
Assortative Learning∗

Jan Eeckhout†and Xi Weng‡

November, 2009

Abstract

Because of sorting, more skilled workers are more productive in higher type firms. They also
learn at different rates about their productivity and therefore have different wage paths across
firms. We show that under supermodularity there is always Positive Assortative Matching:
differential learning is always dominated by the productivity. Surprisingly, this holds even if
learning is faster in the low type firm. The key assumption driving this result is Bayesian
updating and that this is a pure learning model. The model provides realistic predictions about
wage variance, turnover and the wage distribution. We also derive a new equilibrium condition
in this class of continuous time models in addition to the common smooth-pasting and value-
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1 Introduction

High ability workers sort into more productive jobs. Due to complementarities in production,

their higher marginal product allows them to command higher wages. The Beckerian model of

assortative matching is very well suited to explain those patterns of sorting. Unfortunately, it is

mute on the issue of turnover of workers between different jobs. Instead, the Jovanovic (1979)

learning model has long been the canonical framework for analyzing turnover in the labor market1

over the life cycle. Workers and firms learn about match-specific human capital and will tend to

stay in a match if learning reveals the match is good. Experimentation tends to occur early on

which leads to decreasing turnover over the life cycle. Because in Jovanovic (1979) learning is

about the match and not about the worker, there is neither worker heterogeneity nor sorting. In

this paper, we offer a unified approach of learning and sorting. At a theoretical level, we establish

a solution method for a market equilibrium in a continuous time economy with multiple learning

opportunities (multi-armed bandit). We can solve the model to make realistic predictions about

wages, sorting and turnover that can be reconciled with the stylized facts.

In the labor market, the learning experiences of workers are most likely to differ across different

firms. Starting in a top law firm or a multinational will induce different paths of information reve-

lation than working in a local family business. The worker now faces a trade-off between different

experimentation experiences: take a lower wage at a high productivity firm where information may

be revealed at a different rate or accept higher wage and learn more slowly. It is intuitive that

sorting and learning are intimately connected.

Modeling the labor market as a multi-armed bandit problem and solving it is challenging. Most

existing learning models and continuous time games are tractable because they are essentially one-

armed bandit problems with a fixed outside option that acts as an absorbing state. One-armed

bandit problems typically have attractive properties, including reservation strategies. Instead,

multi-armed bandits in general do not have reservation strategies when arms are correlated, even

if the learning rate is the same across firms.2 But our labor market is not exactly identical to

the canonical bandit problem. First, there are a continuum of experimenters, and as a result of

two-sided heterogeneity, deviations and off-equilibrium path beliefs non-trivially affect equilibrium.

Second, because of competitive wage determination à la Jovanovic (1979), the payoffs are endoge-

nous. Finally, because workers learn about general human capital instead of match-specific human

capital, the arms are positively correlated.

We find that it is the combination of competitive wage determination (endogenous payoffs)

and the incentives needed to avoid a deviation that give rise to a new condition which we call the

no-deviation condition. This condition must be satisfied in addition to the common equilibrium
1Of course, also the search model inherently exhibits turnover, but with observable types turnover is constant over

the life cycle. Moscarini (2005) brings together search and learning in the Jovanovic framework.
2See for example Chernoff (1968). Only with multiple independent arms are reservation strategies guaranteed.
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conditions of value-matching and smooth-pasting. The no-deviation condition can be interpreted

as the continuous time version of the one-shot deviation principle. In other words, there is no

assumption of commitment on the part of the firm and the equilibrium wage must be self-enforcing.

We prove that the no-deviation condition implies that the second derivative at the cut-off belief is

the same for the value functions of the high type as well as the low type firms. Recall that value

matching requires that at the cut-off the value functions take the same value, the smooth-pasting

condition requires that the first derivative is the same, and now the no-deviation requires equal

second derivatives as well.

We show that supermodularity of the production technology is a necessary and sufficient condi-

tion for positive assortative matching, and that the equilibrium allocation is unique. Those workers

with the highest beliefs about their ability will in equilibrium sort into those firms that are most

productive. Moreover, we can analytically solve for the equilibrium allocation in terms of the cut-off

belief, and we derive in closed form the stationary distribution of beliefs.

While in most of the analysis we consider common noise across firms, it turns out that the

sorting result holds for different learning rates (noise) across firms, even if the rate of learning is

slower in the high type firm. It is easy to see that with supermodularity and a learning rate no

smaller in high types firms there will be positive sorting. The high type firm is both superior in

the signal and in the noise. But if high type firms learn at a sufficiently slower rate (the noise is

sufficiently high), then the signal-to-noise ratio in the high type firm may well be lower. The reason

why this nonetheless does not affect the learning is that the value of learning also depends on the

degree of convexity of the value function (from Ito’s Lemma), in addition to the signal-to-noise

ratio. But by the no-deviation condition, at the cut-off belief, the degree of convexity is the same

in both firms and therefore the equilibrium value of learning is the same, no matter the difference in

signal-to-noise ratios. Key here is that wages are endogenous and determined competitively. That

is why this property does not hold in the canonical multi-armed bandit problem.

The technical contribution of the no-deviation condition allows us to actually solve the model.3

We can now employ the framework and generate realistic predictions about labor market variables

over the life cycle. Like in the existing learning models, turnover decreases with tenure.

Unlike most existing models, we can also explain that the variance of wages of a cohort is

maximized asymptotically. This can provide a rationale for the fact that the variance of wages

increases over the life cycle. Like existing models, the signal precision for a given type increases –

eventually the type becomes exactly known – and as a result, the variance conditional on a type

goes to zero. However, because of sorting the variance between types is maximized. With a fixed
3The idea of sequential rationality is of course not new and has also been employed in continuous time games by

Sannikov (2007) who uses the concept of self generation. And Cohen and Solan (2009) use dependence of strategies
on a small interval dt to restrict the set of Markovian strategies, in the spirit of our dt-shot deviation. It is precisely
the one-shot deviation in conjunction with endogenous payoffs leads to the equalization of the second derivative of
the value functions.
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outside option, the second source of variance is absent and existing models find decreasing variance

in wages over the life cycle. There is conclusive evidence that the life cycle variance of wages is

increasing and concave (see amongst others Heathcoate, Violante and Perri (2009)).

We can fully characterize the stationary distribution of posterior beliefs and therefore also of

the distribution of wages. At the cut-off belief, there is a discontinuity in the wage schedule due to

the fact that the worker is indifferent between a low wage and a high option value of learning in

the high type firm and a high wage with a low option value.

The motivation of our analysis and the results are obviously closest related to the labor market

learning literature (Jovanovic (1979, 1984), Harris and Holmström (1982), Moscarini (2005) and

Papageorgiou (2009).4 Yet, there is a close relation to both the experimentation literature (Bolton

and Harris (1999), Cripps, Rady and Keller (2005), Rosenberg et al. (2007)) and the literature on

continuous time games (Sannikov (2007, 2008), Faingold and Sannikov (2009)). Most models of

learning have a finite set of players and have an absorbing state. Ours has a continuum of agents

and there is learning in all states. Moreover, it is essentially a competitive model with equilibrium

prices and therefore payoffs from learning are endogenous.

The idea of analyzing a matching model where the current allocation determines the future

type is first explored in Anderson and Smith (2009). They analyze a two-sided matching model of

reputations with imperfect information about both matched types, and though they cannot fully

characterize the equilibrium allocation, they show that under supermodularity Positive Assortative

Matching of reputations may fail. Our set up differs substantially, but the main difference is in

the information extraction. Their agents infer the type of each of the matched partners from the

realization of a joint signal.5 Another key characteristic of our model is that it is a pure Bayesian

learning model where beliefs follow a martingale (Anderson and Smith (2009) allow for a general

transition function that maps current matched types into future types and that is not necessarily

a martingale). In Section 9 we show that our result holds for Bayesian updating processes other

than the Brownian motion (we show our result extends for a generalized Lévy process), and we

also establish that Positive Assortative Matching can fail if we have an updating process that is not

Bayesian (this can be interpreted for example as a technology of human capital accumulation in

addition to the information extraction). The latter is consistent with Anderson and Smith (2009).
4Papageorgiou (2009) analyzes a learning model with heterogeneity. He estimates the Roy model version of

Moscarini’s search model. Unlike the Beckerian model of matching, in the Roy model workers have a two-dimensional
skill vector (either fishermen or hunters). Upon the realization of this tuple, agents choose to specialize in either of the
two professions given market wages. With search frictions, non-competitive wage setting and a different production
technology, the no-deviation condition is not imposed in addition to value matching and smooth pasting.

5Our model is more closely related to the standard firm-worker model to which they compare their two-sided
model in a discussion. There is only a one-sided inference problem as in our model and they show Positive Assortative
Matching arises for extreme beliefs p = 0 and 1, but not in the interior.
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2 The Model Economy

Population of Firms and Workers. The economy is populated by a unit measure of workers and a

unit measure of firms. Both firms and workers are ex ante heterogeneous. The firm’s type y ∈ H,L

represents its productivity. The type y is observable to all agents in the economy. The fraction of

H type firms is π and all firms are infinitely lived. The worker ability x ∈ {H,L} is not observable,

both to firms and workers, i.e., information is symmetric.6 Nonetheless, both hold a common belief

about the worker type, denoted by p ∈ [0, 1]. Upon entry, a newly born worker is of type H with

probability p0 and of type L with probability 1 − p0. Workers die with exogenous probability δ.

New workers are born at the same rate.7

Preferences and Production. Workers and firms are risk-neutral and discount future payoffs at rate

r > 0. Utility is perfectly transferable. Output is produced in pairs of one worker and one firm

(x, y). Time is continuous. Positive output produced consists of a divisible consumption good and is

denoted by µxy. We assume that more able workers are more productive in any firm, µHy ≥ µLy,∀y
and refer to it as worker monotonicity. While it is often useful, we do not in general assume firm

monotonicity, which would be µxH ≥ µxL,∀x. Strict supermodularity is defined in the usual way:

µHH − µLH > µHL − µLL, (1)

and with the opposite sign for strict submodularity. In the entire page, we will refer to strict

supermodularity when we just mention supermodularity, likewise for submodularity.

Information. Because worker ability is not observable to both the worker and the firm, parties face

an information extraction problem. They observe noisy measure of productivity, denoted by Xt.

Cumulative output is assumed to be a Brownian motion with drift µxy and common variance σ2

Xt = µxyt + σZt (2)

where Zt is a standard Wiener process and as a result, Xt is normally distributed with mean µxyt

and variance σ2t. By Girsanov’s Theorem the probability measures over the paths of two diffusion

processes with the same volatility but different bounded drifts are equivalent, that is, they have the

same zero-probability events. Since the volatility of a continuous-time diffusion process is effectively

observable, the worker’s type could be learned directly from the observed volatility if σ depends on
6This substantially simplifies the problem at hand. With private signals Cripps, Ely, Mailath and Samuelson

(2008) show that with a finite signal space there will be common learning, but not necessarily with an infinite signal
space as is the case in our model here.

7Without death, we know the posterior belief will converge with probability one to p = 1 or p = 0. Death here
actually acts as a shuffling device to guarantee a non-trivial stationary distribution of posterior beliefs. Another
modeling approach is to assume that such p0 is drawn from some exogenous given distribution f0. But as we will
show later, this makes it quite difficult to solve the ergodic distribution.
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workers’ types.8

Equilibrium. We consider a (stationary) competitive equilibrium in this economy. With two types of

firms and a continuum of p’s in this market, take a competitive wage schedule wy(p) as given which

specifies wage for every possible type p worker working in firm y.9 Denote by Vy the stationary

discounted present value of the competitive profits for firm y. The flow profit can be written as

rVy.10 Now we are ready to define the notion of competitive equilibrium:

Definition 1 In a (stationary) competitive equilibrium, there is a competitive wage schedule wy(p) =

µy(p) − rVy, where µy(p) = pµHy + (1 − p)µLy denotes worker p’s expected productivity for firm

y = H,L and worker p chooses the firm y with the highest discounted present value. The market

clears such that the measure of workers working in the L firm is 1− π and the measure of workers

working in the H firm is π.

We would like to point out several things about this definition. First, the definition of compet-

itive equilibrium implies identical types will obtain the same payoff. A firm y earns the same flow

profit for every p. Our notion of competitive equilibrium puts restrictions on the off-equilibrium

prices, as does the Beckerian definition of a matching equilibrium. In the current context this is

comparable to the notion of subgame perfect equilibrium. Recall that subgame perfect equilibrium

requires that agents behave optimally on any possible subgame. Similarly, here we require: Al-

though type p worker is not employed by firm y on equilibrium path, the hypothetical wage is still

wy(p) = µy(p)− rVy to guarantee the firm cannot make or lose money if the employment suddenly

happens. Second, unlike Anderson and Smith (2008), our wage definition concerns a spot market

wage. They parse the wage into a static wage plus a dynamic human capital effect. Instead, our

spot wage approach captures the idea that firms cannot commit to future actions. That wage

setting process therefore corresponds to the Pareto efficient allocation. Here we take the view that

parties cannot commit their wage contracts on future actions (see also Hörner and Samuelson 2009

for a model of experimentation in the presence of spot market contracts). Together with sequential

rationality, this therefore requires that the wage contract is self-enforcing. Finally, like all price

taking economies, the wage schedule essentially transforms our problem into a decision problem for

the workers.
8However, we can allow σ to be firm-specific. In section 9 we analyze the general case of firm-dependent σy.
9Bergemann and Välimäki (1996) and Felli and Harris (1996) consider a two-firm, one-worker/buyer model with

strategic price setting in a world with independent arms. With ex ante heterogeneous firms and workers and correlated
arms, we instead focus on competitive price setting which is closest in spirit to the Beckerian benchmark.

