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Abstract

In this paper we estimate the canonical competitive search model of Moen (1997). In

addition, likelihood ratio tests are developed to test several equilibrium conditions that differ-

entiates competitive search from other types. The results fail to reject that workers direct their

search, and to sub-markets or firms with a particular level of productivity, while posting (i.e.

efficiency via Hosios (1990)) is rejected in three of the six industries considered.
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1 Introduction

Models with directed search state that workers who wait longer for a job are compensated with

higher wages. In addition, firms post wages to maximize their profits. As a result of directed search

with posting, the competitive search model delivers an efficient allocation of resources, i.e., the

Hosios condition is satisfied. In the standard random search environment, however, unemployment

is typically inefficient and therefore may be improved with policies such as a minimum wage,

hiring subsidies, and so on. This paper tests the restrictions implied by the competitive search

model and, in turn, its implications.

The competitive search model of Moen (1997) is estimated using maximum likelihood estima-

tion (MLE). In particular, the likelihood function incorporates wage and unemployment duration

data taken from the Current Population Survey (CPS), job vacancies from the Job Openings and

Labor Turnover Survey (JOLTS), and Internal Revenue Service (IRS) tax data on corporate earn-

ings. The estimation strategy follows the work of Eckstein and Wolpin (1995) and Flinn (2006) in

terms of constructing the likelihood function. In addition, the estimation is performed on aggregate

U.S. data as well as disaggregated by major industry classification.

We test the restrictions imposed by the competitive search model, or equilibrium conditions,

using likelihood ratio tests. The likelihood ratio tests fail to reject that workers direct their search

to sub-markets with a particular level of productivity; while posting (i.e. efficiency via Hosios

(1990)) is rejected in three of the six industries considered as well as in the aggregate.

The paper also makes several other methodological contributions. First, earlier papers in this

line of research, such as Flinn and Heckman (1982) make a parametric assumption on the distribu-

tion of productivity (almost universally a log-normal distribution) in order to identify the param-

eters of the model. We take a different route and use conditions from the directed search model

with multiple markets, which introduces a new identifying restriction–that people are indifferent

between searching in different markets. As a result, we estimate a non-parametric productivity dis-

tribution using a semi-parametric approach. Second, the Cobb-Douglas matching function, and,

in particular the elasticity of the matching function, has been a difficult object to estimate because

the arrival rate of jobs and the number of unemployed individuals is not enough to identify the

elasticity. Of course, this is a key parameter if one wishes to test for efficiency in terms of the

Hosios condition. We provide a new approach by introducing vacancy data from JOLTS that can
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directly identify the elasticity of the matching function, without having to identify it indirectly

from a restriction in the model or variation in the minimum wage as in Flinn (2006).

The findings are important for several reasons. First and foremost, we are testing whether effi-

ciency exists, a property inherent in the competitive search literature as outlined in Moen (1997).

The test is also critical to the bargaining literature as discussed in Pissarides (2000). If we fail to

reject efficiency, then our results not only provide support for further research in the area but also

have implications for policies aimed at distorting the bargaining power between workers and firms,

as discussed in Flinn (2006).

Second, we test whether individuals direct their search to the best alternatives. The literature

on directed search is inherently related to the matching process and thus we contribute to the inves-

tigation related to the form of the matching function as well as how it occurs (refer to Rogerson,

Shimer, and Wright (2005) for surveys).

In relation to previous work on the estimation of search models, our work stands apart from

Flinn and Heckman (1982), Bowlus, Kiefer, and Neumann (1995) and others who use the low-

est wage (which is often trimmed) to estimate the reservation wage. Furthermore, our work has

eliminated the necessity of assuming a parametric distribution of productivity and thus is free of

mispecification regarding its form. In this regard, this paper is more similar to Bontemps, Robin,

and Berg (2000) and Postel-Vinay and Robin (2002) but distinctly different from papers such as

Eckstein and Wolpin (1995) or Engelhardt and Fuller (2009). Finally, we are the only paper, to our

knowledge, that structurally estimates a competitive or directed search model; however, we note

the careful calibration of Kurt (2008).

