Y1 (�L)]

2.

Proof of Proposition 7

Let �y = E [y1(�; �)]. Since Y1 (�) = E [y1(�; �)j�], we have

Cov[y1 (�; �) ; Y1(�)] = E[E[
�
y1 (�; �)� �y

�
(Y1(�)� �y)j�]] = V ar[Y1 (�)];

and hence Corr[y1 (�; �) ; Y1(�)] = (V ar[Y1 (�)]=V ar[y1(�; �)])1=2. Using the decomposi-

tion V ar[y1(�; �)] = V ar[Y1 (�)] + E[V ar[y1(�; �)j�]], rewrite this correlation as

Corr[y1 (�; �) ; Y1(�)] =

�
1 +

E[V ar[y1(�; �)j�]]
V ar[Y1 (�)]

��1=2
=

=

 
1 +

(1� �) �L (1� �L) (y1(�L))
2 + ��H (1� �H) (y1(�H))

2

� (1� �) (�Hy1(�H)� �Ly1(�L))
2

!�1=2
: (26)
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De�ne

f (�) � � (1� �) (�H� � �L)
2

(1� �) �L (1� �L) + ��H (1� �H) �2
:

After some algebra, one can see that the expression on the right-hand side of (26) is

monotone increasing in f (�), where � = y1(�H)=y1(�L). Therefore, the correlation

is lower in the unconstrained economy if and only if f
�
�U
�
< f

�
�C
�
, where �U and

�C denote, respectively, the ratio y1(�H)=y1(�L) in the unconstrained and in the fully

constrained regimes. Notice that f (�) is continuous and di¤erentiable. Moreover, �U = 1

from Proposition 2, and �C > 1 from Proposition 5. Therefore, to prove our statement

it is su¢ cient to show that f 0 (�) > 0 for � � 1. Di¤erentiating f (�) shows that f 0 (�)
has the same sign as

�H (�H� � �L)
�
(1� �) �L (1� �L) + ��H (1� �H) �2

�
� ��H (1� �H) (�H� � �L)

2 �:

Since �H > �L, if � � 1 then �H� � �L > 0. Some algebra then shows that the

expression above has the same sign as (1� �) (1� �L) + � (1� �H) � and is always
positive, completing the proof.

Proof of Proposition 8

It is easy to generalize the �rst-best allocation described in Section 2.2 for the binary

model. Solving the planner problem for the extended model, the optimal output level

in period 1 is yC1 (�; ~�; �) = y
M
1 (�;

~�; �) = y�1 (�) for all �, ~� and �, where y
�
1 (�) satis�es

�u0 (y�1 (�)) = v
0(y�1 (�) =�); (27)

Moreover, optimal consumption in period 2 is cC2 (�; ~�; �) = cM2 (�;
~�; �) = e2 for all �; ~�

and �.

Next, we prove that any unconstrained equilibrium achieves a �rst-best allocation.

Since (4) holds as an equality for all �, ~� and �, both for credit and money households,

it follows that ci2(�; ~�; �) is equal to a constant c2 for all �, ~�, �, and i = C;M . Then,

market clearing requires c2 = e2. Substituting in (3) (for a consumer in island �) and

(6) (for a producer in island �), and given that (3) holds as an equality, we obtain

cC1 (�; �) = c
M
1 (�; �) = c1 (�) and n

C(�; �) = nM(�; �) = n (�) for all � and �, where

u0(c1(�)) =
p1(�)

p2
U 0(e2) and v0 (n (�)) = �

p1 (�)

p2
U 0(e2):
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These two conditions, and market clearing in island �, imply that yC1 (�; �) = y
M
1 (�; �) =

y�1 (�) as de�ned by the planner optimality condition (27). Therefore, consumption levels

in periods 1 and 2 achieve the �rst-best. Since any consumption allocation in period 3

is consistent with �rst-best e¢ ciency, this completes the argument.