10Notice since there is no free entry, Vy need not to be zero. We could model free entry as long as in equilibrium
there is a non-degenerate distribution of firm types in the economy. We consider this does not add to the insights of
our model.
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3 Preliminaries

3.1 Benchmark: No Learning

Workers differ in the common beliefs p of being a high type. We shut down learning so that beliefs

are invariant. This can be viewed as a special case of the learning model with the variance σ2

going to infinity. We assume that there is no birth or death so we essentially have a static problem.

Suppose without of generality that p is uniformly distributed on [0, 1]. We continue to maintain

the assumption that the worker does not know her true type or that she has no private information

about it. Denote µy(p) = pµHy + (1− p)µLy for y = H,L and r as the discount rate.

Under the above notion of competitive equilibrium, it is easy to verify the following claim (All

of the results in this paper are in the sense of “almost surely” because we allow a zero measure of

players to behave differently):

Claim 1 Under strict supermodularity, PAM is the unique (stationary) competitive equilibrium

allocation: H firms match with workers p ∈ [1 − π, 1], L firms match with workers p ∈ [0, 1 − π).

The opposite (NAM) holds under strict submodularity: H firms match with workers in [0, π).

Since there is no learning, essentially this result is the similar to Becker’s (1973) result, but

with uncertainty. Noteworthy about this Bayesian version of Becker is that even though for PAM

there is supermodularity of the ex-post payoffs (µHH + µLL > µHL + µLH), there need not be

monotonicity in expected payoffs, i.e., µH(1− π) may be smaller than µL(1− π). In fact, that will

be reflected in the firm’s equilibrium payoffs: VH ≥ VL if and only if µH(1− π) ≥ µL(1− π).

As in Becker, the equilibrium allocation is unique, but there may be multiple splits of the surplus.

In the case of PAM, we only require that wH(1− π) = wL(1− π). There are multiple equilibrium

payoffs if the surplus of a match between L and p = 0 is positive. Instead, if µL(0) = 0,11 there is

a unique equilibrium payoff.

3.2 Belief Updating

In the presence of learning we can now derive the beliefs and subsequently the value functions.

A sufficient statistic for output history, which determines the future prospects of a match, thus

also the natural state variable of the bargaining game, is the posterior belief pt that the worker

had a high productivity. Now, it is well-known that we can have the following important result:

conditional on the output process (Xt)t≥0, (pt)t≥0 is a martingale diffusion process. Moreover, this

process could be represented as a Brownian motion.

Based on the framework of our model, denote sy = (µHy − µLy)/σ, y = H,L, Σy(p) = 1
2p2(1−

p)2s2
y and then we can get:

11And there is limited liability, i.e., workers and firms cannot receive negative payoffs.
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Lemma 1 (Belief Consistency) Consider any worker who works for firm y between t0 and t1. Given

a prior pt0 ∈ (0, 1), the posterior belief (pt)t0<t≤t1 is consistent with the output process (Xy,t)t0<t≤t1

if and only if it satisfies

dpt = pt(1− pt)sydZ̄y,t

where

dZ̄y,t =
1
σ

[dXy,t − (ptµHy + (1− pt)µLy)dt].

The proof of this Lemma is in Faingold and Sannikov (2007) or Daley and Green (2008). The

basic idea behind the proof is a combination of Bayes’ rule and Ito’s lemma. Given the period t

posterior belief pt and dXt, we know the posterior belief at period t + dt is:

pt+dt =
pt exp{− [dXt−µHydt]2

2σ2dt }

pt exp{− [dXt−µHydt]2

2σ2dt } + (1− pt) exp{− [dXt−µLydt]2

2σ2dt }
.

Hence,

dpt = pt+dt − pt = pt(1− pt)
exp{− [dXt−µHydt]2

2σ2dt }− exp{− [dXt−µLydt]2

2σ2dt }

pt exp{− [dXt−µHydt]2

2σ2dt } + (1− pt) exp{− [dXt−µLydt]2

2σ2dt }
.

Apply Ito’s Lemma and we obtain the above result.

Lemma 1 establishes that dp depends on three elements: p(1 − p), which peaks at 1/2; the

signal-to-noise ratio of output, sy = (µHy − µLy)/σ and dZ̄y, the normalized difference between

realized and unconditionally expected flow output, which is a standard Wiener process with respect

to the filtration {Xy,t}. Obviously, beliefs move faster the more uncertain about worker’s quality

(p close to 1/2); the less variation in the output process (smaller σ) and the larger productivity

difference (higher µHy − µLy).

Now the learning consideration will change the results. Moreover, the supermodularity not only

affects the value of the output created as in the standard Beckerian model, but it also changes the

speed of learning. For example, under supermodularity (µHH − µHL > µLH − µLL), the learning

speed is faster in high type firm, which is especially significant for p close to 1/2. Intuitively

speaking, learning makes it more attractive to match with a high type firm even though it is better

for her to match with a low type firm without learning.

3.3 Value Functions

Consider any interval for the posterior belief p ∈ [p1, p2] where the worker accepts the offer from a

type y firm, then the value function is given by12:
12Note that we critically need the assumption that the worker doesn’t know any private information about his

type. If this assumption is violated, the worker’s value functions could not be written like this.
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rWy(p) = µy(p)− Vy + Σy(p)W
′′
y (p)− δWy(p), (3)

from Ito’s Lemma. The term µy(p) − Vy is equal to the flow wage payoff and corresponds to the

deterministic component of the diffusion Xy,t, and the term Σy(p)W ′′
y (p) is the second-order term

from the transformation W of the diffusion process Xy,t. All higher-order terms vanish as the time

interval shrinks to zero. The general solution to this differential equation is:

Wy(p) =
µy(p)− Vy

r + δ
+ ky1p

1−αy(1− p)αy + ky2p
αy(1− p)1−αy , (4)

where

αy =
1
2

+

√
1
4

+
2(r + δ)

s2
y

≥ 1.

First notice that the boundedness of the value function implies that if 0 is included in the

domain, then ky1 = 0 and if 1 is included in the domain, then ky2 = 0. Second, Σy(p)Wy
′′(p) is the

value of learning and this is an option value in the sense that the worker has the choice to change

his job as he learns his type p. It is easy to verify that this value is zero if the worker never changes

his job.13 From the Martingale property of the Brownian motion, at any p the expected value of

p in the next time interval is equal to p. There is as much good news as bad news to be expected

in the next period. It is the option value of switching to a more suitable match that generates the

value of learning.

4 Analysis and Results

4.1 Characterization of the Equilibrium Allocation

Now consider any candidate equilibrium where a type p worker is indifferent between matching with

either firm y. Then equilibrium requires the equal-value condition (the worker gets the same value

at the cutoff) and the smooth-pasting condition (the marginal of both value functions is identical).

For example, if for p ∈ [p1, p2), the worker works in the low type firm and for p ∈ [p2, p3), the

worker works in the high type firm, then we must have:14

WL(p2) = WH(p2) and WL
′(p2) = WH

′(p2). (5)

It is important to point out that both the equal value-condition and the smooth-pasting con-

dition are on-equilibrium path conditions. It has nothing to do with the off-equilibrium path (i.e.,
13In that case, p can take both the values 0 and 1. So the boundedness of the value function requires that both

ky1 and ky2 are zero and hence Wy
′′(p) = 0 for every p.

14We slightly abuse notation hers since WL is not defined on p2. A more precise way of writing the equations is
WL(p2+) = WH(p2) and WL

′(p2+) = WH
′(p2). In what follows, we will continue to use the expression in the text in

order to economize on notation.
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instead of accepting offers from low type firms, worker with p ∈ [p1, p2) are tempted to accept offers

from high high type firms).

In the following lemmas we characterize the value functions establishing convexity and mono-

tonicty:

Lemma 2 The equilibrium value functions Wy are strictly convex for p ∈ (0, 1).

Proof. In Appendix.

The intuition for this Lemma is the following. Preferences are linear and the option value of

learning is strictly positive, hence the value function with the option of learning is convex. To see

this, observe that since the measure of both types of firms are strictly positive, market clearing

requires that workers with some p’s will be employed by high type firms while workers with other

p’s will be employed by low type firms. This implies that some worker has to change jobs at some

point and the option value of learning is non-zero. Hence we have W ′′
y (p) > 0, for all p ∈ (0, 1). On

the other hand, when p = 0 or 1, the posterior belief will always stay at 0 or 1 by Bayes’ rule such

that learning never happens. It is easy to verify that W ′′
y (p) = 0 for p = 0 or 1.

Given the strict convexity of equilibrium value functions and the smooth pasting condition, we

can immediately derive the following Lemma:

Lemma 3 The equilibrium value functions Wy are strictly increasing.

Proof. In Appendix.

One important implication is that if we define W(p) as the envelope of all equilibrium value

functions Wy(p). Then this envelope function W(p) is continuous, strictly increasing and strictly

convex for p ∈ (0, 1). Suppose workers with p ∈ [0, p) are employed by type y firm and workers with

p ∈ (p̄, 1] are employed by type −y firm. Then we should have: W ′
y(0) = µHy−µLy

r+δ < W ′
−y(1) =

µH,−y−µL,−y

r+δ . This gives us another result:

Lemma 4 Under supermodularity, in any equilibrium p = 0 worker matches with L firm; p = 1

worker matches with H firm. The opposite under strict submodularity. Moreover,

min(∆H ,∆L)
r + δ

< W ′(p) <
max(∆H ,∆L)

r + δ
,

where ∆H = µHH − µLH and ∆L = µHL − µLL.

Intuitively this result is best understood by using the standard sorting argument from Becker

(1973). At p = 0 and p = 1 there is no value of learning. As a result, there the value function can

be interpreted as being determined by the no-learning allocation.
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The properties derived above are mainly concerned with on-equilibrium path behavior. We

also need to specify what happens in the event of deviations and behavior is off-equilibrium path.

We consider the equivalence of a one-shot deviation in continuous time because we think of the

continuum as an idealization of discrete time. This amounts to a worker playing the deviant

action over an interval [t, t + dt) according to the belief p at time t, and considering the limit as

dt → 0.15 This is very important because it allows us to derive the value function for deviation.

On the contrary, if the deviation only takes place at a single time point t, then the value function

for deviation is essentially the same as the one without deviation because no information will be

extracted from just a single time point.

The next Lemma establishes that if we consider off-the-equilibrium path deviations, we actually

need one additional condition, which we call the no-deviation condition.

Lemma 5 To deter possible deviations, a necessary condition is:

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (6)

for any possible cutoff p.

Proof. Without loss of generality, we assume that on equilibrium path, worker with p > p accepts

offers from high type firms and worker with p < p accepts offers from low type firms. Consider one

possible one-shot deviation: a p > p worker matches with a low type firm for dt and then switch

back. Then the new value function is defined as:

W̃L(p) = wL(p)dt + e−(r+δ)dtWH(p + dp), where dp = p(1− p)sLdZ̄. (7)

Apply Ito’s Lemma and we get:

W̃L(p) = wL(p)dt + e−(r+δ)dt[WH(p) + ΣL(p)W ′′
H(p)dt]. (8)

This implies:

lim
dt→0

W̃L(p)−WH(p)
dt

= wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p). (9)

The RHS of the above equation must be smaller than zero for any p > p. Let p→ p and we have:

wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p) ≤ 0

⇒ wL(p) + ΣL(p)W ′′
L(p)− (wH(p) + ΣH(p)W ′′

H(p)) + (W ′′
H(p)−W ′′

L(p))ΣL(p) ≤ 0

⇒W ′′
H(p) ≤W ′′

L(p). (10)

15This notion is also implicitly used in Sannikov (2007, Proposition 2), and in Cohen and Solan (2009) who consider
deviations from Markovian strategies in bandit problems.
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Similarly, we can consider another possible one-shot deviation: a p < p worker matches with a

high type firm for dt and then switch back. Then the new value function is defined as:

W̃H(p) = wH(p)dt + e−(r+δ)dtWL(p + dp), where dp = p(1− p)sHdZ̄. (11)

Apply Ito’s Lemma once again and we get:

W̃H(p) = wH(p)dt + e−(r+δ)dt[WL(p) + ΣH(p)W ′′
L(p)dt], (12)

taking the limit

lim
dt→0

W̃H(p)−WL(p)
dt

= wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′
L(p) < 0

for p < p. Therefore as p goes to p, we should have:

wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′
L(p) ≤ 0⇒W ′′

H(p) ≥W ′′
L(p). (13)

(10) and (13) imply that W ′′
H(p) = W ′′

L(p).