2 Model

We use the standard competitive search model based on Moen (1997) including the extension of

heterogeneous workers. In order to understand the key features of the model, we briefly highlight

them here, with little discussion. There is a continuum of risk neutral workers and firms with

the number of workers normalized to one, who discount at rate r. The labor market is subject to

search-matching frictions. The flow of hires is governed by an aggregate matching function, x(u,v),

where u is the measure of unemployed workers actively looking for jobs and v is the measure of

vacant jobs. We assume a constant returns to scale (CRS) matching function and will focus on the
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Cobb-Douglas form x(v,u) = u1−ηvη .1 Following the standard terminology, we define θ ≡ v/u

as labor market tightness. Each vacancy is filled according to a Poisson process with arrival rate
x(U,V )

V ≡ q(θ). Similarly, each unemployed worker finds a job according to a Poisson process with

arrival rate x(U,V )
U = θq(θ)≡ p(θ). When a match occurs, the worker-firm pair begins producing

immediately, generating output, y. Filled jobs receive negative idiosyncratic productivity shocks,

with a Poisson arrival rate s, that render matches unprofitable.

One of the key components of competitive search is that workers direct their search to the most

attractive opportunities. Some competitive search models assume firms post wages and workers

direct their search to firms. Alternatively, Moen (1997) assumes the existence of sub-markets

with firms entering and committing to pay a particular wage determined by a market-maker and

workers direct their search to the most attractive sub-market. However, as noted in Rogerson et al.

(2005), “...these approaches are equivalent in the sense that they give rise to the same equilibrium

conditions (within the competitive search literature)” (p. 973). We follow Moen (1997) and present

the results in terms of sub-markets.

In each sub-market unemployed workers and firms with a vacancy search for each other. The

number of matches that occur in sub-market “i” is governed by the instantaneous matching function

x(ui,vi) where ui is the mass of unemployed workers and vi is the mass of vacant firms in the sub-

market.

We assume workers are heterogeneous with respect to their value of leisure, z j for j ∈ {1, ..,m}.

The Bellman equations for unemployed and employed states are given as:

rU j = z j + p(θi)(Ei j−U j) (1)

rEi j = wi j + s(Ei j−U j), (2)

for market i and worker j, where wi j is the wage paid to worker j in market i. Eq. 1 states that

the flow value of being unemployed, U j, is equal to the value of leisure plus the probability of

finding a job times the capital gain from switching states. Note that it is conditional on worker

type but not on the sub-market because workers enter the sub-market with the highest expected

income. Thus, all existing sub-markets must result in the same value of unemployment for a type-

1Others could be considered such as those introduced in Burdett, Shi, and Wright (2001) or Albrecht, Gautier, Tan,
and Vroman (2004). Petrongolo and Pissarides (2001) provides a broader summary.
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j individual. Eq. 2 states that the flow value of being employed is given by the wage rate plus the

probability of being separated times the capital loss associated with the change from employment

to unemployment. Using the Bellman equations we can derive a relationship between the duration

of unemployment and the wage. Specifically,

p(θi) =
rU j− z j

wi j− rU j
(r + s). (3)

In other words, if the wage is low, workers must find jobs at a relatively higher rate to make it

beneficial to enter such a market. This condition is not present in the random search model and

will be tested in Section 3. In particular, if this constraint holds for more than one (p(θi),wi j) pair,

then it provides strong evidence that workers direct their search rather than search randomly. If

not, workers might be searching randomly and the differences in arrival rates are due to differences

in search intensity.

The second relationship used in comparing the two models comes from the efficiency condition,

that occurs due to the decisions by firms of what wage to post. The competitive search model

assumes firms draw a productivity from a discrete distribution F with support y1, ...,yn. Once

drawn, they choose a sub-market to enter that maximizes profits (maximization occurs because

competition is assumed between market-makers). We refer to Moen (1997) for the proof, but the

general result is

wi j = βyi− (1−β )rU j, (4)

where β is the “bargaining” weight of the worker. Alternatively, the random search model with

bargaining assumes workers search and at the time of a match draw a match specific productivity

from a distribution, F , and split the surplus via Nash bargaining. However, it turns out that the way

in which workers and firms split the surplus is identical to (4). The key difference is that posting

results in efficiency, i.e., β = η . In other words, the bargaining weight equals the elasticity of the

matching function. Therefore, the competitive search model with posting is “nested” within the

random search model with bargaining and testing whether β = η is a test of whether the labor

market allocates resources efficiently.

The final equilibrium condition that differentiates the two models concerns worker flows.

