Comments on Petrin, White, and Reiter "The Impact of Plant-level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth"

> John Fernald Federal Reserve Bank of San Francisco

> > May 2, 2009

Great research agenda: Where does productivity growth come from?

Petrin-White-Reiter

- Decompose Petrin-Levinsohn productivity for <u>manufact.</u> :
 - Weighted <u>plant</u> technology
 - Reallocation

Great research agenda: Where does productivity growth come from?

	Petrin-White-Reiter	Basu-Fernald (2001, 2002)
•	Decompose value-added Solow residual for <u>manufact.</u> :	• Decompose value-added Solow residual for <u>economy</u> :
	- Weighted <u>plant</u> technology	– Weighted industry technology
		 Varying factor utilization
	– Reallocation	- Reallocation
		 Average markup/RTS effect

- Extends Basu and Fernald vision to plant-level data !
 - They apply the B-F decomposition, with minor tweaks, e.g.
 - Include average markup in "reallocation"
 - Break out fixed costs explicitly

□ Plant-level estimates of technology (just labor, ignoring plant's relative price): $\Delta \ln Q_i = \varepsilon_{iL} \Delta \ln L_i + \Delta \ln \omega_i$

Where did it come from?

$$Q_i = G^i \left(L_i, \tilde{\omega}_i \right) - F_i$$

□ Plant-level estimates of technology (just labor, ignoring plant's relative price): $\Delta \ln Q_i = \varepsilon_{iL} \Delta \ln L_i + \Delta \ln \omega_i$

Where did it come from?

$$Q_i = G^i(L_i, \tilde{\omega}_i) - F_i$$

$$\rightarrow \Delta \ln Q_i = \varepsilon_{iL} \Delta \ln L_i + \left(1 + \frac{F_i}{Q_i}\right) \left(\frac{\partial G^i}{\partial \tilde{\omega}} \frac{\tilde{\omega}_i}{G^i}\right) \Delta \ln \tilde{\omega}_i - \frac{F_i}{Q_i} \Delta \ln F_i$$

□ Plant-level estimates of technology (just labor, ignoring plant's relative price): $\Delta \ln Q_i = \varepsilon_{iL} \Delta \ln L_i + \Delta \ln \omega_i$

Where did it come from?

$$Q_i = G^i \left(L_i, \tilde{\omega}_i \right) - F_i$$

$$\rightarrow \Delta \ln Q_i = \varepsilon_{iL} \Delta \ln L_i + \left(1 + \frac{F_i}{Q_i}\right) \left(\frac{\partial G^i}{\partial \tilde{\omega}} \frac{\tilde{\omega}_i}{G^i}\right) \Delta \ln \tilde{\omega}_i - \frac{F_i}{Q_i} \Delta \ln F_i$$
$$\frac{d \ln \omega_i}{d \ln \omega_i}$$

Reallocation, defined as gap between "productivity" and technology, includes average markup effect

$$[\Delta \ln Q_i - c_{iL} \Delta \ln L_i] - \Delta \ln \omega_i = (\varepsilon_{iL} - c_{iL}) \Delta \ln L_i$$

□ Typical cost-minimizing FOC implies that $P_i \frac{\partial Q_i}{\partial L_i} = \mu_i W_i$, or $\varepsilon_{iL} = \mu_i c_{iL}$: → Labor reallocation = $(\mu_i - 1)c_{iL}\Delta \ln L_i$

Puzzle/problem: Key accounting identity doesn't hold in their data!

- Accounting identity is in terms of (unobservables) $\Delta \ln F_i$ and $\Delta \ln \tilde{\omega}_i$, but to be relevant, it needs to be in terms of (measured) $\Delta \ln \omega_i$.
 - Want to treat data in identity exactly the same way as in estimation
- Problem: They have an identity and internally consistent data, so shouldn't be a residual!

Error seems small and not cyclical, and estimated technology differs noticeably from Solow Residual

Controlling for estimated utilization, technology even more different from Solow residual

- Basu-Fernald-Kimball (2006) use model-based empirical proxy to control for varying:
 - labor effort
 - Capital's workweek
- Take PWR technology, subtract BFK utilization for manuf.
 - Utilization-adjusted technology is negatively correlated with hours growth

Wrap-up: Paper takes reasonable approach to identify non-technological component of Solow residuals

- Technology differs from Solow residual, especially after adding a utilization control
- Relative importance, let alone interpretation, of different reallocation terms isn't established
 - Accounting identity doesn't quite add up
- Question: How important are reallocations *within* two-digit industries, as opposed to *across* industries?

Extra equations and stuff

FOC:
$$P_i \frac{\partial Q_i}{\partial K_i} = \mu_i W_i$$
, or $\varepsilon_{iL} = \mu_i c_{iL}$

□ Their accounting identity is in terms of (unobservables) $d \ln F_i$ and $d \ln \tilde{\omega}_i$, but it needs to be in terms of (measured) $d \ln \omega_i$.

 $d\ln VA - c_L d\ln L - c_K d\ln = \sum_i D_i (\varepsilon_{iL} - c_{iL}) d\ln L_i +$

□ Plant-level estimates of technology (with just L and K): $d \ln Q_i = \varepsilon_{iL} d \ln L_i + \varepsilon_{iK} d \ln K_i + d \ln \omega_i$

 \Box Where did it come from?

$$Q_i = Q^i \left(L_i, K_i, \tilde{\omega}_i \right) - F_i$$

$$\rightarrow d \ln Q_i = \varepsilon_{iL} d \ln L_i + \varepsilon_{iK} d \ln K_i - \frac{F_i}{Q_i} d \ln F_i + \left(1 + \frac{F_i}{Q_i}\right) \left(\frac{\partial Q^i}{\partial \tilde{\omega}} \frac{\tilde{\omega}}{Q^i}\right) d \ln \tilde{\omega}$$
$$\underbrace{\frac{\partial Q^i}{\partial \tilde{\omega}} \frac{\partial Q^i}{Q^i}}{d \ln \omega_i}$$

Great research agenda:

Where does productivity growth come from?

- Decompose "Petrin-Levinsohn" productivity for <u>manufacturing</u> into :
 - Weighted <u>plant</u>-level (gross-output) technology
 - Reallocation
- Basu and Fernald (2001, 2002) decomposed value-added Solow residual for <u>entire economy</u> into
 - Weighted industry-level technology
 - Variations in factor utilization
 - Average returns-to-scale/markup effects
 - Reallocation
- Extends Basu and Fernald vision to plant-level data !
 - Petrin-Levinsohn productivity \approx value-added Solow residual
 - They apply the B-F accounting decomposition, with minor tweaks, e.g.
 - Include average markup in "reallocation"
 - Break out fixed costs explicitly

Hours appear excessively smooth, capital excessively volatile...which might affect relative reallocation terms

Note: Series are cost-share-weighted growth in labor and capital inputs, respectively, in Petrin et al compared with Jorgenson's dataset

Technology corresponds surprisingly well with Basu, Fernald, and Kimball (2006) estimates

Comparing BFK purified "technology" in manufacturing to Petrin et al technical efficiency *less* BFK utilization

- Petrin et al don't control for variable effort or capital's workweek.
- After subtracting BFK estimate of utilization, Petrin *et al*'s technology is close to BFK "purified technology"
 - Correlation is 0.73...
- ...and series is negatively correlated with hours growth