This no-deviation condition is quite unique for the two-armed bandit problem. This condition

is absent in an one-armed bandit problem. Most of the models in the literature on continuous

time learning models (Jovanovic (1979) and Moscarini (2005)) and continuous time games (see

amongst others, Sannikov (2009)) are essentially investigating a one-armed bandit problem. There,

we can directly look at equilibria in cutoff strategies, a theoretical foundation for which is given by

Rosenberg et al. (2007). In the one-armed bandit problems, the safe arm essentially is an absorbing

state so we only need to worry about the potential deviation from the risky arm to the safe arm.16

Then the no-deviation condition becomes W ′′
H(p) ≥ W ′′

L(p) = 0 but this is already implied by the

convexity property.17

We provide some intuition for the no-deviation condition. By assuming Sequential Rationality,

i.e., the equilibrium is robust to a one-shot deviation, we basically impose that the equilibrium

wage is self-enforcing. There is no commitment to future realizations of Xt and therefore of future

beliefs p. Now we can interpret W ′′ as the marginal value of learning: W ′ is the marginal change

of W with respect to the posterior p, and learning changes p and is therefore quantified by the

change in W ′ which is W ′′. The condition states that there is no deviation if the marginal value of

learning at p is same in both firms.

But in our two-armed bandit problem, we first need to answer the question whether there exist
16For example, in our model assume µHL = µLL and the return in the low type firm is deterministic.
17In a model of option pricing by Dumas (1991), there does exist a condition on the second derivative called the

“super contact” condition. It arises as the optimal solution to the option pricing problem with proportional cost.
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non-cutoff stationary equilibria, i.e., a worker with p ∈ [p1, p2) accepts the offer from a high type

firm, with p ∈ [p2, p3) accepts the offer from a low type firm and with p ∈ [p3, p4) accepts the

offer from a high type firm again. Surprisingly, Lemmas 2–9 imply that all stationary competitive

equilibria must be in cutoff strategies.

Theorem 1 PAM is the unique stationary competitive equilibrium allocation under strict super-

modularity. Likewise for NAM under strict submodularity.

To prove this theorem, we only need to prove the following Claim:

Claim 2 Under strict supermodularity, it is impossible to have p1 < p2 and equilibrium value

functions WH (for p ∈ [p1, p2]), WL1 (for p < p1), WL2 (for p > p2) such that:

WH(p1) = WL1(p1) and W ′′
H(p1) = W ′′

L1(p1)

WH(p2) = WL2(p2) and W ′′
H(p2) = W ′′

L2(p2)

are satisfied simultaneously.

Under strict submodularity, it is impossible to have p1 < p2 and equilibrium value functions WL

(for p ∈ [p1, p2]), WH1 (for p < p1), WH2 (for p > p2) such that:

WL(p1) = WH1(p1) and W ′′
L(p1) = W ′′

H1(p1)

WL(p1) = WH2(p2) and W ′′
L(p2) = W ′′

H2(p2)

are satisfied simultaneously.

Proof. In Appendix.

This result states that it is not benefial for a worker of type p to learn in the high type firm H

in the middle as long as there there are still types p on both sides who work in the low type firms.

Given the above claim, it is easy to prove the theorem:

Proof. Under supermodularity, by Lemma 9, worker with sufficiently low p’s will accept low type

firm’s offer and worker with sufficiently high p’s will accept high type firm’s offer. But 2 implies

it is impossible to have worker first accept low type firm’s offer, then accept high type firm’s offer

and finally accept low type firm’s offer again. Hence, we must have some cutoff p such that p < p

will accept low type firm’s offer and p > p will accept high type firm’s offer. This is exactly a PAM

allocation. Use the same logic and you can see NAM is the only possible stationary competitive

equilibrium allocation under strict submodularity.

Before we turn to the equilibrium distribution, we show that the no-deviation condition in

Lemma 9 is not just necessary but also sufficient under supermodularity:
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Lemma 6 Under strict supermodularity, W ′′
H(p) = W ′′

L(p) implies that no deviation would happen

for the PAM equilibrium.

Proof. In Appendix.

4.2 The Equilibrium Distribution

The previous section shows that under strict supermodularity (submodularity), PAM (NAM) is

the unique stationary competitive equilibrium allocation. We still need to construct such an equi-

librium. To do that, we assume supermodularity and worker and firm monotonicity: (µHH > µHL

and µLH > µLL)18. Now consider a strictly positive assortative matching equilibrium such that

workers with beliefs less than p will choose L firms and workers with beliefs higher than p will

choose H firms. From equation (4) we hence have kL1 = 0 and kL2 > 0 for y = L and kH2 = 0 and

kH1 > 0 for y = H. Let kL = kL2, kH = kH1 and worker’s value functions become:

WL(p) =
wL(p)
r + δ

+ kLpαL(1− p)1−αL (14)

and

WH(p) =
wH(p)
r + δ

+ kHp1−αH (1− p)αH , (15)

where

αy =
1
2

+

√
1
4

+
2(r + δ)

s2
y

≥ 1.

To discuss market clearing conditions, we need to consider the ergodic distribution of p’s. From

the Fokker-Planck (Kolmogorov forward) equation, the stationary and ergodic density fy should

satisfy the following differential equation:

0 =
dfy(p)

dt
=

d2

dp2
[Σy(p)fy(p)]− δfy(p). (16)

The general solution to this differential equation is (see also Moscarini (2005)):

fy(p) = [fy0p
γy1(1− p)γy2 + fy1(1− p)γy1pγy2 ] (17)

where

γy1 = −3
2

+

√
1
4

+
2δ

s2
y

> −1

18Monotonicity is just to help us find one particular way to divide the surplus. The whole construction of equilibrium
also goes through if we do not make this assumption.
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and

γy2 = −3
2
−

√
1
4

+
2δ

s2
y

< −2.

First, the integrability of fy requires that fy1 = 0 if 0 is included in the domain and fy0 = 0

if 1 is included in the domain. Second, the Fokker-Planck (Kolmogorov forward) equation is only

valid for p )= p0. Since there is a flow in of new workers, for p = p0 we should have a kink in the

density function. This also raises the issue of relative position between p0 and p. We first consider

the case where p < p0. We then derive in abbreviated format the result when p > p0.

Given any p0 ∈ (0, 1), if p < p0, then the density functions are:

fH(p) = [fH0p
γH1(1− p)γH2 + fH1(1− p)γH1pγH2 ]I(p < p ≤ p0) + fH2(1− p)γH1pγH2I(p > p0) (18)

and

fL(p) = fL0p
γL1(1− p)γL2 . (19)

The density functions are subject to the following boundary conditions. First, once the posterior

belief reaches the equilibrium separation point p, we should have the cutoff condition:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−). (20)

This condition guarantees that the flow of agents who cross p from below is equal to the flow of

agents who cross from above. The implication is that since the speed from above ΣH is larger

than ΣL, the densities satsify fH(p+) < fL(p−). It is worth comparing this condition to the

standard condition when there is an absorbing state (Cox-Miller (1965), Dixit (1993), and Moscarini

(2005)). In the case with only one brownian motion and an absorbing state, what is required is

Σ(p+)f(p+) = 0 because the probability of obsorption in a time interval dt must equal speed of

the flow in of the brownian motion which is proportional to
√

dt (see Cox and Miller (1965, p.220)).

Therefore the speed must be zero near the absorbing boundary.

Second, total flows in and out of the high type firms must balance:

ΣH(p0)[f ′H(p0−)− f ′H(p0+)] = δπ +
d

dp
[ΣH(p)fH(p)]|p+.

The left-hand side of the above equation is the total inflow into high type firms, which are new

workers who enter into this economy. It must be δ by assumption. The right-hand side of the

above equation is the total outflows from the high type firms, which include workers who reach p

and transfer to low type firms and workers who are hit by the death shock. In the appendix, we

manage show that this equation will further imply:
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d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+

Third, the density function has to be continuous at p0 (see also Bertola and Caballero (1990)):

fH(p0−) = fH(p0+).

This condition is arbitrary in the sense that if it is not satisfied, the distribution will still be ergodic.

It is customary to impose this condition as it approximates entry from a non-degenerate distribution

instead of entry of identical types p0.

Finally, we have market clearing condition:

∫ 1

p
fH(p)dp = π and

∫ p

0
fL(p)dp = 1− π.

In summary, when p < p0, the equilibrium is characterized by a system of eight equations with

nine unknowns (VL, VH , kL, kH , p, fH0, fH1, fH2, fL0):19

WH(p) = WL(p) (Equal value condition) (21)

W ′
H(p) = W ′

L(p) (Smooth pasting condition) (22)

W
′′
H(p) = W

′′
L(p) (No deviation condition) (23)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (24)
∫ 1

p
fH(p)dp = π (Market clearing H) (25)

∫ p

0
fL(p)dp = 1− π (Market clearing L) (26)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (27)

fH(p0−) = fH(p0+) (Continuous density at p0) (28)

Fortunately, Equations (24)–(28) can be solved separatly from Equations (21)–(23). In other

words, the procedure of solving this system of equation could be: first we solve p jointly with

fH0, fH1, fH2, fL0 from Equations (24)–(28) and then we plug p into Equations (21)–(23) to pin

down other unknowns.

19Observe that with more unknowns than variables, the solution to our system is indeterminate. In fact, there are
potentially a continuum of wages that can be supported in equilibrium, though the allocation will be unique. This
indeterminacy is as in Becker: the allocation is unique, but there may be multiple ways to split the surplus. In all
that follows, when we use the term uniqueness of equilibrium, we refer to the allocation, not to the wages.
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Proposition 1 Equations (24)-(28) imply p < p0 if and only if:

(
p0

1− p0

)γH1−γL2 δ/s2
H

δ/s2
L

∫ 1
p0

pγH2(1− p)γH1dp
∫ p0

0 pγL1(1− p)γL2dp
<

π

1− π
. (29)

Moreover, if such p exists, it must be unique.

Proof. In Appendix.

The proof of Proposition 1 is quite straightforward. The idea of the proof is the following: since

we have 5 equations with five unknowns, we can first express fH0, fH1, fH2, fL0 as a function of p

and then use the last equation to pin down p.

The existence and uniqueness of the solution to the system require that fH0, fH1, fH2, fL0 change

monotonically with p. Fortunately, this is the case as shown in the appendix. First, from Equation

(26), we find fL0 is decreasing in p. Second, Equations (24) and (27) imply that fH0, fH1 are also

decreasing in p. Finally, Equation (28) tells us that fH2 is also decreasing in p given fH0, fH1

are decreasing in p. The monotonicity guarantees that if a solution exists, it must be unique.

Furthermore, it enables us to only investigate the boundaries when determining a solution exists.

This gives us Equation (29) given in the Proposition.

In the second case, p ≥ p0. Given any p0 ∈ (0, 1), if p ≥ p0, then the density functions are:

fL(p) = fL0p
γL1(1− p)γL2I(p < p0) + [fL1p

γL1(1− p)γL2 + fL2(1− p)γL1pγL2 ]I(p0 ≤ p ≤ p) (30)

and

fH(p) = fH0(1− p)γH1pγH2 . (31)

Then the system of equations to determine the equilibrium is:

WH(p) = WL(p) (Equal-value) (32)

W ′
H(p) = W ′

L(p) (Smooth-pasting) (33)

W
′′
H(p) = W

′′
L(p) (No-deviation) (34)

ΣH(p+)fH(p+) = ΣL(p−)fL(p−) (Boundary condition) (35)
∫ 1

p
fH(p)dp = π (Market clearing H) (36)

∫ p

0
fL(p)dp = 1− π (Market clearing L) (37)

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+ (Flow equation at p) (38)

fL(p0−) = fL(p0+) (Continuous density at p0) (39)
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We can now prove the following Proposition, the counterpart to Proposition 1:

Proposition 2 Equations (35)-(39) imply p ≥ p0 if and only if:

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0

pγH2(1− p)γH1dp
∫ p0

0 pγL1(1− p)γL2dp
≥ π

1− π
. (40)

Moreover, if such p exists, it must be unique.

The idea for the proof of Proposition 2 is exactly the same as that for the proof of Proposition

1 and the proof is also shown in the appendix. Propositions 1 and 2 together provide a very nice

existence and uniqueness result:

Theorem 2 Under strict supermodularity, for any pair (p0, π) ∈ (0, 1)2, there exists a unique PAM

cutoff p. Moreover, p < p0 if and only if:

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0

pγH2(1− p)γH1dp
∫ p0

0 pγL1(1− p)γL2dp
<

π

1− π
. (41)

One of the nice properties about Equation (41) is that the whole equation only depends on p0,

π, δ/s2
H and δ/s2

L. This also gives us a feasible way to compute p0. Given p0, π, δ/s2
H and δ/s2

L,

we first need to decide the sign of

(
p0

1− p0
)γH1−γL2

δ/s2
H

δ/s2
L

∫ 1
p0

pγH2(1− p)γH1dp
∫ p0

0 pγL1(1− p)γL2dp
− π

1− π
.

If this sign is negative, then we know that p is smaller than p0 and we can use the system of

equations in Case 1 to find out p. On the contrary, if this sign is not negative, then we know that

p is larger than p0 and we can use the system of equations in Case 2 to find out p. Therefore, we

can get a very convenient way to determine the equilibrium the equilibrium cutoff numerically.

Before presenting the numerical results, we have a simple theoretical comparative static result:

Corollary 1 p is strictly increasing in p0 and decreasing in π.

This corollary is proved in the appendix. But the intuition is quite clear: π decreases means

there are more low type firms in the economy and hence p has to increase to make sure that more

workers are matched with low type firms; p0 increases means the overall quality of the workers is

becoming better in the economy and p has to increase to make sure that the low type firms can

also be matched with better workers.