Specifically, the flow of workers into a particular employment state must equal the flow out. In
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any model with heterogeneous arrival rates, this implies

n

∑
i

ui p(θi) = es, (5)

where e is the mass of employed workers. However, competitive search makes a more restrictive

assumption–that workers search in different markets that contain only one wage. Therefore, the

flow condition is given as:

ui p(θi) = fies, (6)

for all i where fi is the probability mass function of F .

Although we do not provide a proof of existence nor characterize the equilibrium, we note

Proposition 5 on p. 403 in Moen (1997). Specifically, it states two important results for our work:

1. “In any equilibrium with heterogeneous firms, the wage in all sub-markets joined by firms

with productivity yi is strictly greater than the wage in sub-markets joined by firms with

productivity y j < yi”

2. “Workers with unemployment income i join sub-markets with a strictly higher wage than

workers with unemployment income z j < zi.”

These two points are key because they imply a sub-market will contain only one type of worker

and one type of productivity.

To sum up, the three equilibrium conditions (3), (4) and (5)/(6) distinguish the competitive

search model. In addition, if transitions happen at a Poisson rate and sub-markets contain only

one type of worker and productivity, then we are able to estimate and test these restrictions using

duration and wage data taken from the CPS, job vacancies from JOLTS and income data from the

IRS.

3 Estimation

Using the steady-state conditions enables the use of cross section data to estimate a dynamic model.

We use MLE to identify the parameters, conditional on the data, and do so for aggregate U.S. data

as well as each major industrial classification. In this section we describe the data sources, derive
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the likelihood function, discuss identification and provide the estimates of the model’s parameters.

With these estimates, we test whether the restrictive assumptions inherent in the competitive search

model hold.

3.1 Data

We use the March, 2006 CPS to get the duration of unemployment, t, hourly wages, w, and major

industry codes. To identify the surplus-splitting rule given by Eq. 4, we follow a similar method-

ology as Flinn (2006) who uses the McDonald’s Corporation Consolidated Statement of Income

to measure the fraction of firm surplus going to workers. Instead, however, we use 2006 IRS data

on corporate tax returns where we obtain a breakdown by industry of firm income and employee

earnings.2 We use that data to construct estimates by industry of labor’s share of net income, π̂ .

We use JOLTS data for March, 2006 to capture the number of vacancies per labor force participant

by industry, v̂, which is used to identify the elasticity of the Cobb-Douglas matching function.

Regarding the estimates by industry, we consider six out of the seven classifications available in

JOLTS.3 Finally, note that the estimation method does not allow an independent estimate of r,

therefore, we set r = 0.05 annually.

Table 1 provides the key descriptive statistics by industry. In addition, we have included other

demographic information available in the CPS as well as the unemployment rate, û.

3.2 Likelihood Function

The likelihood function primarily incorporates two types of data: the length of unemployment, t,

and wages, w, where each enters independently. Unemployed workers contribute t to the likelihood

function. That is, conditional on being unemployed and in market i, the rate a worker transitions

to employment is p(θi)≡ pi and the duration of unemployment is distributed as:

fu(t|u, i) = piexp(−pit), (7)

which is the survivor function divided by the average time unemployed. Conditional on being

unemployed, duration is given by:

2See http://www.irs.gov/taxstats/index.html for more information.
3We exclude the “government” classification because of the lack of IRS data.
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fu(t|u) =
n

∑
i=1

ui

u
fu(t|u, i) (8)

where n is the number of discrete markets. In other words, a worker’s duration of unemployment

in market i is fu(t|u, i) while the probability of being in market i is ui
u .4 Given that the likelihood

of being unemployed is p(u) = u, the contribution of an unemployed observation becomes

f (t,u) =
n

∑
i=1

ui piexp(−pit), (9)

where ui and pi will be estimated independently even though ui is endogenous within the compet-

itive search model and pi is determined by workers and firms decisions. This approach is similar

to that of Eckstein and Wolpin (1995).

The employed contribute the other part of the likelihood function. Following much of the liter-

ature, we incorporate measurement error in the wage data. Specifically, wi is normally distributed

with mean µi and standard deviation σw (which is assumed to be constant across all observations).