The proof that 
 = � is necessary for an unconstrained equilibrium to exist is the

same as in the binary model. To prove su¢ ciency, when 
 = � we can construct an

unconstrained equilibrium with prices

pi1(�) = p3u
0(y�1(�)) for all � 2 �; i = C;M

pi2 = p3U
0(e2) for i = C;M;

for some p3 2 (0; p̂3], where

p̂3 �
1= (1� �)

u0(y�1(�))y
�
1(�) + U

0 (e2) e2
:

From the argument above, consumption levels in periods 1 and 2 are at their �rst-

best level. Substituting in the budget constraints the prices above and the �rst-best

consumption levels in periods 1 and 2, we obtain

cC3 (�;
~�; �) = cM3 (�;

~�; �) = e3 � u0(y�1(~�))y�1(~�) + u0(y�1(�))y�1(�):

Moreover, choosing any p3 � p̂3 ensures that money holdings are non-negative. It

is straightforward to check that this allocation satis�es market clearing and that it is

individually optimal, completing the proof.

Finally, it is easy to show that y�1 (�) is increasing, by applying the implicit function

theorem to the planner�s optimality condition (27).

Preliminary results for Proposition 9

In order to prove Proposition 9, it is useful to prove several preliminary lemmas. These

results will also be useful to prove Proposition 10.

The following lemmas establish that the system of functional equations (17)-(18) has

a unique solution
�
pM1 (�; �) ; yM1 (�; �)

�
, for a given �. To do so, we de�ne a �xed point

problem for the function x(�; �). Recall from the text that x(�; �) � pM1 (�; �)y
M
1 (�; �).

To save on notation, in the lemmas we �x � and refer to pM1 (�; �), yM1 (�; �), x(�; �), and
F (�; �), as p(�), y(�), x(�), and F (�).
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Notice that, in an island where � = 0, x(0) = 0. Moreover, non-negativity of

consumption in period 2 requires that x (�) � 1 for all �. Therefore, we restrict attention
to the set of measurable, bounded functions x : [0; �]! [0; 1] that satisfy x (0) = 0. We

use X to denote this set.

Lemma 2 Given � > 0 and a function x 2 X, there exists a unique pair (p; y) which
solves the system of equations

u0 (y)� p
Z �

0

U 0
�
1� py + x(~�)

�
dF (~�) = 0; (28)

v0 (y=�)� �p
Z �

0

U 0
�
1� x(~�) + py

�
dF (~�) = 0: (29)

The pair (p; y) satis�es py 2 [0; 1].

Proof. We proceed in two steps, �rst we prove existence, then uniqueness.

Step 1. Existence. For a given p 2 (0;1), it is easy to show that there is a unique
y which solves (28) and a unique y which solves (29), which we denote, respectively, by

yD(p) and yS (p). Finding a solution to (28)-(29), is equivalent to �nding a p that solves

yD (p)� yS (p) = 0: (30)

It is straightforward to prove that yD (p) and yS (p) are continuous on (0;1). We now
prove that they satisfy four properties: (a) pyD(p) < 1 for all p 2 (0;1), (b) yS (p) < ��n
for all p 2 (0;1), (c) lim supp!0 yD (p) = 1, and (d) lim supp!1 pyS (p) = 1. Notice
that x (0) = 0 with positive probability, so the Inada condition for U can be used

to prove property (a). Similarly, to prove property (b), we can use the assumption

limn!�n v
0 (n) = 1. To prove (c) notice that (a) implies lim supp!0 pyD (p) � 1. If

lim supp!0 py
D (p) = 1, then, we immediately have lim supp!0 y

D (p) = 1. If, instead,
lim supp!0 py

D (p) < 1, then there exists aK 2 (0; 1) and an � > 0 such that pyD (p) < K
for all p 2 (0; �). Since U 0 is decreasing, this implies that U 0(1�pyD (p)+x(~�)) is bounded
above by U 0 (1�K) <1 for all p 2 (0; �), which implies

lim
p!0

p

Z �

0

U 0(1� pyD (p) + x(~�))dF (~�) = 0:
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Using (28), this requires limp!0 u
0 �yD (p)� = 0 and, hence, limp!0 y