Mathematically, the relationships between p and δ/s2
H , δ/s2

L are not clear. But intuitively

speaking, as sL increases, the degree of supermodularity will decrease while the speed of learning
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in low type firms will increase. Both of them make the low type firms more attractive such that p

should increase in sL. On the other hand, as sH increases, both the degree of supermodularity and

the speed of learning in high type firms will increase, which will lead to a decrease of p.

Figure 4.2 plots the value of p as a function of sL, π, p0, for the case of PAM and with parameter

values: sH = 0.15, sL = 0.05, p0 = 0.5, π = 0.5, δ = 0.01.

4.3 Equilibrium Analysis: Value Functions

Theorem 2 implies that under supermodularity, the PAM cutoff p can be uniquely determined. But

given this p, we still have the following conditions to satisfy:

WH(p) = WL(p) (Equal-value condition) (42)

W
′
H(p) = W

′
L(p) (Smooth-pasting condition) (43)

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (44)

The last problem is that Equations (51)-(53) are three equations for four unknowns. The

equilibrium is indeterminate in the sense that although the allocation p is unique, there could be

multiple ways to divide the surplus. One way to get rid of this problem is to assume monotonicity

and make µLL = 0. Then non-negative wage requires that wL(0) has to be zero and hence we have
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VL = 0. Equations (51)-(53) then become:

µL(p)
r + δ

+ kLpαL(1− p)1−αL =
µH(p)− rVH

r + δ
+ kHp1−αH (1− p)αH

µHL − µLL

r + δ
+ kLpαL(1− p)1−αL(

αL − p

p(1− p)
) =

µHH − µLH

r + δ
+ kHp1−αH (1− p)αH (

1− αH − p

p(1− p)
)

kLpαL−2(1− p)−1−αLαL(αL − 1) = kHp−1−αH (1− p)αH−2αH(αH − 1)

This system of equations will give us a unique formula for VH :

rVH = (µLH − µLL) +
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)
. (45)

Here ∆H = µHH − µLH and ∆L = µHL − µLL. Furthermore, it is easy to check that both kH

and kL are strictly larger than zero such that the option value of learning is strictly positive.

Therefore, we finally reach our main result:

Theorem 3 Under strict supermodularity, the stationary competitive equilibrium is unique in the

sense that all equilibria are PAM and the allocation is uniquely determined by Theorem 2. Moreover,

assume monotonicity and normalize VL = 0, we can get a unique formula for VH given by equation

(45).

5 Firm-dependent Volatility: σy

A valid criticism of our approach is that we give the H firms too much of an edge under supermodu-

larity (likewise for the L firms under submodularity). Not only are they superior in the production

of output, by assuming that the volatility σ is common to both types of firms, effectively the

signal-to-noise ratio is higher in H firms:

sH =
µHH − µLH

σ
>

µHL − µLL

σ
= sL,

from supermodularity. With firm-dependent volatility, that need not be the case. In particular, for

σH sufficiently high, it may well be the case that sH < sL.

Mere observation of the value function in Equation (3), rWy(p) = µy(p)− Vy + Σy(p)W ′′
y (p)−

δWy(p), reveals that firm-dependent volatility will play a crucial role here. Since Σy = 1
2p2(1−p)2s2

y,

for sufficiently high σH and therefore low sH , it appears intuitive that the value WH can be smaller

than the value of WL for high p. It turns out that this intuition is wrong. First, in this competitive

equilibrium, wages are endogenous and therefore as the value of learning changes, so does µy(p)−Vy.

Second, the no-deviation condition requires that at the marginal type p, W ′′
H = W ′′

L. It turns out

that as a result these two features, in equilibrium the learning effect is the same in both firms, no
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matter what the volatility σy is.

To make this argument formal, when σH )= σL, we generally define sy = (µHy − µLy)/σy, y =

H,L. It is trivial to show that belief updating also satisfies the formula:

dpt = pt(1− pt)sydZ̄y,t.

Furthermore, Lemmas 2–9 still hold because none of these results depend explicitly on σy. Then

we only need to show that Claim 2 extends. Here we adopt a different approach to prove Claim

2.20

Proof. Suppose the situation described by the claim is the case. Then the value-matching condi-

tions imply:

wH(p1) + ΣH(p1)W ′′
H(p1) = wL(p1) + ΣL(p1)W ′′

L1(p1)

and

wH(p2) + ΣH(p2)W ′′
H(p2) = wL(p2) + ΣL(p2)W ′′

L2(p2).

The no-deviation conditions imply:

s2
H − s2

L

s2
H

(r + δ)WH(p1) = wL(p1)−
s2
L

s2
H

wH(p1)

and
s2
H − s2

L

s2
H

(r + δ)WH(p2) = wL(p2)−
s2
L

s2
H

wH(p2).

It follows then that:

s2
H − s2

L

s2
H

(r + δ)[WH(p2)−WH(p1)] = [wL(p2)− wL(p1)]−
s2
L

s2
H

[wH(p2)− wH(p1)].

WH is convex and W ′
H(p1) > ∆L

r+δ by Lemma 4. Therefore, we have:

s2
H − s2

L

s2
H

∆L(p2 − p1) < ∆L(p2 − p1)−
s2
L

s2
H

∆H(p2 − p1),

which implies: ∆H < ∆L. Contradiction!

With the proof of Claim 2 in hand, the result of Theorem 1 immediately extends: PAM (NAM)

is the unique stationary competitive equilibrium allocation under strict supermodularity (submod-

ularity) thus holds for any combination of (σH , σL). Surprisingly, this implies that under strict

supermodularity, even if we have an extremely high σH such that the learning rate in high type
20It is a little bit tricky to prove the sufficiency of the no-deviation condition though because we have to consider

both sH ≥ sL and sH < sL cases. In the appendix, we show a proof for a generalized version of Lemma 6.
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firms is smaller than that in low type firms, we still have PAM. It is equivalent to assert that the

direct productivity consideration dominates the learning in our model. The reason comes from the

fact that the equilibrium wage schedules adjust to offset the impact of change in learning rate. The

key insight here is the no-deviation condition. At p, the no-deviation condition requires that the

second-order effect on the value function is the same in both firms. This second-order effect W ′′
y

exactly captures the effect of learning through Σy(p)W ′′
y (p) where Σy = 1

2p2(1 − p)2s2
y. Because

equilibrium wages adjust to satisfy the no-deviation condition, the impact of differential learning

rates is completely offset by the change of wage schedule, and the equilibrium allocation is solely

determined by the productivity consideration.

6 The Planner’s Problem

A priori, we might expect the competitive equilibrium not to decentralize the planner’s problem.

Wage contracts cannot condition on future realizations or actions and are assumed to be self-

enforcing. As a result of this lack of commitment, there is a missing market. With incomplete

markets, the competitive equilibrium in general does not necessarily decentralize the planner’s

problem. It turns out however as we show below that this market incompleteness does not preclude

the efficiency of the decentralized equilibrium. As will become apparent, this efficiency result is

driven by the martingale property present in all models of learning.

We consider a planner’s problem under stationarity, i.e., in the presence of an ergodic distri-

bution. The planner chooses an allocation rule and as a consequence of the Kolmogorov forward

equation, the ergodic distribution associated with this allocation rule. The objective is to maximize

the aggregate flow of output. Given stationarity of the problem, the focus on output maximization

yields the same outcome as maximization of aggregate values.

Before we state and prove the efficiency result, we need to derive the stationary distribution

under multiple cutoffs. Consider any allocation with multiple cutoffs:

0 < p
N

< · · · < p
1

< 1, N odd.

Without loss of generality, we assume workers with p ∈ (p1, 1] are allocated to the high type firms

while workers with p ∈ [0, pN ) are allocated to the low type firms since for workers with p = 0

or 1, there is no need for learning and it is optimal to allocate them according to instantaneous

production efficiency (PAM).21 This also implies that generically N is odd. Denote by Ωy the set

of p’s that match with firms of type y.
21This property is also established in the one-sided model of Anderson and Smith (2009).
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Now the expected belief in high type firms EΩH p can be written as

∫

ΩH

pfH(p)dp =
∑

i

(−1)iΥH
i where ΥH

i = δ−1

[
p

d

dp
[ΣH(p)fH(p)]− ΣH(p)fH(p)

]

p→p
i

+ p0.

And similarly, the expected posterior belief in low type firms EΩLp is given by

∫

ΩL

pfL(p)dp =
∑

i

(−1)i−1ΥL
i where ΥL

i = δ−1

[
p

d

dp
[ΣL(p)fL(p)]− ΣL(p)fL(p)

]

p→p
i

.

The martingale property implies EΩH p + EΩLp = p0 or

∑

i

(−1)i

{[
p

d

dp
[ΣH(p)fH(p)]− ΣH(p)fH(p)

]

p→pi

−
[
p

d

dp
[ΣL(p)fL(p)]− ΣL(p)fL(p)

]

p→pi

}
= 0.

The planner’s problem must, as in the case of one cutoff, satisfy the Kolmogorov forward

equation, market clearing and the martingale property. We do not know of a known derivation

from these constraints of the boundary conditions and flow equations in the presence of multiple

cutoffs. Our strategy of proof is therefore to use a variational argument.

The proof heavily uses the martingale property and works as follows. First we consider a

candidate allocation with 3 cutoffs and consider an interior interval of p’s that are matched to L

type firms. We move the bounds of that interval slightly to the left, thus generating a new density

in this interval while keeping all other cutoffs and distributions unchanged. We impose market

clearing conditions by choosing the new interval. We use the martingale property to show that

under supermodularity this experiment lowers aggregate output. This holds until cutoffs coincide

such that the interior rang of p’s matched with L firms disappears, thus reducing the number of

cutoffs to N = 1. Observe that while we use market clearing and the martingale property, we do

not use the boundary conditions. We establish that output increases in the unconstrained problem

(without boundary conditions), therefore it will also increase in the constrained problem. We use

a similar argument to establish that output increases when moving from N to N − 2 cutoffs. The

result then follows by induction. We derive the result under supermodularity. The same logic

applies under submodularity.

Theorem 4 The competitive equilibrium decentralizes the planner’s stationary solution that max-

imizes the aggregate flow of output.

Proof. In Appendix.

7 Predictions of the Model

We now turn to some of the predictions of the model.
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Figure 2: Equilibrium Distribution of Posterior Beliefs
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Wage Gap at p

We start with an interesting observation:

wH(p) = µH(p)− rVH = ∆Hp + µLL −
αH(αL − 1)(∆H −∆L)p

αH(αL − 1)− (1− p)(αL − αH)
< ∆Lp + µLL = µL(p).

This implies that the worker with posterior belief slightly higher than p will accept high type firm’s

offer even though the wage provided by the high type firm is lower than the productivity at the

low type firm. This obviously comes from the fact that the learning speed in the high type firm is

higher and this would compensate the loss in the flow wages.

On the other hand, we can see that the difference in expected productivity at p is

µH(p)− µL(p) = (µHL − µLL) + (∆H −∆L)p < rVH .

This implies the high type firm can enjoy a strictly positive rent from a higher learning speed.

Because VL = 0, it immediately follows that the wage at p in H is lower than in L. This above

result does not depend on the assumption VL = 0 and it could be generalized for any possible

division of surplus:
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Figure 3: Equilibrium Distribution of Wages

0 0.2 0.4 0.6 0.8 1
0

10

20

posterior belief

v
a

lu
e
 f

u
n

c
ti
o
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

wage

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o

n

Lemma 7 Under strict supermodularity, for all stationary competitive equilibrium, we have: wH(p) <

wL(p) and rVH − rVL > µH(p)− µL(p).

Ergodic Distribution of Posterior Beliefs

In a steady state, equilibrium sorting transforms the normal output Xt into a piecewise Lévy

distribution of posterior beliefs p.

Observe the discontinuity in the density (and the subsequent kink in the cumulative) at p. This

is unlike the learning environments with an absorbing state where the density is continuous. Recall

that this is the result of equation (20), which ensures that the flows around p are balanced. Given

learning is faster in the H firms, the flow from H to L is larger than from L to H, and therefore

the measure of types must be smaller to the right of p. At p0 the density is continuous but not

differentiable, which is due to the fact that there is a measure δ of new entrants in each period.

Note also that in this example, the density is increasing in the neighborhood of p = 1. Whether

or not the density is increasing depends on the relation between the parameter values δ, sy and the

equilibrium value of p0, as is shown in Moscarini (2005, Proposition 4).
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Wages

The piece-wise Lévy distribution of beliefs maps one-to-one into a wage distribution because of

competitive wage determination and the law of one price: for every p there is exactly one wage

w(p). As a result, the wage distribution is also piece-wise Lévy. Figure 3 plots w(p) and the density

and cumulative distributions.

First, Figure 3A illustrates the wage gap we established earlier, i.e., here is a discontinuity in

the wage function w(p) at p. This follows immediately from value matching WL(P ) = WH(p) and

the fact that learning is faster in H firms. As a result, it must be the case that wH(p) < wL(p). Of

course, the wage schedule is in H type firms is steeper, w′H(p) > w′L(p) due to faster learning.

The wage schedule transforms the belief distribution into the wage distribution. The disconti-

nuity in the wage schedule at p happens to coincide with the discontinuity in belief distribution.

Not surprisingly, as a result there is exactly one discontinuity in the density of w at p.