As a result, the probability of being employed with a wage w in market i is written as

fe(w|e, i) =
1√
2π

exp

{
−1

2

(
w−µi

σw

)2
}

. (10)

Adding measurement error serves to estimate the domain of the non-parametric productivity dis-

tribution, or µi for each market. The probability of observing a wage conditional on employment

is given by

fe(w|e) =
n

∑
i=1

fi fe(w|e, i). (11)

In words, a wage in market i is drawn with probability fi and the wage is observed with some mea-

surement error. Therefore, the contribution to the likelihood function from an employed worker

is

f (w,e) = e
n

∑
i=1

fi
1√
2π

exp

{
−1

2

(
w−µi

σw

)2
}

, (12)

where the probability of being employed is p(e) = e.

Therefore, the likelihood function is
4At this point, an implicit assumption is being made about the directed search environment. Specifically, we have

assumed markets have a one-to-one mapping to the domain of F for simplicity. However, this assumption is not
restrictive as we fail to reject homogeneous workers and assume a well-behaved matching function.
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ln L(ψ) = ∑
i∈e

ln( f (wi,ei))+∑
i∈u

ln( f (ti,ui)), (13)

where ψ = {u1, ...,un, p1, ..., pn, f1, ..., fn,µ1, ...,µn,σw,e,s} and the identities and ergodic con-

straints

n

∑
i=1

ui + e = 1, (14)

n

∑
i=1

fi = 1, and (15)

n

∑
i

ui p(θi) = es, (16)

have been imposed.

103 david love pl, goleta, oct 28 belinda olivera 8056835239 caring bridge.org chris bernal

3.3 Identification

Note that Eq. 13 is a discrete mixture of exponential and normal distributions. Therefore, the

parameters pi, ui, fi, µi for all i, σw, and e are identified up to the point that such a class of

problems are identified. Eq. 16 identifies s. Also, the wage distribution is estimated as a mixture

of normals. However, the underlying distribution is non-parametric.

We add to Eq. 13 by introducing two estimators to provide identification for η and β . Also, two

equilibrium conditions are imposed to increase efficiency and provide identification of rU j for all j.

The introduction of these restrictions is similar to Flinn and Heckman (1982) or Flinn (2006), but

differs significantly in the fact that we estimate the wage distribution semi-parametrically as well

as the fact that the lowest wage (which is often trimmed) does not play a critical role in determining

any of the parameters.

The first estimator introduces the JOLTS data and is necessary because the matching function

is assumed to be Cobb-Douglas, i.e., p(θi) = x(u,v)/u = u1−ηvη/u. Therefore, we construct the

estimator

v̂ =
n

∑
i=1

vi =
n

∑
i=1

p1/η

i ui, (17)
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where v̂ is the vacancy rate, and the second equality arises from inserting the estimates pi and ui

into the definition of the matching function, pi = u1−η

i vη

i /ui, and solving for vi. As one can see,

this restriction allows for the identification of η given estimates of ui and pi from (13).

The second estimator introduces demand side data and is necessary to identify the bargaining

parameter if the market is not assumed to be efficient, i.e., the relaxation of β = η . Therefore, we

construct the estimator

π̂ = ∑
n
i=1 fiµi

∑
n
i=1 fiyi

= ∑
n
i=1 fiµi

∑
n
i=1 fi

µi−(1−β )rU j
β

, (18)

where π̂ is the labor share of net income, wages, and other employee benefits in industry i. The

second equality arises from solving for yi from the equilibrium condition µi = βyi +(1−β )rU j.

As one can see, this restriction allows for the identification of β given estimates of fi and µi from

(13) as well as rU j for all j.

The first competitive search equilibrium condition implements (6). In other words, we constrain

ui pi = fi(1−u)s, (19)

for all i. This is done to improve efficiency of the estimates and to test for the presence of sub-

markets. However, the rejection of this condition is a necessary, but not sufficient, condition for

sub-markets. Therefore, its existence does not reject alternative assumptions such as workers and

firms draw match specific productivity. However, it does provide evidence against it.

To identify rU j for all j, we use an equilibrium condition from the directed search assumption

and assume all worker types are indifferent between at least two sub-markets. As a result, there

exist at least two restrictions

pi = (r + s)
rU j− z j

µi− rU j
(20)

for each type of worker. Therefore, identification of rU j and z j is possible given µi, pi and s from

(13), and r. Note that identification of rU j is lost if (20) is rejected. Also, if workers choose from

more than two sub-markets, then the parameters are over-identified and additional constraints,

which represent additional markets, can be tested. If they were rejected, then we would need to

introduce a parametric assumption on F to identify rU j following Eckstein and Wolpin (1995).