D (p) = 1. To
prove property (d), suppose, by contradiction, that there exist a K > 0 and a P > 0,

such that pyS(p) � K for all p � P . Then U 0(1 � x(~�) + pyS (p)) is bounded below by
U 0 (1 +K) > 0 for all p 2 (P;1), which implies

lim
p!1

p

Z �

0

U 0(1� x(~�) + pyS (p))dF (~�) =1: (31)

Moreover, since 0 � pyS (p) � K for all p � P , it follows that limp!1 y
S (p) = 0 and

thus

lim
p!1

v0
�
yS (p) =�

�
<1: (32)

Using equation (29), conditions (31) and (32) lead to a contradiction, completing the

proof of (d). Properties (a) and (d) immediately imply lim supp!1
�
pyS (p)� pyD (p)

�
=

1, while (b) and (c) imply lim supp!0
�
yD (p)� yS (p)

�
=1. It follows that there exists

a pair (p0; p00), with p0 < p00, such that yD (p0) � yS (p0) > 0 and yD (p00) � yS (p00) < 0.
By the intermediate value theorem there exists a p which solves (30). Property (a)

immediately implies that py 2 [0; 1], where y = yD(p) = yS(p).

Step 2. Uniqueness. Let p̂ be a zero of (30), and ŷ = yD(p̂) = yS(p̂). To show

uniqueness, it is su¢ cient to show that dyD (p) =dp�dyS (p) =dp < 0 at p = p̂. Applying
the implicit function theorem gives�

dyD (p)

dp

�
p=p̂

=

R �
0
U 0
�
~cD2
�
dF (~�)� p̂ŷ

R �
0
U 00
�
~cD2
�
dF (~�)

u00(ŷ) + p̂2
R �
0
U 00 (~cD2 ) dF (

~�)
;

where ~cD2 = 1� p̂ŷ + x(~�) and�
dyS (p)

dp

�
p=p̂

=

R �
0
U 0
�
~cS2
�
dF (~�) + p̂ŷ

R �
0
U 00
�
~cS2
�
dF (~�)

v00 (ŷ=�) =�2 � p̂2
R �
0
U 00 (~cS2 ) dF (

~�)
:

where ~cS2 = 1�x(~�)+ p̂ŷ. Using (28)-(29), the required inequality can then be rewritten
as

v00 (ŷ=�)

�2

 
u0 (ŷ)

p̂
� p̂ŷ

Z �

0

U 00
�
~cD2
�
dF (~�)

!
� v

0 (ŷ=�)

�p̂

 
u00(ŷ) + p̂2

Z �

0

U 00
�
~cD2
�
dF (~�)

!

+p̂

Z �

0

U 00
�
~cS2
�
dF (~�) (u0 (ŷ) + ŷu00(ŷ)) > 0:
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The �rst two terms on the left-hand side are positive. Assumption A2 implies that also

the last term is positive, completing the argument.

Lemma 3 Given a function x 2 X, for any � > 0 let (p (�) ; y (�)) be the unique

pair solving the system (28)-(29) and de�ne z (�) � p (�) y (�). The function z (�) is

monotone increasing.

Proof. De�ne the two functions

h1 (z; y; �) � u0(y)y � z
Z �

0

U 0(1� z + x(~�))dF (~�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�) + z)dF (~�);

which correspond to the left-hand sides of (28) and (29) multiplied, respectively, by y

and y=�. Lemma 2 ensures that for each � > 0 there is a unique positive pair (z (�) ; y (�))

which satis�es

h1 (z (�) ; y (�) ; �) = 0 and h2 (z (�) ; y (�) ; �) = 0:

Applying the implicit function theorem, gives

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (33)

To prove the lemma it is su¢ cient to show that z0 (�) > 0 for all � 2 (0; �]. Using z and
y as shorthand for z (�) and y (�), the numerator on the right-hand side of (33) can be

written as

� y
�2
[v0 (y=�) + v00 (y=�) y=�] [u0 (y) + u00(y)y] ;

and the denominator can be written, after some algebra, as

�
v0 (y=�) + v00 (y=�) y=�

� z
�

Z �

0
U 00
�
1� z + x(~�)

�
dF (~�) + (34)

+
�
u0 (y) + u00(y)y

�
z

Z �

0
U 00
�
1� x(~�) + z

�
dF (~�) +

y2

z�2
�
u00(y)v0 (y=�) � � u0 (y) v00 (y=�)

�
:

Assumption A2 ensures that both numerator and denominator are negative, completing

the proof.