Variance of Beliefs and Wages over the Life Cycle

We investigate the evolution of the posterior belief distribution. To that end, we focus on a group

of workers who enter into the market at t = 0 and have not died at least at time T . This ensures

that we calculate the variance of a surviving cohort without the effect on the variance of the dying

workers. The selection of a decreasing population would underestimate the variance. Denote the

density function for the posterior beliefs at time t ≤ T to be fT
y (p, t). First notice that from the

Martingale property, for any t ≤ T , the expectation of posterior belies at time t ≤ T should stay

the same:

E(t) =
∫ p

0
pfT

L (p, t)dp +
∫ 1

p
pfT

H(p, t)dp = p0.

Or equivalently, using integration by parts:

dE(t)
dt

=
∫ p

0
p

d2

dp2
[ΣL(p)fT

L (p, t)]dp +
∫ 1

p
p

d2

dp2
[ΣH(p)fT

H(p, t)]dp

= p{ d

dp
[ΣL(p)fT

L (p, t)]|p=p}− ΣL(p)fT
L (p, t)

−p{ d

dp
[ΣH(p)fT

H(p, t)]|p=p} + ΣH(p)fT
H(p, t) = 0. (46)

Our interest is with the variance of this distribution, which can be written as:

V ar(t) =
∫ p

0
p2fT

L (p, t)dp +
∫ 1

p
p2fT

H(p, t)dp− p2
0.

Beginning with any initial distribution, the variance can of course decrease. However, as time

goes by, eventually the variance must start to increase. This is established in the following result.
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Proposition 3 The variance of the distribution of beliefs will eventually increase.

Proof. The Fokker-Planck (Kolmogorov forward) equation implies:

dfy(p)
dt

=
d2

dp2
[Σy(p)fy(p)]. (47)

Then integration by parts by parts and using the Fokker-Planck equation yields:

dV ar(t)
dt

=
∫ p

0
p2 d2

dp2
[ΣL(p)fT

L (p, t)]dp +
∫ 1

p
p2 d2

dp2
[ΣH(p)fT

H(p, t)]dp

= p2{ d

dp
[ΣL(p)fT

L (p, t)]|p=p}− 2pΣL(p)fT
L (p, t)

−p2{ d

dp
[ΣH(p)fT

H(p, t)]|p=p} + 2pΣH(p)fT
H(p, t)

+
∫ p

0
2ΣL(p)fT

L (p, t)dp +
∫ 1

p
2ΣH(p)fT

H(p, t)dp. (48)

From Equation (46), Equation (48) could be further simplified as:

dV ar(t)
dt

= pΣH(p)fT
H(p, t)− pΣL(p)fT

L (p, t)

+
∫ p

0
2ΣL(p)fT

L (p, t)dp +
∫ 1

p
2ΣH(p)fT

H(p, t)dp. (49)

The martingale convergence theorem implies that as t goes to T and as T goes to infinity, we have

both fT
H(p, t) and fT

L (p, t) go to zero for p ∈ (0, 1). Meanwhile,

∫ p

0
2ΣL(p)fT

L (p, t)dp +
∫ 1

p
2ΣH(p)fT

H(p, t)dp ≥ 0.

Hence, we have limT→∞
dV ar(T )

dT ≥ 0.

One feature of the standard learning model is that over he life cycle, the variance of wages

decreases. As time goes by, workers are increasingly likely to have found a high productivity

match, and eventually the posterior belief converges to one. As a result, the variance decreases and

goes to zero. Yet, there is ample evidence that the variance of wages over the life cycle increases

and is concave. For some of the most recent evidence, see Heathcoate, Violante and Perri (2009).

This is not captured by the standard learning model. As we have shown in Proposition 4, the

variance of posterior beliefs must eventually increase. Proposition 4 below establishes that also the

distribution of wages will eventually increase.

This is not immediate from Proposition 4 since the wage function, while piece-wise linear, is

discontinuous with changing slopes. To that end, we establish in the following Lemma that as t
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goes to T and as T goes to infinity, we have both fT
H(p, t) and fT

L (p, t) go to zero for p ∈ (0, 1). At

the same time, ∂fT
y (p,t)
∂t also goes to zero, which implies that d2

dp2 [Σy(p)fT
y (p, t)] will converge to zero

too.

Lemma 8 As t→ T and as T →∞, both fT ′
H (p, t) and fT ′

L (p, t)→ 0.

Proof. In Appendix.

Proposition 4 The variance of the distribution of wages will eventually increase.

Proof. From the above Lemma, as t goes to T and as T goes to infinity, we have:

dV arw(t)
dt

=
∫ p

0
wL(p)2

d2

dp2
[ΣL(p)fT

L (p, t)]dp +
∫ 1

p
wH(p)2

d2

dp2
[ΣH(p)fT

H(p, t)]dp

−2Ewt{
∫ p

0
wL(p)

d2

dp2
[ΣL(p)fT

L (p, t)]dp +
∫ 1

p
wH(p)

d2

dp2
[ΣH(p)fT

H(p, t)]dp}

will converge to

∫ p

0
2∆2

LΣL(p)fT
L (p, t)dp +

∫ 1

p
2∆2

HΣH(p)fT
H(p, t)dp ≥ 0.

8 On-the-job Human Capital Accumulation

On the job, workers and firms not only learn about their unknown innate skills, they also accumu-

late human capital. In reality, human capital accumulation is an ongoing, continuous process. The

longer the tenure of a worker, the higher her productivity. This monotonically increasing relation

between tenure and human capital experience is likely also to be concave. For modeling purposes,

here we consider a very simple form that captures this relation. With probability λ, a worker be-

comes transitions from being unexperienced to being experienced.22 Once a worker is experienced,

her productivity increases to µxy + ξx and the status of experience is complete information.23 Now

there are the same value functions for experienced workers as before W e
y .

rW e
y (p) = µy(p) + ξ(p)− rVy + Σe

y(p)W
e′′
y (p)− δW e

y (p)

22Having a continuous relation between tenure and human capital renders the system of differential equations into
a system of partial differential equations. Typically there is no solution. In the current setup, there is an additional
state (experienced versus unexperienced) and the model remains tractable.

23Observe that experience is worker dependent, but not firm dependent. While it is likely a realistic feature to have
experience dependent on the job type, the reason is that we would have a different level of experience for different
histories which makes the problem non-tractible.
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where ξ(p) = pξH + (1− p)ξL is the expected experience.24 For the unexperienced worker there is

now one additional value function. As before, there are unexperienced workers who are matched

with L firms, and who continue to match with an L firms; and there are those who match with H

firms both when unexperienced as well as when experienced. We denote those values by W u
LL, W u

HH .

There are now also some types p who match with an L firms when unexperienced and who switch

to an H firm when they become experienced, the value of which is denoted by W u
LH . This requires

that the reservation type of an experienced worker (pe) is lower than that of the unexperienced

worker (pu). We start from this premise and later verify that this is indeed the case. The value

functions then are:

rW u
yy(p) = µy(p)− rVy + Σu

y(p)W
u′′
yy (p) + λW e

y (p)− (δ + λ)W u
yy(p)

rW u
LH(p) = µL(p)− rVL + Σu

L(p)W
u′′
LH(p) + λW e

H(p)− (δ + λ)W u
LH(p)

Observe that even though experience is completely observable, it does affect the inference from

learning in the sense that the signal-to-noise ratio changes to (µHy + ξH − µLy − ξL). As a result,

Σy depends on experience u, e.

W u
yy(p) =

µy(p)− rVy

r + δ + λ
+ ku

y1p
1−αu

y (1− p)αu
y + ku

y2p
αu

y (1− p)1−αu
y

+
λ

(r + δ)(r + δ + λ)
[µy(p) + ξ(p)− rVy]

+
λ

(λ + δ + r)− (su
y )2

(se
y)2 (r + δ)

[ke
y1p

1−αe
y(1− p)αe

y + ke
y2p

αe
y(1− p)1−αe

y ]

W u
LH(p) =

µL(p)− rVL

r + δ + λ
+ ku

L1p
1−αu

L(1− p)αu
L + ku

L2p
αu

L(1− p)1−αu
L

+
λ

(r + δ)(r + δ + λ)
[µH(p) + ξ(p)− VH ]

+
λ

(λ + δ + r)− (su
L)2

(se
H)2 (r + δ)

[ke
H1p

1−αe
H (1− p)αe

H + ke
H2p

αe
H (1− p)1−αe

H ]

W e
y (p) =

µy(p) + ξ(p)− rVy

r + δ
+ ke

y1p
1−αe

y(1− p)αe
y + ke

y2p
αe

y(1− p)1−αe
y

where

αu
y =

1
2

+

√
1
4

+
2(r + δ + λ)

(su
y)2

≥ 1

αe
y =

1
2

+

√
1
4

+
2(r + δ)
(se

y)2
≥ 1

24In this section we maintain the earlier assumption that σH = σL = σ.
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There are now two cut-offs pu, pe. Since we just want to compare pu and pe, we can adopt the

following thought experiment. First, we assume that pu = pe = p. Then we can get two systems

of equations: one system is the value matching, smooth pasting and no-deviation conditions for

the unexperienced workers and the other one is for the experienced workers. Second, we can solve

∆V = VH − VL as what we did previously but now we can get two possible values for ∆V . Denote

them to be ∆V e and ∆V u. Notice that ∆V e and ∆V u are both increasing in the cutoff p. Finally,

we compare ∆V e and ∆V u under the assumption that pu = pe = p. If ∆V e > ∆V u, this means

that we should decrease pe or increase pu and hence pu > pe; on the contrary, if ∆V e < ∆V u, this

means that we should decrease pu or increase pe and hence pu < pe. We derive this in the Appendix

and can show this to hold when HC accumulation is not too different for H and L types.

Proposition 5 Assume supermodularity and ξH , ξL. Then pe < pu.

Proof. In Appendix.

With human capital accumulation, we can now characterize the entire equilibrium, including

wage schedules and the ergodic distribution of types. Even though there are types who gradually

learn they are of low productivity, wages need not decrease over the life cycle as they accumulate

human capital.

Turnover and Tenure. We express the expected future duration of a match by tenure τy(p).

Tenure relates inversely to turnover. τy(p) satisfies the following differential equation (see also

Moscarini 2005):

Σy(p)τ ′′y (p)− δp = −1,

with solutions:

τu
H(p) =

1
δ

{
1−

(
p

pu

)1/2−
√

1/4+2δ/(su
H)2 (

1− p

1− pu

)1/2−
√

1/4−2δ/(su
H)2

}
;

τu
L(p) =

1
δ

{
1−

(
p

pu

)1/2−
√

1/4−2δ/(su
L)2 (

1− p

1− pu

)1/2−
√

1/4+2δ/(su
L)2

}
;

τ e
H(p) =

1
δ

{
1−

(
p

pe

)1/2−
√

1/4+2δ/(se
H)2 (

1− p

1− pe

)1/2−
√

1/4−2δ/(se
H)2

}
;

τ e
L(p) =

1
δ

{
1−

(
p

pe

)1/2−
√

1/4−2δ/(se
L)2 (

1− p

1− pe

)1/2−
√

1/4+2δ/(se
L)2

}
.

An immediate implication of the Proposition above is the following:
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Proposition 6 (Tenure) Assume supermodularity and ξH , ξL. Then, τu
L(p) > τ e

L(p) for p < pe

and τu
H(p) < τ e

H(p) for p > pu. For p ∈ (pe, pu), there is a cutoff such that τu
L(p) < τ e

H(p) for p

higher than this cutoff and τu
L(p) > τ e

H(p) for p smaller than this cutoff.

For the lowest types p, tenure for the unexperienced worker is longer as the experienced workers

are more likely to be hired by an H firm given positive information revelation. The opposite is true

for the highest p: the unexperienced types face a higher cut-off type and will therefore upon bad

information be more likely to switch to an L firm. In the intermediate range, tenure depends on

how close p is to either of the cut-offs.

Wages. In our benchmark model without HC accumulation and despite learning, expected wages

of a worker are constant, no matter the tenure. This is due to the martingale assumption, i.e.,

that the expected posterior belief is equal to the prior p. In conjunction with the fact that wages

are linear in beliefs, i.e., wy(p) = µy(p) − rVy, also average wages in the economy are constant

irrespective of the distribution. At any point in time, the average belief is p0 and given linearity,

the average wage is w(p0).

This is not the case when there is HC accumulation. Now the both the expected wage of a

given worker and the average wage of a cohort are increasing over time. Since we
y(p) > wu

y (p) and

for an individual worker there is a transition rate from unexperienced into experienced of λ, over

time expected wages increase.

9 Robustness

9.1 Generalized Lévy Processes

One may suspect that our results are exclusively driven by the specific assumptions of the Brownian

motion. In the section, we illustrate that this is not the case by considering a generalized Lévy

process, i.e., a compound Poisson process. Let λxy denote the expected arrival rate of jumps for a

type x worker in a type y firm. Following Cohen and Solan (2009), the worker’s value function can

be written as:

Wy(p) = wy(p)dt+(1−rdt−δdt){[pλHy+(1−p)λLy]dtWy′(ph)+(1−[pλHy+(1−p)λLy]dt)Wy(p+dp)

where ph = pλHy

pλHy+(1−p)λLy
and y′ is the firm type which matches with worker ph. If no jump occurs,

the updating of the posterior belief in firm y follows:

dp = −p(1− p)(λHy − λLy)dt + p(1− p)sydZ̄.
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Then the value function could be further simplified as:

(r+δ+[pλHy+(1−p)λLy])Wy(p) = wy(p)+[pλHy+(1−p)λLy]Wy′(ph)−p(1−p)(λHy−λLy)W ′
y(p)+Σy(p)W ′′

y (p).