Under this strategy, the model and likelihood function would be left unchanged, although it would

be based on a more restrictive (and ad hoc) assumption regarding the distribution of productivity.
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However, in the estimation we find that additional markets are not rejected and so proceed without

the additional parametric assumption.

3.4 Empirical Findings

We estimate the model for the aggregate and by industry following the approach of van den Berg

and Ridder (1998) and others; an approach that assumes segmented markets. We have provided

estimates for eight firm types as the measure of fit does not improve significantly with additional

heterogeneity in productivity, i.e. a higher n.

We construct four specifications of the likelihood function to test the three distinct equilibrium

conditions that differentiate the competitive search model. Each specification becomes more re-

strictive. Specifically, Specification A is the base case with restrictions (14)-(18), restrictions that

are present in competitive search model as well as many others including random search. Specifi-

cation B adds the constraint in (19) for all i in addition to (14)-(18). Specification C incorporates

(20) for all i in addition to (14)-(19). We allow for only one z and rU , which we discuss below.

Finally, Specification D is the most restrictive and incorporates the Hosios condition, β = η , in ad-

dition to (14)-(20). Therefore, Specification A versus B tests restriction (19), i.e., whether workers

search in markets with a particular level of productivity. Specification B versus C tests restriction

(20), i.e., whether the directed search assumption holds since it requires a negative relationship

between wages and job finding rates. In addition, the comparison between Specifications B and C

doubles as a sufficient condition to test for homogeneous workers as we introduce only one rU and

z. Finally, Specification C versus D tests the restriction β = η and whether the market is efficient.

Before going further, it is important to note that all the parameters of the competitive search

model are identified in Specifications C & D. However, it is not true for Specifications A & B.

We have allowed under-identification because of the discussion in Section 3.3 on what it would

take to completely identify it. To reiterate, rU is not identified in the first two specifications but

could be by making a parametric assumption on F and using the lowest wage to determine rU .

Therefore, the likelihood values and our results would change if we completely identified the

model in Specification A. However, testing the restrictions of the competitive search model would

be limited by an ad-hoc parametric assumption on the productivity distribution. Therefore, we have

chosen the less restrictive semi-parametric approach to allow for a cleaner test of the competitive
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search restrictions rather than focusing on identification in the first two stages.

The log likelihood values, as well as the test results for each specification, are presented in

Table 2. The estimates for Specifications C and D are presented in Table 3 and Table 5, respec-

tively. Bootstrapped standard errors are given in separate tables, Table 4 and Table 6, immediately

following the estimates for Specification C and D. The reported standard errors provide confidence

bands at the 5th and 95th percentiles.

As shown, we fail to reject that workers search in sub-markets with singular levels of produc-

tivity for the aggregate as well as in all industries examined. In other words, we fail to reject

Specification B for all the samples considered. As shown in the table, the test statistics are quite

small. The primary reason is the test effectively restricts the proportion of people in each section

of the wage distribution to have an equivalent proportion of people entering the unemployed state

at a particular rate (the rates are restricted in the next specification). The test statistics are small

because the data display only two to three different exit rates (depending upon the sample) while

the number of markets is set to eight due to the heterogeneity in wages. Therefore, if one thinks of

separating the two or three different exit rates (or specifically the proportion of people with each

exit rate) into eight different bins (with a specific proportion of workers in each bin as defined by

the wage distribution), then it becomes clear why the test lacks power and therefore does not reject

the restriction.

The next test, B vs. C, restricts wages to have a particular relationship with the exit rates.

Specifically, as the exit rate rises, the wage falls as workers are willing to trade off lower wages for

less time unemployed. The test fails to reject this relationship by industry. It also fails to reject that

workers are homogeneous within industries as we allow for only one z and rU . However, we note

that the CPS does not allow for the construction of a joint distribution between wages and duration

times, and therefore reduces the power of this test.

Finally, C vs. D shows that we reject efficiency for the aggregate but fail to reject that the

segmented labor markets are efficient in half of the industries, specifically (i) construction, (ii)

trade, transportation, & utilities, and (iii) Leisure & Hospitality. Alternatively, we reject efficiency

in (i) manufacturing, (ii) Professional & Business Services, and (iii) Education & Health Services

at the 1% level. The estimates of η and β under Specification C show why some are rejected

while others are not. Specifically, the estimates for Specification C shows the bargaining power in

the manufacturing sector is too low relative to the elasticity of the matching function. However,
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Education & Health Services shows the opposite. The bargaining parameter for Professional &

Business Services is close to the average, however it is too low compared to their relatively high

elasticity of the matching function. In comparison to the related literature, the elasticity of the

matching function is high relative to Flinn (2006) but similar to the calibration of Shimer (2005).