We can now de�ne a map T from the space X into itself.
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De�nition 2 Given a function x 2 X, for any � > 0 let (p (�) ; y (�)) be the unique

pair solving the system (28)-(29). De�ne a map T : X ! X as follows. Set (Tx) (�) =

p (�) y (�) if � > 0 and (Tx) (�) = 0 if � = 0.

The following lemmas prove monotonicity and discounting for the map T . These

properties will be used to �nd a �xed point of T . In turns, this �xed point will be used

to construct the equilibrium in Proposition 9.

Lemma 4 Take any x0; x1 2 X, with x1 (�) � x0 (�) for all �. Then (Tx1) (�) �
(Tx0) (�) for all �.

Proof. For each ~� 2 [0; �] and any scalar � 2 [0; 1], with a slight abuse of notation,
we de�ne x(~�; �) � x0(~�) + ��(~�), where �(~�) � x1(~�) � x0(~�) � 0. Notice that

x(~�; 0) = x0(~�) and x(~�; 1) = x1(~�). Fix a value for � and de�ne the two functions

h1 (z; y;�) � yu0(y)� z
Z �

0

U 0(1� z + x(~�; �))dF (~�);

h2 (z; y;�) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�; �) + z)dF (~�):

Applying Lemma 2, for each � 2 [0; 1] we can �nd a unique positive pair (z (�) ; y (�))
that satis�es

h1 (z (�) ; y (�) ;�) = 0 and h2 (z (�) ; y (�) ;�) = 0:

We are abusing notation in the de�nition of h1 (�; �;�) ; h2 (�; �;�) ; z (�) ; and y (�), given
that the same symbols were used above to de�ne functions of �. Here we keep � con-

stant throughout the proof, so no confusion should arise. Notice that, by construction,

(Tx0) (�) = z (0) and (Tx1) (�) = z (1). Therefore, to prove our statement it is su¢ cient

to show that z0 (�) � 0 for all � 2 [0; 1].
Applying the implicit function theorem yields

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (35)

Using z and y as shorthand for z (�) and y (�), the numerator on the right-hand side of
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(35) can be written as

[u0 (y) + u00(y)y] z

Z �

0

U 00(1� x(~�; �) + z)�(~�)dF (~�) +

+
z

�
[v0 (y=�) + v00 (y=�) y=�]

Z �

0

U 00(1� z + x(~�; �))�(~�)dF (~�):

The denominator takes a form analogous to (34). Again, assumption A2 ensures that

both the numerator and the denominator are negative, completing the argument.

Before proving the discounting property, it is convenient to restrict the space X to

the space ~X of functions bounded in [0; z] for an appropriate z < 1. The following

lemma shows that the map T maps ~X into itself, and that any �xed point of T in X

must lie in ~X.

Lemma 5 There exists a z < 1, such that if x 2 X then (Tx) (�) � z for all �.

Proof. Set x (0) = 0 and x (�) = 1 for all � > 0. Setting x (:) = x (:) and � = �,

equations (28)-(29) take the form

u0(y) = p [F (0)U 0 (1� py) + (1� F (0))U 0 (2� py)] ;

v0(y=�) = �p [F (0)U 0 (1 + py) + (1� F (0))U 0 (py)] :

Let (p̂; ŷ) denote the pair solving these equations, and let z � p̂ŷ. Since F (0) > 0 and
U satis�es the Inada condition, limc!0 U

0 (c) = 1, inspecting the �rst equation shows
that z < 1. Now take any x 2 X. Since x (�) � x (�) for all �, Lemma 4 implies

that (Tx) (�) � (Tx) (�). Moreover, Lemma 3 implies that (Tx) (�) � (Tx) (�) = z.