The no-deviation condition derived earlier still holds in this situation. The proof is similar and

is omitted here.

Lemma 9 To deter possible deviations, a necessary condition is:

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (50)

for any possible cutoff p.

In order to verify whether PAM is indeed an equilibrium, we need to solve this differential

equation. To be able to do so, consider the simplifying assumption that λLy = 0 and denote λHy

by λy. Then ph is always 1 and we have:

(r + δ + pλy)Wy(p) = wy(p) + pλyWH(1)− p(1− p)λyW
′
y(p) + Σy(p)W ′′

y (p).

This is a differential equation that we can actually solve explicitly. By guess and verify, we derive

that:

Wy(p) = Ay + Byp + ky1p
α1(1− p)1−α1 + ky2p

α2(1− p)1−α2

where Ay = µLy−rVy

r+δ , By = ∆y+λy(WH(1)−Ay)
r+δ+λy

and

α1 =
1
2

+
λy

s2
y

+

√

(
1
2

+
λy

s2
y
)2 +

2(r + δ)
s2
y

> 1 + 2
λy

s2
y

α2 =
1
2

+
λy

s2
y
−

√

(
1
2

+
λy

s2
y
)2 +

2(r + δ)
s2
y

< 0.

Suppose there is PAM, then from the value function we know that kL1 > 0, kL2 = 0 and kH1 = 0,

kH2 > 0. Furthermore, we have:

W ′
L(0) = BL =

∆L + λL(WH(1)−AL)
r + δ + λL

W ′
H(1) = BH =

∆H + λH(WH(1)−AH)
r + δ + λH

.

Convexity requires that BH > BL. We can rewrite the value functions as:

WL(p) = AL + BLp + kLpαL(1− p)1−αL

WH(p) = AH + BHp + kHp1−αH (1− p)αH
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where

αH =
1
2

+
λH

s2
H

+

√

(
1
2

+
λH

s2
H

)2 +
2(r + δ)

s2
H

> 1 + 2
λH

s2
H

αL =
1
2

+
λL

s2
L

+

√

(
1
2

+
λL

s2
L

)2 +
2(r + δ)

s2
L

> 1 + 2
λL

s2
L

.

Under PAM, at cutoff p, we must have:

WH(p) = WL(p) (Equal-value condition) (51)

W
′
H(p) = W

′
L(p) (Smooth-pasting condition) (52)

W ′′
H(p) = W ′′

L(p) (No-deviation condition) (53)

This immediately implies:

AH −AL +
αH(αL − 1)(BH −BL)p

αH(αL − 1)− (1− p)(αL − αH)
= 0.

Without loss of generality, we assume as before that µLL = rVL = 0 and we only have to

solve rVH . Furthermore, total differentiation implies that rVH is increasing in p. This enables us

to discuss the existence of PAM equilibrium without knowing the value of p since monotonicity

implies that rVH must be bounded by the values it takes for p at 0 and 1: rVH ∈ [µLH , µHH −∆L].

We can then establish the following result:

Proposition 7 Given the Lévy process, PAM is a stationary competitive equilibrium allocation

under strict supermodularity.

The proof is immediate if one notes that BH > BL for all p ∈ [0, 1], which follows from the fact

that rVH ∈ [µLH , µHH −∆L]. We need to pin down p from the distribution, but no matter p, we

can always find rVH and kL > 0, kH > 0 such that PAM is an equilibrium.

Notice also that with the Lévy process, beliefs are formed through Bayesian updating. We

conjecture that PAM will always be the competitive equilibrium allocation under strict supermod-

ularity for any stochastic process as long as there is Bayesian updating. This is because under

Bayesian learning, the belief updating process is always a martingale. Of course, establishing this

result for general information processes is impossible because it requires the explicit solution of the

differential equations for the value function, which generally does not exist.

9.2 Non-Bayesian Updating

Suppose instead that the belief updating is not a martingale. Then it must be generated by some

non-Bayesian learning process. We will now show for an example that the competitive equilibrium
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can be non-PAM even if there is supermodularity.

Suppose the belief updating process in firm y is given by: dp = λypdt for p < 1, with λy

a constant, and once p reaches 1, dp = 0. We may think p as kind of human capital. The

accumulation of human capital will stop once p reaches 1. The value function of a worker is given

by:

(r + δ)Wy(p) = wy(p) + λypW ′
y(p)

with solution:

Wy(p) = Cyp
r+δ
λy +

∆y

r + δ − λy
p +

µLy − rVy

r + δ
.

Suppose there is PAM, then

lim
p→1

WH(p) = WH(1) =
∆H

r + δ
p +

µLH − rVH

r + δ
,

which implies that:

CH = − λH∆H

(r + δ)(r + δ − λH)
.

At the cutoff p we have:

WH(p) = WL(p) (Equal-value condition) (54)

W
′
H(p) = W

′
L(p) (Smooth-pasting condition) (55)

It is easy to get rid of CL and find an equation for p:

∆L

r + δ
p +

µLL − rVL

r + δ
=

λL − λH

r + δ

∆H

r + δ − λH
(p)

r+δ
λH + (1− λL

r + δ
)

∆H

r + δ − λH
p +

µLH − rVH

r + δ

or
∆L −∆H

r + δ
p +

µLL − rVL

r + δ
=

λH − λL

r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] +

µLH − rVH

r + δ
.

Notice that PAM requires that
µLL − rVL

r + δ
>

µLH − rVH

r + δ

and
λH − λL

r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ] < 0

if λL > λH .

Furthermore, fix any p ∈ (0, 1) and λH > 0, if we let r + δ go to zero and λL go to infinity, then

it is immediate to see that

λH − λL

r + δ

∆H

r + δ − λH
[p− (p)

r+δ
λH ]→ −∞.
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If we make ∆L sufficiently close to ∆H , the equality cannot be held. This implies that PAM cannot

be an equilibrium if r + δ goes to zero, λL is sufficiently large and ∆L is sufficiently close to ∆H .

10 Conclusion

In this paper, we have proposed a model of the labor market that unifies sorting and a learning-

based theory of turnover. In equilibrium under supermodularity, workers with better posteriors

about their ability tend to sort into more productive jobs, and over time, their posterior converges

to that of the high type. As a result, turnover decreases over the life cycle. Even though wage

variation conditional on type decreases, the inequality in the cross section of a cohort increases.

This can explain the increase of observed wage variation in the data.

The main technical contribution of this paper is the role of sequential rationality in the presence

of competitively determined payoffs. The one-shot deviation principle in conjunction with endoge-

nous payoffs implies that the value function of the worker has a second derivative that is equal at

the cut-off type. As a result, we now have a condition at the cutoff in addition to the standard

value-matching (zero-th derivative), smooth-pasting (first derivative) which is one additional order

higher: the no-deviation condition.

What is possibly most surprising is that the result of positive sorting under supermodularity is

not determined by the speed of learning. In the trade-off between the learning speed and efficiency,

efficiency always takes the upper hand. As such, the equilibrium allocation does not depend on the

signal-to-noise ratio (the ratio of the average payoff gain, which measures the efficiency, over the

noise term). This seems to indicate in this competitive environment the sorting aspect dominates

the learning.
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Appendix

Proof of Lemma 2

Proof. The worker p ∈ (0, 1) always has the choice that stays in one firm y forever. Then the value
is µy(p)−rVy

r+δ . But obviously, this is not an optimal choice (Suppose not, then all of the workers will
stay in one type of firms and the market is not cleared). So we have that the equilibrium value
function Wy(p) must satisfy: Wy(p) > µy(p)−rVy

r+δ . This immediately implies:

Σy(p)Wy
′′(p) = (r + δ)Wy(p)− (µi(p)− rV i) > 0.

So the equilibrium value functions Wy convex for p ∈ (0, 1).

Proof of Lemma 3

Proof. Suppose workers with p ∈ [0, p) are employed by type y firm. This implies that Wy(p) =
µy(p)−rVy

r+δ + ky2pαy(1 − p)1−αy since 0 is included in the domain. It is easy to see that Wy
′(0) =

µHy−µLy

r+δ > 0 and since Wy is strictly convex, W ′
y(p) > 0 for all p ∈ [0, p). At p, worker will transfer

to type −y firm but smooth pasting condition implies W ′
−y(p) = W ′

y(p) > 0. Strict convexity
implies W ′

y′(p) > 0 so on and so forth. Therefore, we must have the equilibrium value functions
Wy are strictly increasing.

Proof of Claim 2

Proof. Under supermodularity, suppose the situation described by the claim is the case. Then we
have:

wH(p1) + ΣH(p1)W ′′
H(p1) = wL(p1) + ΣL(p1)W ′′

L1(p1)

and
wH(p2) + ΣH(p2)W ′′

H(p2) = wL(p2) + ΣL(p2)W ′′
L2(p2)

since
WH(p2) = WL2(p2) and WH(p1) = WL1(p1).

Using the expression for wH , wL and the fact that

W ′′
H(p2) = W ′′

L2(p2) and W ′′
H(p1) = W ′′

L1(p1),

we can get:

(∆H −∆L)(p2 − p1) =
s2
H − s2

L

s2
H

[ΣH(p1)W ′′
H(p1)− ΣH(p2)W ′′

H(p2)].

Notice that s2
H−s2

L
s2
H

= (∆H−∆L)(∆H+∆L)
(∆H)2 . Then the above equation can be rewritten as:

(∆H −∆L)(∆H + ∆L)
(∆H)2

(r + δ)[WH(p2)−WH(p1)] =
∆L

∆H
(∆H −∆L)(p2 − p1).

Meanwhile,
WH(p2)−WH(p1) > W ′

H(p1)(p2 − p1)
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by strict convexity and

W ′
H(p1) >

∆L

r + δ

from Lemma 5. These two inequalities imply:

(r + δ)[WH(p2)−WH(p1)] > ∆L(p2 − p1)

under strict supermodularity. Hence, finally we get: ∆H+∆L
∆H

< 1. Contradiction!
For the strict submodularity case, it suffices to relabel ‘H’ by ‘L’ and ‘L’ by ‘H’. The claim is

obviously correct given we have already proved the supermodularity result.

Derivation of the Boundary Conditions

Here, we just investigate the boundary conditions for case 1: p < p0. The derivation is similar for
case 2.

From
∂fy(p, t)

∂t
=

d2

dp2
[Σy(p)fy(p, t)]− δfy(p, t),

we should have:
∫ p

0
{ d2

dp2
[ΣL(p)fL(p)]− δfL(p)}dp = 0

and ∫ p0

p
{ d2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp +

∫ 1

p0

{ d2

dp2
[ΣH(p)fH(p)]− δfH(p)}dp = 0.

The above two equations give us:

d

dp
[ΣL(p)fL(p)]|p− = δ(1− π)

and
ΣH(p0)[f ′H(p0−)− f ′H(p0+)] =

d

dp
[ΣH(p)fH(p)]|p+ + δπ

since the market clearing conditions imply:
∫ p

0
fL(p)dp = 1− π

∫ 1

p
fH(p)dp = π

and there is continuity at p0:
fH(p0−) = fH(p0+).

Meanwhile, notice that inflow at p0 must be the same as δ, which implies that ΣH(p0)[f ′H(p0−)−
f ′H(p0+)] = δ. This immediately gives us the flow equation at p:

d

dp
[ΣL(p)fL(p)]|p− =

d

dp
[ΣH(p)fH(p)]|p+.
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Now apply similar logic and we can get:
∫ p

0
{p d2

dp2
[ΣL(p)fL(p)]− pδfL(p)}dp +

∫ 1

p
{p d2

dp2
[ΣH(p)fH(p)]− pδfH(p)}dp = 0.

Notice that ∫ p

0
pδfL(p)dp +

∫ 1

p
pδfH(p)dp = δp0

by the martingale property. Meanwhile, we still have: ΣH(p0)[f ′H(p0−)−f ′H(p0+)] = δ. Hence,after
some tedious algebra, we can get:

{p d

dp
[ΣL(p)fL(p)] + ΣL(p)fL(p)}|p− = {p d

dp
[ΣH(p)fH(p)] + ΣH(p)fH(p)}|p+

which gives us the boundary condition at p:

ΣH(p+)fH(p+) = ΣL(p−)fL(p−).

Proof of Proposition 1

Proof. First, from Equation (26), we have:

fL0 =
1− π

∫ p
0 pγL1(1− p)γL2dp

.

Second, from Equation (28), we can get:

fH2 = fH0(
p0

1− p0
)γH1−γH2 + fH1

Finally, from Equation (24) and (27), we can express fH0 and fH1 as functions of fL0:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηH fL0

and

fH1 = −ηL − ηH

2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηH fL0.

Here,

ηL =

√
1
4

+
2δ

s2
L

> ηH =

√
1
4

+
2δ

s2
H

> 1/2.

Next, we want to show that both fH0 and fH1 are decreasing in p.
We can rewrite fH0 as:

fH0 =
ηH + ηL

2ηH

s2
L

s2
H

(
p

1− p
)ηL−ηH

1− π
∫ p
0 pγL1(1− p)γL2dp

.