The bargaining power parameter is relatively high, but not out of line with the related literature.

The estimates for the non-parametric wage distribution are not surprising while the estimates of the

arrival rates of jobs are disperse as previously found in Eckstein and Wolpin (1995) and Engelhardt

(2009).

As further comparison, we plot in Figures 1-7 the estimates from each specification relative

to the data. As shown, the estimates for the wage distribution and arrival rates of jobs fit the

empirical distributions very closely. In Table 2, it is shown we reject Specification C for B in the

aggregate sample. However, graphically the comparison shows almost no difference. Alternatively,

we reject efficiency, or Specification D for C, in several markets and the differences are visually

distinguishable, especially for the Education & Health Services.

4 Conclusion

We estimate and test the restrictions of a competitive search model. The maximum likelihood

estimation procedure uses micro-level wage and duration data to determine the relationship be-

tween wages and the arrival rates of jobs. In addition, the JOLTS vacancy data is used to estimate

the elasticity of the matching function while IRS income data identifies the worker-firm surplus

splitting wage rule.

The estimation is performed on aggregate U.S. data and also on data disaggregated by major

industry classifications. The results fail to reject that workers direct their search to sub-markets

or firms with a particular level of productivity; while posting (i.e. efficiency via Hosios (1990)) is

rejected in three of the six industries considered as well as in the aggregate.
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CPS data
w 18.15 19.03 19.8 15.77 21.59 18.22 11.79

(12.12) (9.91) (12.09) (10.61) (15.33) (11.68) (9)
t 17.06 13.91 20.38 16.18 18.49 18.35 15.54

(21.79) (16.33) (23.91) (21.99) (22.74) (24.73) (20.6)
û 0.043 0.075 0.041 0.045 0.056 0.023 0.073

JOLTS data
v̂ 0.031 0.015 0.023 0.025 0.053 0.023 0.045

IRS data
π̂ 0.515 0.474 0.46 0.644 0.61 0.765 0.714

Demographic Information from CPS
High School 0.884 0.789 0.862 0.876 0.912 0.948 0.74
College 0.295 0.108 0.233 0.18 0.428 0.457 0.142
Female 0.476 0.096 0.31 0.41 0.44 0.755 0.532
Non-white 0.156 0.09 0.15 0.149 0.162 0.176 0.198
Married 0.578 0.596 0.64 0.555 0.585 0.608 0.357
Age 41.23 39.95 42.5 40.54 41.48 42.66 34.01

(13.67) (12.76) (11.98) (14.22) (13.34) (13.16) (14.64)
N 68,639 5,472 7,683 13,437 6,814 14,524 5,865
Note: Standard deviations are in parenthesis, unemployment duration is weekly,
wages are hourly, and those who did not report hours worked were excluded. Those
reporting a w > 100 where compressed to w = 100, but otherwise the wage data
was not trimmed. Also, wages are only available for roughly one-third of those
employed due to the structure of the CPS questionnaire.
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Table 2: Specification Tests

A
gg

re
ga

te

C
on

st
ru

ct
io

n

M
an

uf
ac

tu
ri

ng

Tr
ad

e,
Tr

an
sp

or
ta

tio
n,

&
U

til
iti

es

Pr
of

es
si

on
al

&
B

us
in

es
s

Se
rv

ic
es

E
du

ca
tio

n
&

H
ea

lth
Se

rv
ic

es

L
ei

su
re

&
H

os
pi

ta
lit

y

ln L under Specification
A -60,518.4 -4,465.58 -7,379.08 -11,401.91 -5,987.13 -12,578.8 -5,248.58
B -60,518.52 -4,465.64 -7,379.09 -11,401.96 -5,987.14 -12,578.91 -5,248.66
C -60,529.59 -4,466.91 -7,380.22 -11,406.93 -5,988.11 -12,581.45 -5,249.97
D -60,602.44 -4,467.08 -7,384.74 -11,406.96 -5,999.45 -12,592.31 -5,250.56