Combining these inequalities we obtain (Tx) (�) � z.

Lemma 6 There exists a � 2 (0; 1) such that the map T satis�es the discounting prop-
erty: for any x0; x1 2 ~X such that x1(�) = x0(�)+a for some a > 0, the follow inequality

holds ���Tx1� (�)� �Tx0� (�)�� � �a for all � 2 �0; �� :
Proof. Proceeding as in the proof of Lemma 4, de�ne x(~�; �) � x0(~�) + ��(~�),

where now �(~�) = a for all ~�. After some algebra, we obtain

z0 (�) =

�
1 + yu00(y)

u0(y)

�
A+

�
1 + nv00(n)

v0(n)

�
B�

1 + yu00(y)
u0(y)

�
A+

�
1 + nv00(n)

v0(n)

�
B + nv00(n)

v0(n) �
yu00(y)
u0(y)

a; (36)

49



where y and n are shorthand for y(�) and y (�) =� and

A = �
z (�)

R �
0
U 00
�
1� x(~�; �) + z (�)

�
dF (~�)R �

0
U 0
�
1� x(~�; �) + z (�)

�
dF (~�)

;

B = �
z (�)

R �
0
U 00
�
1� z (�) + x(~�; �)

�
dF (~�)R �

0
U 0
�
1� z (�) + x(~�; �)

�
dF (~�)

:

Now, given that z (�) and x(~�; �) are both in [0; z] and z < e2, and given that U

has continuous �rst and second derivatives on (0;1), it follows that both A and B are

bounded above. We can then �nd a uniform upper bound on both A and B, independent

of � and of the functions x0 and x1 chosen. Let C be this upper bound. Given that

u00(y) � 0, then�
1 +

yu00(y)

u0(y)

�
A+

�
1 +

nv00 (n)

v0 (n)

�
B �

�
2 +

nv00 (n)

v0 (n)

�
C:

Therefore, (36) implies

z0 (�) �
�
1 +

nv00 (n) =v0 (n)� yu00(y)=u0(y)
(2 + nv00 (n) =v0 (n))C

��1
a:

Recall that � > 0 is a lower bound for �yu00(y)=u0(y). Then

nv00 (n) =v0 (n)� yu00(y)=u0(y)
(2 + nv00 (n) =v0 (n))C

� �yu00(y)=u0(y)
2C

�
�

2C
:

Setting � � 1=[1 + �= (2C)] < 1, it follows that z0 (�) � �a for all � 2 [0; 1]. Integrating
both sides of the last inequality over [0; 1], gives z (1) � z (0) � �a. By construction

(Tx1) (�) = z (1) and (Tx0) (�) = z (0), completing the proof.

Proof of Proposition 9

We �rst uniquely characterize prices and allocations in a fully constrained equilibrium.

Next, we will use this characterization to prove our claim. The argument in the text and

the preliminary results above show that if there exists an equilibrium withmM
2 (�;

~�; �) =

0 for all � and ~�, then pM1 (�; �) and y
M
1 (�; �)must solve the functional equations (17)-(18)

for any given �. To �nd the equilibrium pair
�
pM1 (�; �); y

M
1 (�; �)

�
we �rst �nd a �xed

point of the map T de�ned above (De�nition 2). Lemmas 4 and 6 show that T is a map
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from a space of bounded functions into itself and satis�es the assumptions of Blackwell�s

theorem. Therefore, a �xed point exists and is unique. Let x denote the �xed point, then

Lemma 2 shows that we can �nd two functions pM1 (�; �) and y
M
1 (�; �) for a given � that

satisfy (28)-(29). Since x (�; �) is a �xed point of T we have x (�; �) = pM1 (�; �)y
M
1 (�; �),

and substituting in (28)-(29) shows that (17)-(18) are satis�ed. Therefore, in a fully

constrained equilibrium pM1 (�; �) and y
M
1 (�; �) are uniquely determined, and so is labor

supply nM(�; �) = yM1 (�; �)=�. Moreover, from the budget constraint and the market

clearing condition in period 2, consumption in period 2 is uniquely determined by (16).