Notice that

(
p

1− p
)ηL−ηH =

∫ p

0
[(

p

1− p
)ηL−ηH ]′dp =

∫ p

0
(ηL − ηH)(

p

1− p
)ηL−ηH−1(

1
1− p

)2dp.
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Let G1(p) = pγL1(1− p)γL2 and G2(p) = ( p
1−p)ηL−ηH−1( 1

1−p)2. We have:

G1(p)
G2(p)

= p−
1
2+ηH (1− p)−

1
2−ηH

is increasing in p. Therefore, we must have:

(
p

1− p
)ηL−ηH

1− π
∫ p
0 pγL1(1− p)γL2dp

is decreasing in p25. So fH0 is decreasing in p.
Similarly, we can rewrite fH1 as:

fH1 = −ηL − ηH

2ηH

s2
L

s2
H

(
p

1− p
)ηL+ηH

1− π
∫ p
0 pγL1(1− p)γL2dp

.

Meanwhile
(

p

1− p
)ηL+ηH =

∫ p

0
(ηL + ηH)(

p

1− p
)ηL+ηH−1(

1
1− p

)2dp.

Let G3(p) = ( p
1−p)ηL+ηH−1( 1

1−p)2 and we have:

G1(p)
G3(p)

= p−
1
2−ηH (1− p)−

1
2+ηH

is decreasing in p. Therefore, we must have:

−(
p

1− p
)ηL+ηH

1− π
∫ p
0 pγL1(1− p)γL2dp

is decreasing in p and hence fH1 is also decreasing in p.
Now we can conclude

fH2 = fH0(
p0

1− p0
)γH1−γH2 + fH1

is also decreasing in p. Therefore, we can expressing fH0, fH1 and fH2 as ξ0(p), ξ1(p) and ξ2(p)
respectively such that ξ0

′ < 0, ξ1
′ < 0 and ξ2

′ < 0.
Hence, the market clearing condition 25 implies:

H(p) =
∫ p0

p
[ξ0(p)pγH1(1− p)γH2 + ξ1(p)pγH2(1− p)γH1 ]dp +

∫ 1

p0

ξ2(p)pγH2(1− p)γH1dp = π.

It is easy to see that H ′ < 0 since ξ0
′ < 0, ξ1

′ < 0 and ξ2
′ < 0. Therefore, there exists p ∈ (0, p0)

such that H(p) = π if and only if limx→0 H(x) > π and limx→p0 H(x) < π.
It is easy to verify that as p→ 0, fH0 = ξ0(p)→∞ and fH1 = ξ1(p)→ 0. We thus have:

lim
x→0

H(x)→∞ > π.

25Actually, we are using the result that if G2(p)
G1(p) is decreasing in p, then

R p
0 G2(p)dp

R p
0 G1(p)dp

will also be decreasing in p. This

is true because by the definition of Riemann integral,
R p

0
G1(p)dp and

R p

0
G2(p)dp could be written as the limit of

Riemann sum. The ratio of two Riemann sums is always decreasing in p since G2(p)
G1(p) is decreasing in p.
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Meanwhile, when p→ p0, it is obvious that H(p)→
∫ 1
p0

fH2pγH2(1− p)γH1dp. Notice that

fH2 = fH0(
p0

1− p0
)γH1−γH2 + fH1 →

s2
L

s2
H

(
p0

1− p0
)ηL+ηH

1− π∫ p0

0 pγL1(1− p)γL2dp

as p→ p0.
Therefore, limx→p0 H(x) < π if and only if:

s2
L

s2
H

(
p0

1− p0
)ηL+ηH

1− π∫ p0

0 pγL1(1− p)γL2dp

∫ 1

p0

pγH2(1− p)γH1dp < π,

which gives us the condition in the proposition. Moreover, since H is strictly decreasing, the
solution to H(x) = π must be at most one. This completes our proof of Proposition 1.

Proof of Corollary 1

Proof. It is also straightforward to prove Corollary 1 from the equation H(p;π, p0) = π. Obviously,
H is linear in (1− π). So as π increases, π/(1− π) increases and we have to decrease p to keep the
equation. On the other hand,

∂H

∂p0
= ξ0(p)pγH

1
0 (1− p0)γH

2 + ξ1(p)pγH
2

0 (1− p0)γH
1 − ξ2(p)pγH

2
0 (1− p0)γH

1

+
∫ 1

p0

∂ξ2(p)
∂p0

pγH
2 (1− p)γH

1 dp.

It is easy to verify that the first term is zero while the second term is negative. Hence H(p;π, p0)
is decreasing in p0 and we have to increase p to keep the equation as p0 increases.

The proof for the comparative statics for p > p0 case is similar and hence is omitted.

Proof of Proposition 2

Proof. First, from equation (36), we have:

fH0 =
π

∫ 1
p pγH2(1− p)γH1dp

.

Then Equations (35) and (38) imply:

fL1 =
ηL − ηH

2ηL

s2
H

s2
L

(
p

1− p
)−ηL−ηH fH0

and

fL2 =
ηL + ηH

2ηL

s2
H

s2
L

(
p

1− p
)ηL−ηH fH0.

Here,

ηL =

√
1
4

+
2δ

s2
L

> ηH =

√
1
4

+
2δ

s2
H

> 1/2.

It is easy to see that fH0, fL1, fL2 are increasing in p and hence fL0 = fL1 + fL2( p0
1−p0

)−2ηL is also
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increasing in p by Equation (39).
Hence, we can express fL0, fL1, fL2 as ξ0(p), ξ1(p) and ξ2(p) respectively such that ξ0

′ > 0,
ξ1
′ > 0 and ξ2

′ > 0.
Finally, the market clearing condition (37) implies:

H(p) =
∫ p0

0
ξ0(p)pγL1(1− p)γL2dp +

∫ p

p0

[ξ1(p)pγL1(1− p)γL2 + ξ2(p)pγL2(1− p)γL1 ]dp = 1− π.

Obviously, H(·) is strictly increasing, which guarantees the solution is unique if it exists and
limx→p0 H(x) ≤ 1− π will give us Equation (40) in Proposition 2.

Proof of Lemma 6

Proof. Here we will try to prove a generalized version of Lemma 6. More specifically, we want to
show that Lemma 6 is true for any combination of (sH , sL).

First of all, we want to show all of the one-shot deviations are ruled out by our no-deviation
condition as dt→ 0.

Under strict supermodularity, the value functions are given by:

WL(p) =
wL(p)
r + δ

+ kLpαL(1− p)1−αL

and
WH(p) =

wH(p)
r + δ

+ kHp1−αH (1− p)αH .

Let
GL(p) = kLpαL(1− p)1−αL(

αL − p

p(1− p)
) > 0

and
GH(p) = kHp1−αH (1− p)αH (

1− αH − p

p(1− p)
) < 0

be the first derivatives for the non-linear parts of the value functions. Smooth pasting at p implies:

∆L

r + δ
+ GL(p) =

∆H

r + δ
+ GH(p).

For p < p, define:

ZL(p) = lim
dt→0

W̃H(p)−WL(p)
dt

= wH(p)− wL(p) + [ΣH(p)− ΣL(p)]W ′′
L(p)

= wH(p)− wL(p) +
s2
H − s2

L

s2
L

ΣL(p)W ′′
L(p)

= wH(p)− wL(p) +
s2
H − s2

L

s2
L

((r + δ)WL(p)− wL(p)).

Obviously, we have limp↗p ZL(p) = 0 from Lemma 9. If we can show that ZL(p) is increasing
in p as p increases from 0 to p, then we are done. Notice that

Z ′L(p) = ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)W ′
L(p)
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and W ′
L(p) lies between ∆L

r+δ and ∆L
r+δ + GL(p) for p ∈ [0, p].26

If s2
H ≥ s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)
∆L

r + δ
= ∆H −∆L > 0;

if s2
H < s2

L, then

Z ′L(p) ≥ ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆L

r + δ
+ GL(p)]

= ∆H −
s2
H

s2
L

∆L +
s2
H − s2

L

s2
L

(r + δ)[
∆H

r + δ
+ GH(p)]

=
s2
H

s2
L

(∆H −∆L) +
s2
H − s2

L

s2
L

(r + δ)GH(p) > 0.

Therefore, we conclude that Z ′L(p) > 0 for both sH ≥ sL and sH < sL cases, which implies
that ZL(p) < 0 for all p < p and hence there is no profitable one-shot deviation as dt is sufficiently
small.

For p > p, similarly define:

ZH(p) = lim
dt→0

W̃L(p)−WH(p)
dt

= wL(p)− wH(p) + [ΣL(p)− ΣH(p)]W ′′
H(p). (56)

Under PAM equilibrium, we have ZH(p) = 0 from Lemma 9. Secondly, notice that

ZH(p) = wL(p)−wH(p)+[ΣL(p)−ΣH(p)]W ′′
H(p) = wL(p)−wH(p)+

s2
L − s2

H

s2
H

((r+δ)WH(p)−wH(p)),

with W ′
H(p) lies between ∆H

r+δ + GH(p) and ∆H
r+δ for p ∈ [p, 1].27 Hence, if s2

L > s2
H

Z ′H(p) ≤ ∆L −∆H < 0;

and if s2
L ≤ s2

H

Z ′H(p) ≤ ∆L −
s2
L

s2
H

∆H +
s2
L − s2

H

s2
H

(r + δ)(
∆L

r + δ
+ GL(p)) < 0.

Therefore, Z ′H(p) < 0 for both sH ≥ sL and sH < sL cases and hence ZH(p) < 0 for all p > p.
Second, since there is no one-shot deviation for any p, obviously there will be no any other

deviation for any p. Consider any deviation starting at p. Then the above result says it is better
not to deviate for at least dt time. Suppose after dt, we achieve a new p′. Similarly, there should

26This comes from the fact that

GL(p) = kL(
p

1− p
)αL−1(

αL − p
1− p

)

is increasing in p.
27This comes from the fact that

GH(p) = kH(
1− p

p
)αH−1(

1− αL − p
p

)

is decreasing in p.
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be no deviation for at least dt′ time. Iterate using the same logic and we can see that any deviation
is not profitable.

Proof of Theorem 4

Proof. We establish the proof under supermodularity. The same logic goes through for submodu-
larity. Now consider the following three steps: 1. for N = 3 we show that the planner can increase
output when changing the cutoffs; 2. for N = 3 no allocation dominates PAM; 3. For any N , the
allocation with N − 2 cutoffs dominates that with N cutoffs.

1. For N = 3, output increases from changing the cutoffs
Consider any allocation with three cutoffs 0 < p

3
< p

2
< p

1
< 1 such that workers with

p ∈ (p
1
, 1] and p ∈ (p

3
, p

2
) are allocated to the high type firms while workers with p ∈ [0, p

3
) and

p ∈ (p
2
, p

1
) are allocated to the low type firms. Furthermore, denote the ergodic density function

for this allocation to be fy and for p close to 0, let the density function be fL(p) = f̃L0pγL(1−p)1−γL

while the ergodic density function for p close to 1 is denoted by fH(p) = f̃H0p1−γH (1− p)γH where
f̃L0 and f̃H0 are constants. Correspondingly, denote the ergodic density under the PAM allocation
to be f∗y with the unique cutoff p.

1. Suppose the planner changes the allocation by moving the interval to the left: (p
2
, p

1
) →

(p′
2
, p′

1
) where (p′

2
, p′

1
) = (p

2
− ε2, p1

− ε1). Choose ε1, ε2 such that market clearing is satisfied:
∫ p

1

p′
1

fH(p)dp =
∫ p

2

p′
2

fH(p)dp.

2. Given the new cutoffs, the Kolmogorov forward equation will pin down a new density f̂L in the
interval (p′

2
, p′

1
). Globally, we need to satisfy market clearing and the martingale condition.

The market clearing condition for the H types is satisfied by the construction. For the L type
firms it requires that: ∫ p′

1

p′
2

f̂L(p)dp =
∫ p

1

p
2

fL(p)dp.

The martingale condition requires that EΩ′
H

p + EΩ′
L
p = p0 or:28

∫ p3

0
pfL(p)dp +

∫ p′2

p3

pfH(p)dp +
∫ p′1

p′2

pf̂L(p)dp +
∫ 1

p′1

pfH(p)dp = p0.

3. Then comparing the original allocation to the new one, we get

EΩ′
H

p− EΩH p =
∫ p

1

p′
1

pfH(p)dp−
∫ p

2

p′
2

pfH(p)dp > 0

since by construction ∫ p
1

p′
1

fH(p)dp =
∫ p

2

p′
2

fH(p)dp

28Things are slightly different if we have p0 ∈ (p′2, p
′
1). Then we have four new distribution coefficients but we also

have two new equations: f̂L(p0−) = f̂L(p0+) and ΣL(p0)(f̂
′
L(p0−)− f̂ ′L(p0+)) = δ.
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and the interval [p′
2
, p′

1
] is strictly to the left of [p

2
, p

1
]. From Lemma 10 below, EΩ′

H
p > EΩH p

implies the planner prefers allocation Ω′ over Ω.

4. Similarly, we can consider another transform which is to move the interval to the right:
(p

3
, p

2
) → (p′

3
, p′

2
) where (p′

3
, p′

2
) = (p

3
+ ε2, p2

+ ε1). This can also lead to output increases.
Keep on doing such transformations and eventually, we can have both the distance and the
measure between p′

3
and p′

1
are arbitrarily small.