Test of sub-markets (A vs. B)
LR test 0.24 0.1 0.03 0.09 0.02 0.23 0.15
p-value 1 1 1 1 1 1 1

Test of Homogeneous workers (B vs. C)
LR test 22.12 2.54 2.25 9.95 1.94 5.07 2.62
p-value 0 0.86 0.9 0.13 0.92 0.54 0.85

Test of efficiency with homogeneous workers (C vs. D)
LR test 145.71 0.34 9.05 0.05 22.69 21.73 1.19
p-value 0 0.56 0 0.83 0 0 0.28
Note: The number of restrictions and degrees of freedom used in the likelihood ratio test
of sub-markets is equal to the number of firm types (n = 8) minus one as the identity, (14), is
already imposed. Also, the degrees of freedom used in the likelihood ratio test of homogeneous
workers is equal to the number of firm types minus two.
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Table 3: Specification C - Competitive Search Estimates without Efficiency Constraint
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p1 0.133 0.112 0.102 0.136 0.135 0.197 0.116
f1 0.51 0.44 0.48 0.57 0.41 0.1 0.74
µ1 10.11 11.29 11.51 9.49 10.13 10.75 8.01

p2 0.078 0.08 0.064 0.078 0.088 0.187 0.066
f2 0.25 0.28 0.26 0.24 0.24 0.47 0.16
µ2 18.42 19.2 19.26 17.37 17.41 11.1 16.14

p3 0.055 0.067 0.046 0.054 0.061 0.075 0.047
f3 0.12 0.07 0.12 0.11 0.14 0.26 0.07
µ3 26.81 24.44 27.6 25.58 26.2 21.02 23.95

p4 0.041 0.058 0.036 0.038 0.046 0.045 0.033
f4 0.07 0.15 0.08 0.05 0.1 0.11 0.02
µ4 35.91 29.92 35.91 36.58 35.62 31.94 34.92

p5 0.032 0.046 0.028 0.03 0.037 0.031 0.026
f5 0.028 0.043 0.034 0.016 0.053 0.033 0.007
µ5 46.49 39.19 46.78 46.79 46.03 44.35 44.71

p6 0.026 0.036 0.023 0.024 0.029 0.024 0.021
f6 0.015 0.012 0.018 0.01 0.041 0.013 0.008
µ6 57.59 52.66 56.39 58.33 58.37 55.87 57.49

p7 0.021 0.027 0.019 0.019 0.024 0.018 0.017
f7 0.005 0.001 0.005 0.004 0.01 0.007 0.003
µ7 71.85 72.13 70.41 72.72 72.55 71.62 71.94

p8 0.016 0.02 0.014 0.014 0.018 0.013 0.012
f8 0.002 0.001 0.002 0.001 0.005 0.001 0.001
µ8 97.23 100 92.52 99.98 97.7 99.01 99.95

σw 3.34 3.02 3.28 2.97 3.15 3.82 2.59
β 0.536 0.566 0.481 0.659 0.643 0.711 0.754
η 0.716 0.598 0.721 0.655 0.884 0.605 0.781
s 0.004 0.007 0.003 0.004 0.004 0.002 0.007
rU -1.56 -8.49 -1.74 -1.06 -3.24 4.47 -2.66
ln L -60,529.6 -4,466.9 -7,380.2 -11,406.9 -5,988.1 -12,581.4 -5,250.
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Table 4: 5% & 95% Confidence Bands for Specification C Estimates
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p1 (0.12,0.15) (0.09,0.14) (0.05,0.13) (0.12,0.16) (0.09,0.2) (0.15,0.2) (0.1,0.14)
f1 (0.49,0.53) (0.35,0.48) (0.46,0.51) (0.53,0.6) (0.38,0.45) (0.1,0.14) (0.68,0.76)
µ1 (9.9,10.3) (10.4,11.6) (11.2,11.7) (9.1,9.7) (9.8,10.4) (10.6,10.8) (7.6,8.2)

p2 (0.07,0.08) (0.07,0.09) (0.04,0.08) (0.07,0.09) (0.07,0.11) (0.15,0.18) (0.06,0.08)
f2 (0.24,0.27) (0.01,0.32) (0.23,0.29) (0.22,0.27) (0.2,0.27) (0.42,0.48) (0.14,0.19)
µ2 (17.9,19) (16.4,19.6) (19,19.4) (16.2,18.2) (17.1,17.6) (11,11.2) (13.9,17.1)

