Does Foreign Competition Spur Productivity? Evidence From Post WWII U.S. Cement Manufacturing

by

Timothy Dunne, Shawn Klimek, and James Schmitz

(Federal Reserve Bank of Cleveland, U.S. Census Bureau and Federal Reserve Bank of Minneapolis)

April, 2009, Preliminary

Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau.
Does Competition Spur Productivity?

And, if so, how?

- Old and important questions
Related questions

• Do lower tariffs spur productivity? And, if so, how?
Ask These Questions in U.S. Cement Industry

- Industry faced a surge in competition in mid 1980s
 - Not from lower tariffs, but new transport technology,
 - Importers offer cement at substantial discounts to domestic
 - Imports go from very little to 25-30% of production
We find that competition spurred productivity

- TFP falling in 2 decades prior to import surge (10%)

- TFP surges after imports, 35% in next decade
What were sources of 1980s productivity gain?

- Major source was changes in management practices
 - Over 1960s, 1970s, firms signed contracts with union that put strong restrictions on mgmt
 - In 1980s, many of these restrictions lifted

- Selection (closing low-productivity plants) not a big factor
Imports “Forced” Efficient Production

- Imports forced investment in new management practices

- Will present theory later
Outline

• Show surge in competition, productivity

• History of union, evolution of contracts

• Δs in contracts closely related to Δs in productivity

• Other sources of productivity growth (selection)

• Regional competition and productivity

• Related literature
Figure 1.
U.S. Cement Imports
(Relative to U.S. Production)
Figure 2.
Total Factor Productivity
U.S. Cement Industry
(NBER Manufacturing Database, 1987=1)
Figure 3. Partial Productivities
U.S. Cement Industry
(NBER Manufacturing Database) (In Log's)
Figure 4. Production vs. Labor Productivity
Portland Cement Association
U.S. Cement Industry
(1980=1.00)
Review
History of Unionization in Industry

- After WWII, nearly all plants unionized

- Most plants – Cement, Lime and Gypsum Workers (CLGW)

- Weak union until 1957, national strike idled half of plants

- From 1957 on (till imports), CLGW greatly extended power
By 1978, CLGW president could boast

“No other industrial workers in the country can point to contracts that impinge on and restrict the rights of management as much as cement contracts do”
Analysis of Contracts

- Discuss contract clauses and expected productivity consequences
- Show when clauses diffused into industry
- Look at intro and removal of clauses & changes in productivity
Contract Clauses & Productivity Consequences

- *Seniority rights*
 - If worker x loses job can bump any less senior worker
 - Worker does not even have to be able to do job
 - Must be able to do job in “reasonable amount of time”

- Productivity consequences:
 - Human capital (experience) lost with bumps
 - Mgmt no right in assignments
 - Morale? (cascading job bumping)
Contract Clauses & Productivity Consequences

- **Job Protection**

 “Employees will not be terminated by the Company as the result of mechanization, automation, change in production methods, the installation of new or larger equipment, the combining or the elimination of jobs.”

- **Productivity consequences**

 - Dulls incentives to invest/innovate
Contract Clauses & Productivity Consequences

• Jobs Belong to Departments and Individuals

 “.. when the Finish Grind Department is completely down for repairs, the Company will not use Repairmen assigned to the Clinker Handling Department on repairs in the Finish Grind Department.”

• Productivity consequences

 – When machines go down, they are down longer than necessary (output=0 longer than necessary)

 – Capital, labor, energy productivity lower as result
Reflections on trip to Germany

- German company invites union reps to visit plants

- Many interesting reflections in *Voice*

 “We were also told that if they have a breakdown during a shift, they use the people on that shift to make the repairs, if possible.”

 “They have breakdowns, as we do. The big difference is that almost anyone pitches in to fix it.”
Contract Clauses & Productivity Consequences

• *Contracting out*

 – “All production and maintenance work customarily performed by the Company in its plant and quarry and with its own employees shall continue to be performed by the Company with its own employees.”