The price pM2 is equal to 1, given the normalization in the text. From the consumer�s

budget constraint in period 3 we obtain cM3 = e3. Combining the Euler equations (3)

and (5) and the envelope condition (7), p3 is uniquely pinned down by

1

p3
= �
�1E[U 0(cM2 (�; ~�; �))]: (37)

Moreover, equilibrium money holdings are m1(�; �) = 1�pM1 (�; �)yM1 (�; �), m2(�; ~�; �) =

0, and m3(�; ~�; �) = 
. De�ne the cuto¤


̂ � � E[U 0(cM2 (�; ~�; �))]
min�fU 0(cM2 (�; �; �))g

:

The only optimality condition that remains to be checked is the Euler equation in period

2, that is, equation (4). Given the de�nition of cM2 (�; ~�; �), Lemma 3 implies that it is

an increasing function of � and a decreasing function of ~�. It follows that a necessary

and su¢ cient condition for (4) to hold for all �, ~� and � is

min
�
fU 0(cM2 (�; �; �))g �

1

p3
: (38)

Substituting the expression (37) for 1=p3, this condition is equivalent to 
 � 
̂. There-
fore, if a fully constrained equilibrium exists, cM2 (�; ~�; �) is uniquely determined and

condition (38) implies that 
 � 
̂, proving necessity. Moreover, if 
 � 
̂, the previous
steps show how to construct a fully constrained equilibrium, proving su¢ ciency.

Finally, the proof that nominal income pM1 (�; �) y
M
1 (�; �) is monotone increasing in

�, for a given �, follows immediately from Lemma 3. To prove that also output yM1 (�; �)

is monotone increasing in �, let us use the same functions h1 (z; y; �) and h2 (z; y; �) and

the same notation as in the proof of Lemma 3. For a given �, apply the implicit function
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theorem to get

y0 (�) =
@h2
@z

@h1
@�
� @h1

@z
@h2
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (39)

Then it is su¢ cient to show that y0 (�) > 0 for all � 2 (0; �]. Using z and y as shorthand
for z (�) and y (�), the numerator on the right-hand side of (39) can be written as

y

�2
�
v0 (y=�) + v00 (y=�) y=�

� "
z

Z �

0
U 00(1� z + x(~�))dF (~�)�

Z �

0
U 0(1� z + x(~�))dF (~�)

#
;

and is negative. Finally, the denominator is equal to (34) and is negative thanks to as-

sumption A2, as we have argued in the proof of Lemma 3. This completes the argument.

Proof of Proposition 10

The proof proceeds in three steps. The �rst two steps prove that, for each �, the nominal

income in island �, x (�; �), is increasing with the aggregate shock �. Using this result,

the third step shows that yM1 (�; �) is increasing in �. Consider two values �
I and �II ,

with �II > �I . Denote, respectively, by TI and TII the maps de�ned in De�nition 2

under the distributions F (�j�I) and F (�j�II). Let xI and xII be the �xed points of TI
and TII , that is, xI(�) � x(�; �I) and xII(�) � x(�; �II) for any �. Again, to save on

notation, we drop the period index for y1.

Step 1. Let the function x0 be de�ned as x0 = TIIxI . In this step, we want to prove

that x0 (�) > xI (�) for all � > 0. We will prove it pointwise for each �. Fix � > 0 and

de�ne the functions

h1 (z; y; �) � yu0(y)� z
Z �

0

U 0(1� z + xI(~�))dF (~�j�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� xI(~�) + z)dF (~�j�);

for � 2 [�I ; �II ]. Lemma 2 implies that we can �nd a unique pair (z (�) ; y (�)) that
satis�es

h1 (z (�) ; y (�) ; �) = 0 and h2 (z (�) ; y (�) ; �) = 0:

Once more, we are abusing notation in the de�nition of h1 (�; �; �) ; h2 (�; �; �) ; z (�) ; and
y (�). However, as � is kept constant, there is no room for confusion. Notice that

z(�I) = xI (�), since xI is a �xed point of TI , and z(�
II) = x0 (�), by construction.
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Therefore, to prove our statement we need to show that z(�II) > z(�I). It is su¢ cient

to show that z0 (�) > 0 for all � 2 [�I ; �II ]. Applying the implicit function theorem gives

z0 (�) =

@h1
@y

@h2
@�
� @h2

@y
@h1
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

: (40)

Notice that xI(~�) is monotone increasing in ~�, by Lemma 3, and U is strictly concave.

Therefore, U 0(1 � z + xI(~�)) is decreasing in ~� and U 0(1 � xI(~�) + z) is increasing in
~�. By the properties of �rst-order stochastic dominance,

R �
0
U 0(1� z + xI(~�))dF (~�j�) is

decreasing in � and
R �
0
U 0(1 � xI(~�) + z)dF (~�j�) is increasing in �. This implies that

@h1=@� > 0 and @h2=@� < 0. Using y as shorthand for y (�), the numerator on the

right-hand side of (40) is, with the usual notation,

[u0 (y) + yu00(y)]
@h2
@�

� 1
�
[v0 (y=�) + v00 (y=�) y=�]

@h1
@�
:

The denominator is the analogue of (34). Once more, assumption A2 ensures that both

numerator and denominator are negative, completing the argument.

Step 2. De�ne the sequence of functions (x0; x1; :::) in X, using the recursion xj+1 =

TIIx
j. Since, by step 1, x0 � xI (where by x0 � xI we mean x0 (�) � xI (�) for all � > 0)

and, by Lemma 4, TII is a monotone operator, it follows that this sequence is monotone,

with xj+1 � xj. Moreover, TII is a contraction by Lemmas 4 and 6, so this sequence has
a limit point, which coincides with the �xed point xII . This implies that xII � x0 and,
together with the result in step 1, shows that xII > xI , as we wanted to prove.

Step 3. Fix � > 0 and, with the usual abuse of notation, de�ne the functions

h1 (z; y; �) � yu0(y)� z
Z �

0

U 0(1� z + x(~�; �))dF (~�j�);

h2 (z; y; �) � v0 (y=�) y=� � z
Z �

0

U 0(1� x(~�; �) + z)dF (~�j�):

Notice the di¤erence with the de�nitions of h1 and h2 in step 1, now x(~�; �) replaces

xI(~�). The functions z (�) and y (�) are de�ned in the usual way. Applying the implicit

function theorem, we get

y0 (�) =

@h2
@z

@h1
@�
� @h1

@z
@h2
@�

@h1
@z

@h2
@y
� @h2

@z
@h1
@y

:

53



To evaluate the numerator, notice that

@h1
@z

= �
Z �

0
U 0(1� z + x(~�; �))dF (~�j�) + z

Z �

0
U 00(1� z + x(~�; �))dF (~�j�) < 0;

@h2
@z

= �
Z �

0
U 0(1� x(~�; �) + z)dF (~�j�)� z

Z �

0
U 00(1� x(~�; �) + z)dF (~�j�) �

� �
Z �

0

h
U 0(1� x(~�; �) + z) + (1� x(~�; �) + z)U 00(1� x(~�; �) + z)

i
dF (~�j�) � 0;

where the last inequality follows from assumption A1�(this is the only place where this

assumption is used). Furthermore, notice that

@h1
@�

= �z
Z �

0

U 00(1�z+x(~�; �))@x(
~�; �)

@�
dF (~�j�)�z

Z �

0

U 0(1�z+x(~�; �))@f(
~�j�)
@�

d~� > 0

where the �rst element is positive from steps 1 and 2, and the second element is positive

because � leads to a �rst order stochastic increase in ~� and U 0(1�z+x(~�; �)) is decreasing
in ~�. A similar reasoning shows that

@h2
@�

= z

Z �

0

U 00(1�x(~�; �)+ z)@x(
~�; �)

@�
dF (~�j�)+ z

Z �

0

U 0(1�x(~�; �)+ z)@f(
~�j�)
@�

d~� < 0:

Putting together the four inequalities just derived shows that the numerator is nega-

tive. The denominator takes the usual form, analogous to (34), and is negative. This

completes the proof.