2. For N = 3, no allocation dominates PAM

1. We now show by contradiction that an allocation with p′
3

and p′
1

arbitrary close is dominated
by the PAM allocation. Suppose on the contrary that there exists p̃1, p̃2 and p̃3 which
dominates the PAM allocation. Then by Lemma 10, we must have:

∫ 1

p̃1

pfH(p)dp +
∫ p̃2

p̃3

pfH(p)dp >

∫ 1

p
pf∗H(p)dp (57)

and ∫ p̃1

p̃2

pfL(p)dp +
∫ p̃3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp. (58)

Let p̂1 and p̂3 be defined as:
∫ p̂3

0
fL(p)dp = (1− π) and

∫ 1

p̂1

fH(p)dp = π.

Then by definition we should have:
∫ 1

p̂1

pfH(p)dp >

∫ 1

p̃1

pfH(p)dp +
∫ p̃2

p̃3

pfH(p)dp >

∫ 1

p
pf∗H(p)dp

and ∫ p̂3

0
pfL(p)dp <

∫ p̃1

p̃2

pfL(p)dp +
∫ p̃3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp.

2. The next step of the proof requires Lemma 11 below. The Lemma implies that we should
have p̃3 < p̂3 < p < p̂1 < p̃1 to guarantee that

∫ 1

p̂1

pfH(p)dp >

∫ 1

p
pf∗H(p)dp and

∫ p̂3

0
pfL(p)dp <

∫ p

0
pf∗L(p)dp.

Therefore, inequalities (57) and (58) only hold when p̃1 − p̃3 > p̂1 − p̂3 > 0 which contradicts
that fact that we can make the distance between p̃1 and p̃3 arbitrarily small while still keeping
the inequalities (57) and (58) (Notice that by making distance between p̃1 and p̃3 smaller and
smaller, we can increase the aggregate payoff and make the allocation with N = 3 cutoffs even
better). Hence, no allocation with N = 3 cutoffs could be better than the PAM allocation in
terms of aggregate surplus.

3. For N cutoffs, the allocation is dominated by any allocation with N − 2 cutoffs.
Consider three adjacent cutoffs p

n−1
, p

n
and p

n+1
such that workers with p ∈ (p

n−1
, p

n−2
) and

p ∈ (p
n+1

, p
n
) are allocated to high type firms; workers with p ∈ (p

n
, p

n−1
) and p ∈ (p

n+2
, p

n+1
)
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are allocated to low type firms. Suppose the density functions are such that the market clears and
the expectation of p’s is p0. Then we just need to choose ε such that

∫ p
n−1

p
n−1

−ε
fH(p)dp =

∫ p
n

p
n+1

fH(p)dp.

Now p
n−1

, p
n

and p
n+1

converge to p
n−1

− ε but pn+2 is kept to be the same. The market clearing
condition requires that

∫ p
n−1

−ε

p
n+2

f̃L(p)dp =
∫ p

n−1

p
n

fL(p)dp +
∫ p

n+1

p
n+2

fL(p)dp.

Meanwhile, the martingale condition requires that:
∫ 1

p
1

pfH(p)dp + · · · +
∫ p

n−2

p
n−1

−ε
pfH(p)dp +

∫ p
n−1

−ε

p
n+2

pf̃L(p)dp + · · · +
∫ p

N

0
pfL(p)dp = p0.

We can also solve the two coefficients from these two equations and no other conditions are
needed. As before,

EΩH p =
∫

ΩH

pfH(p)dp

must become higher and this allocation with N − 2 cutoffs will generate a higher aggregate payoff.

Finally, by the standard induction argument, we can conclude that the PAM allocation with
one cutoff dominates any allocation with N ≥ 3 cutoffs in aggregate surplus.

Lemma 10

Lemma 10 Consider two possible allocations with ergodic density functions fH(p), fL(p) (al-
location 1) and f̃H(p), f̃L(p) (allocation 2) respectively. Then if and only if

∫
ΩH

pfH(p)dp >
∫
Ω̃H

pf̃H(p)dp or alternatively,
∫
ΩL

pfL(p)dp <
∫
Ω̃L

pf̃L(p)dp, we have allocation 1 must be bet-
ter than the allocation 2. Here, ΩH (Ω̃H) is the set of ps that matches with high type firms for
allocation 1 (2) and vice versa.

Proof. The total expected surplus for allocation 1 could be written as:

S =
∫

ΩH

(∆Hp + µLH)fH(p)dp +
∫

ΩL

(∆Lp + µLL)fL(p)dp.

Notice that we always have:
∫
ΩH

fH(p)dp = π and
∫
ΩL

fL(p)dp = 1 − π. Hence, the total
expected surplus for allocation 1 could be rewritten as:

S1 =
∫

ΩH

∆HpfH(p)dp + πµLH +
∫

ΩL

∆LpfL(p)dp + (1− π)µLL.

The martingale property implies that the expectation of p is always p0, which implies that
∫

ΩH

pfH(p)dp +
∫

ΩL

pfL(p)dp = p0.

Based on this fact, we can furthermore rewrite S1 as:
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S1 = (∆H −∆L)
∫

ΩH

pfH(p)dp + ∆Lp0 + πµLH + (1− π)µLL.

And similarly,

S2 = (∆H −∆L)
∫

Ω̃H

pfH(p)dp + ∆Lp0 + πµLH + (1− π)µLL.

Therefore, S1 > S2 if and only if
∫
ΩH

pfH(p)dp >
∫
Ω̃H

pf̃H(p)dp or alternatively,
∫
ΩL

pfH(p)dp <
∫
Ω̃L

pf̃L(p)dp.

Lemma 11

Lemma 11 Let p̂1 be such that
∫ 1
p̂1

fH(p)dp = π, then
∫ 1
p̂1

pfH(p)dp is increasing in p̂1. Let p̂3 be

such that
∫ p̂3

0 fL(p)dp = (1− π), then
∫ p̂3

0 pfL(p)dp is also increasing in p̂3.

Proof. We just prove the case that p̂1 > p0. The other cases are similar. From
∫ 1

p̂1

pfH(p)dp =
∫ 1

p̂1

p(
d2

dp2
[ΣH(p)fH(p)]− δfH(p))dp

we have:
∫ 1

p̂1

pfH(p)dp = πp̂1 +
πp̂1(1− p̂1)
ηH + p̂1 − 1

=
πp̂1(ηH + 1

2)
ηH + p̂1 − 1

2

is increasing in p̂1 since

ηH =

√
1
4

+
2δ

s2
y

>
1
2
.

Proof of Lemma 8

Proof. First of all, as t goes to T and as T goes to infinity, we have:

d2

dp2
[Σy(p)fT

y (p, t)]

goes to
Σy(p)fT ′′

y (p, t) + s2
yp(1− p)(1− 2p)fT ′

y (p, t).

We actually have to consider three cases:

1. p = 1/2. This implies that fT ′′
y (p, t) has to go to zero. And by the Taylor expansion, for any

p < p and p sufficiently close to p,

fT
L (p, t) = fT

L (p, t) + fT ′
L (p, t)(p− p)

goes to zero. This implies that fT ′
L (p, t) goes to zero. Similarly, we have fT ′

H (p, t) goes to zero.
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2. p < 1/2. This implies that fT ′
y (p, t) and fT ′′

y (p, t) have opposite signs. Now consider any
p < p and p sufficiently close to p, then

fT
L (p, t) = fT

L (p, t) + fT ′
L (p, t)(p− p) +

1
2
fT ′′

L (p, t)(p− p)2

should go to zero. This can only happen if

lim
t→T, T→∞

fT ′
L (p, t) = fT ′′

L (p, t) = 0.

From equation (46), it is immediately to see that fT ′
H (p, t) should also go to zero.

3. p > 1/2. The proof is similar to the proof for case 2.

On the Job Human Capital Accumulation

Under the assumption of pu = pe = p, the value functions could be written down as:

W u
y (p) =

µy(p)− Vy

r + δ + λ
+ ku

y1p
1−αu

y (1− p)αu
y + ku

y2p
αu

y (1− p)1−αu
y

+
λ

(r + δ)(r + δ + λ)
[µy(p) + ξ(p)− Vy]

+
λ

(λ + δ + r)− (su
y )2

(se
y)2 (r + δ)

[ke
y1p

1−αe
y(1− p)αe

y + ke
y2p

αe
y(1− p)1−αe

y ]

W e
y (p) =

µy(p) + ξ(p)− Vy

r + δ
+ ke

y1p
1−αe

y(1− p)αe
y + ke

y2p
αe

y(1− p)1−αe
y

where

αu
y =

1
2

+

√
1
4

+
2(r + δ + λ)

(su
y)2

≥ 1

αe
y =

1
2

+

√
1
4

+
2(r + δ)
(se

y)2
≥ 1

Notice that W u
y (p) could be further written as:

W u
y (p) =

µy(p)− Vy

r + δ + λ
+ ku

y1p
1−αu

y (1− p)αu
y + ku

y2p
αu

y (1− p)1−αu
y

−
λ

(su
y )2

(se
y)2

(r + δ + λ)[(λ + δ + r)− (su
y )2

(se
y)2 (r + δ)]

[µy(p) + ξ(p)− Vy]

+
λ

(λ + δ + r)− (su
y )2

(se
y)2 (r + δ)

W e
y (p)
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Similarly,
W e

L(p) = W e
H(p), W e′

L (p) = W e′
H (p), W e′′

L (p) = W e′′
H (p)

would imply:

Ṽ e
H = (µLH − µLL) +

αe
H(αe

L − 1)(∆H −∆L)p
αe

H(αe
L − 1)− (1− p)(αe

L − αe
H)

.

And from
W u

L(p) = W u
H(p), W u′

L (p) = W u′
H (p), W u′′

L (p) = W u′′
H (p),

we can get another equilibrium payoff Ṽ u
H as:

Ṽ u
H = (µLH −

AL

BL

BH

AH
µLL)− BH

AH

λξL

r + δ + λ
(
1−AH

BH
− 1−AL

BL
)

+
BH

AH

αu
H(αu

L − 1)(DH −DL)p
αu

H(αu
L − 1)− (1− p)(αu

L − αu
H)

,

where
DH =

AH

BH
∆H −

1−AH

BH

λ∆ξ

r + δ + λ

DL =
AL

BL
∆L −

1−AL

BL

λ∆ξ

r + δ + λ

AH = 1− (su
H)2

(se
H)2

BH = (λ + δ + r)− (su
H)2

(se
H)2

(r + δ)

AL = 1− (su
L)2

(se
L)2

BL = (λ + δ + r)− (su
L)2

(se
L)2

(r + δ).

Proof of Proposition 5

Proof. Supermodularity is equivalent to ∆H > ∆L, and ξH , ξL is equivalent to ∆ξ → 0. The
proof cand be divided into three parts. We want to show:

1.
(µLH −

AL

BL

BH

AH
µLL)− BH

AH

λξL

r + δ + λ
(
1−AH

BH
− 1−AL

BL
) < (µLH − µLL)

2.
BH

AH
(DH −DL) < ∆H −∆L

and

3.
αu

H(αu
L − 1)p

αu
H(αu

L − 1)− (1− p)(αu
L − αu

H)
<

αe
H(αe

L − 1)p
αe

H(αe
L − 1)− (1− p)(αe

L − αe
H)

.

First of all, notice that (su
H)2

(se
H)2 >

(su
L)2

(se
L)2 since ∆H > ∆L. And it is easy to see that AH

BH
< AL

BL
and

1−AH
BH

> 1−AL
BL

because of that. Hence we can get the first two inequalities.
For the last one, we can just compare:
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αu
H(αu

L − 1)[αe
H(αe

L − 1)− (1− p)(αe
L − αe

H)]

and
αe

H(αe
L − 1)[αu

H(αu
L − 1)− (1− p)(αu

L − αu
H)].

Notice this is equivalent to compare αu
H(αu

L − 1)(αe
L − αe

H) and αe
H(αe

L − 1)(αu
L − αu

H). From
the expressions of αs, we have:

(αe
L − αe

H)(αe
L + αe

H − 1) = 2(r + δ)[
σ2

(∆L + ∆ξ)2
− σ2

(∆H + ∆ξ)2
]

and

(αu
L − αu

H)(αu
L + αu

H − 1) = 2(r + δ + λ)[
σ2

∆2
L

− σ2

∆2
H

].

Hence, when ∆ξ = 0, we only need to compare:

(r + δ)αu
H(αu

L − 1)(αu
L + αu

H − 1)

and
(r + δ + λ)αe

H(αe
L − 1)(αe

L + αe
H − 1).

Meanwhile, we have:

(r + δ)αu
H(αu

L − 1)αu
L = (r + δ)αu

H
2(r + δ + λ)

∆2
L

> (r + δ + λ)αe
H(αe

L − 1)αe
L = (r + δ + λ)αe

H
2(r + δ)

∆2
L

and

(r + δ)αu
H(αu

L − 1)(αu
H − 1) = (r + δ)(αu

L − 1)
2(r + δ + λ)

∆2
H

> (r + δ + λ)αe
H(αe

L − 1)(αe
H − 1) = (r + δ + λ)(αe

L − 1)
2(r + δ)

∆2
H

since αu
y > αe

y. This implies:

αu
H(αu

L − 1)(αe
L − αe

H) > αe
H(αe

L − 1)(αu
L − αu

H)

and therefore,

αu
H(αu

L − 1)p
αu

H(αu
L − 1)− (1− p)(αu

L − αu
H)

<
αe

H(αe
L − 1)p

αe
H(αe

L − 1)− (1− p)(αe
L − αe

H)
.

Then Ṽ u
H < Ṽ e

H , and as a result pe < pu. QED.
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