• Productivity consequences

 – Like infinite tariff at plant’s gate
Diffusion of Contract Clauses

- Contracts very thin in early 1950s (≈ 4 pages)

- Contracts grow in length (by 1970s, $\approx 80+$ pages)

- Table 1 reports diffusion of two of the clauses above
 - Contracts on 90 plants and counting
 - Clauses adopted in early to mid 60s
 - Disappear in 80s in most contracts
Table 1

Union Contract Provisions

US Cement Industry

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Protection Clause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Locals(plants) for</td>
<td>4</td>
<td>36</td>
<td>49</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td>which we have contracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Locals which have</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>clause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Contracting Out Clause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Locals(plants) for</td>
<td>4</td>
<td>36</td>
<td>49</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td>which we have contracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Locals which have</td>
<td>0</td>
<td>20</td>
<td>49</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>clause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Total Number of Locals = 90
Did 1980s contract Δs spur productivity?

- Look at productivity over 3 eras (pre 57, 60s/70s, 80s+)
 - Total industry
 - Two sub-industries

- Look at differences across plants in adoption dates
At industry and two sub-industries level

- Look at partial productivities: electricity, fuel, capital, labor
We find that

- From end of WWII, until late 1950s, all productivities grow

- Then all stop growing, some fall, with exception of labor
 - It stops growing soon after 1965 (no-job-termination clause)

- Productivities flat, or fall, until imports, with exception of fuel
 - With energy crisis, major investments in fuel-efficient eq.
Figure 5. Electricity Productivity
U.S. Cement Production Per Unit of Electricity
(Thousand Short Tons per Million kWh's)
Figure 6. Fuel Productivity
U.S. Clinker Production per Unit of Fuel
(Log of Thousand Short Tons per Million BTU's)
Figure 10.
Labor Productivity & Production 1947–2006
(1980=1.00)
TFP for industry from WWII

- Increases smartly to 1957, then follows NBER pattern
Figure 11. Electricity Productivity
U.S. Cement Production Per Unit of Electricity
(Thousand Short Tons per Million kWh’s)
By Process
Figure 12. Fuel Productivity
U.S. Clinker Production per Unit of Fuel
(Log of Thousand Short Tons per Million BTU's)
By Process
Differences across plants in adoption dates

- Are these related to Δs in plant relative productivities?
 - Many plants simultaneously drop, and discard, clauses

- Some variations in the 1980s we can exploit
Review
Other Sources of 1980s Productivity Gain?

- Was selection (closing of low-productivity plants) a big source?

- New Technology?
Selection: Labor Productivity

- Most of 80s productivity surge due to “within” plant growth
Table 3

Labor Productivity Growth Decomposition

<table>
<thead>
<tr>
<th>Census Years</th>
<th>Aggregate Productivity Growth</th>
<th>Within Component</th>
<th>Within Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972-1977</td>
<td>0.055</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>1977-1982</td>
<td>-0.028</td>
<td>-0.058</td>
<td></td>
</tr>
<tr>
<td>1982-1987</td>
<td>0.386</td>
<td>0.280</td>
<td>72.5%</td>
</tr>
<tr>
<td>1987-1992</td>
<td>-0.012</td>
<td>-0.035</td>
<td></td>
</tr>
<tr>
<td>1992-1997</td>
<td>0.164</td>
<td>0.125</td>
<td>76.2%</td>
</tr>
</tbody>
</table>
New Technology

- No new significant technology in 1980s

- If embodied in machines, note: 1970 investment much greater than 1980s
Related Literature

- Many recent studies show
 - \textbf{Unilateral} tariff reductions increase industry productivity
 * Productivity gains in continuing plants
- That is what we find here, of course
Advantages of Studying Specific Industry

- Concerns with measurement are fewer
- Better chance at uncovering mechanism driving “within” growth
- Understanding the mechanism can lead to theory
Facts Hard to Explain in Standard Models

- Facts from this industry, and from unitlateral tariff reductions.

- Facts: plants make investments when industries shrinking

- Selection models cannot

- Standard technology adoption model cannot
 - Fixed cost of adoption, bigger market means more adoption
What Type of Theory Can Explain Facts?

- Suppose adoption of new technology may initially raise costs

- Then upon adoption, may lose sales to competitors

- One cost of adoption: opportunity cost of lost profits

- Those opportunity costs are high when prices (tariff) high

- When tariffs unilaterally cut, market smaller, but opportunity costs smaller
See Tom Holmes for details
Increase in foreign ownership

- By 1982, owned lots of capacity, climbs since
- Foreign owners more easily change work rules
 - No long-term relationships
 - From what we see, they were fiercer
- Foreign owners can bring in their local managers
 - Mindset of U.S. managers #@!!!%
- FDI?