Partially constrained equilibria

To compute the equilibria in Section 4, it is useful to characterize the equilibrium be-

havior for: (i) economies with � 2 [0; 1) and 
 2 (�; 
̂) where the liquidity constraint in
period 2 is non-binding for some pairs (�; ~�) of anonymous households, and (ii) economies

where the assumption F (0j�) > 0 is relaxed, allowing for a binding liquidity constraint
in period 1 for some �, again for anonymous households. In equilibrium, the credit house-

holds behave exactly as in the �rst-best. To characterize the behavior of the anonymous

households, it is su¢ cient to �nd prices and quantities solving the system formed by (6),

the market clearing condition c1(�; �) = �n(�; �) for all �; �, and equations

u0
�
cM1 (�; �)

�
= max

(
u0
�

1

pM1 (�; �)

�
;
pM1 (�; �)

pM2 (�)

Z �

0
U 0(cM2 (~�; �; �))dF (~�j�)

)
for all �; �;
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cM2 (�;
~�; �) = min

(
1

pM2 (�)
� p

M
1 (
~�; �)

pM2 (�)
cM1 (

~�; �) +
pM1 (�; �)

pM2 (�)
cM1 (�; �); U

0�1
�
pM2 (�)

p3

�)
for all �; ~�; �;

Z �

0

Z �

0
cM2 (�;

~�; �)dF (�)dF (~�) = e2 for all �,

1

p3
= �
�1

Z �

�

Z �

0

u0(cM1 (�; �))

pM1 (�; �)
dF (�j�)dG (�) :

The system is written in general form, allowing for cases where the constraintsmM
1 (�; �) �

0 and mM
2 (�;

~�; �) � 0 are binding only for a subset of households.

Proof of Proposition 11

From expression (21) it follows that

@Y1 (�; �)

@�
=

X
i=C;M

!i
Z �

0

yi1 (�; �)
@f (�j�)
@�

d�;

@Y1 (�; �)

@�
=

X
i=C;M

!i
Z �

0

@yi1 (�; �)

@�
dF (�j�) :

In the case of an unconstrained equilibrium, the analogue of Proposition 8 can be

easily derived, showing that @yi1(�; �)=@� = 0 and @y
i
1(�; �)=@� > 0 for i = C;M . These

properties imply that @Y1(�; �)=@� > 0 and @Y1(�; �)=@� = 0.

Next, consider a fully constrained equilibrium, where � = 0 and 
 � 
̂. For each

value of �, the functions pM1 (�; �) and y
M
1 (�; �) can be derived solving the following

system of functional equations, analogous to (17)-(18):

u0(yM1 (�; �)) = pM1 (�; �)

Z �

0

U 0
�
cM2 (

~�; �; �)
�
dF (~�j�; �);

v0
�
yM1 (�; �) =�

�
= �pM1 (�; �)

Z �

0

U 0
�
cM2 (�;

~�; �)
�
dF (~�j�; �);

where

cM2 (
~�; �; �) = 1� pM1 (�; �) yM1 (�; �) + pM1 (~�; �)yM1 (~�; �):

The only formal di¤erence between these and (17)-(18) is that the distribution F (~�j�; �)
depends also on �. However, this does not a¤ect any of the steps of Proposition 9 (there

is only a minor di¤erence in the proof of the analogue of Lemma 3, details available on
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request). Therefore, this system has a unique solution for each �. Next, following the

steps of Propositions 9 and 10, we can show that yM1 (�; �) is increasing in � and �. This

implies that @Y1(�; �)=@� > 0 and @Y1(�; �)=@� > 0.
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