p3 (0.05,0.06) (0.06,0.08) (0.04,0.05) (0.05,0.06) (0.05,0.07) (0.07,0.08) (0.04,0.06)
f3 (0.11,0.13) (0.05,0.29) (0.1,0.14) (0.09,0.13) (0.12,0.17) (0.24,0.28) (0.05,0.1)
µ3 (26,27.7) (20,28.6) (26.4,28.6) (23.6,26.7) (25.2,27.2) (20.1,21.6) (20.3,25.5)

p4 (0.04,0.04) (0.05,0.07) (0.03,0.04) (0.03,0.04) (0.04,0.05) (0.04,0.05) (0.03,0.04)
f4 (0.06,0.07) (0.05,0.18) (0.06,0.09) (0.04,0.06) (0.08,0.12) (0.1,0.12) (0.01,0.03)
µ4 (35.2,36.8) (28.7,35.7) (34.8,37.2) (32.8,37.8) (34.4,36.8) (29.5,32.9) (27.4,37.1)

p5 (0.03,0.03) (0.04,0.06) (0.03,0.04) (0.03,0.03) (0.03,0.04) (0.03,0.04) (0.02,0.03)
f5 (0.02,0.03) (0.02,0.06) (0.03,0.04) (0.01,0.03) (0.04,0.07) (0.03,0.05) (0,0.02)
µ5 (45.8,47.2) (37.3,42.6) (45.2,48.3) (42,48.7) (45,47) (39.1,46.3) (37.8,49.2)

p6 (0.02,0.03) (0.03,0.05) (0.02,0.04) (0.02,0.03) (0.03,0.03) (0.02,0.03) (0.02,0.02)
f6 (0.01,0.02) (0.01,0.02) (0.01,0.02) (0.01,0.01) (0.03,0.05) (0.01,0.02) (0,0.01)
µ6 (57.1,58.2) (48.3,54.9) (54.9,57.5) (56.1,59.9) (57.6,59.2) (51.2,57.9) (53.1,60.6)

p7 (0.02,0.02) (0.01,0.04) (0.02,0.03) (0.02,0.02) (0.02,0.03) (0.02,0.02) (0.01,0.02)
f7 (0,0.01) (0,0.01) (0,0.01) (0,0.01) (0.01,0.02) (0.01,0.01) (0,0.01)
µ7 (71.2,72.6) (54,95.3) (69,71.7) (70.9,74.2) (71.9,73.3) (70.2,72.7) (62,76.9)

p8 (0.01,0.02) (0.01,0.03) (0.01,0.03) (0.01,0.02) (0.02,0.02) (0.01,0.02) (0.01,0.02)
f8 (0,0) (0,0) (0,0) (0,0) (0,0.01) (0,0) (0,0)
µ8 (95.5,98.7) (58.2,100.1) (86.9,98) (100,100) (95.1,100) (97.4,100) (72.6,100)

σw (3.26,3.41) (2.61,3.19) (3.09,3.4) (2.77,3.09) (2.94,3.35) (3.75,3.83) (2.3,2.68)
β (0.52,0.56) (0.49,0.74) (0.43,0.82) (0.63,0.7) (0.59,0.72) (0.71,0.74) (0.71,0.8)
η (0.7,0.73) (0.57,0.62) (0.68,0.82) (0.63,0.68) (0.83,0.94) (0.59,0.66) (0.74,0.82)
s (0,0) (0.01,0.01) (0,0) (0,0) (0,0.01) (0,0) (0.01,0.01)
rU (-3.3,-0.1) (-40.4,-1.2) (-86.5,2.4) (-4.5,1) (-14.3,1.7) (2.2,4.7) (-7.6,0.2)
Note: Bootstrapping with 500 draws were used to determine the intervals.19



Table 5: Specification D - Competitive Search Estimates with Efficiency Constraint
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p1 0.073 0.104 0.056 0.136 0.059 0.133 0.117
f1 0.51 0.44 0.48 0.57 0.42 0.18 0.74
µ1 10.09 11.29 11.5 9.49 10.15 11.14 8.01

p2 0.064 0.079 0.051 0.077 0.058 0.132 0.07
f2 0.25 0.28 0.26 0.24 0.24 0.4 0.16
µ2 18.41 19.2 19.26 17.37 17.66 11.19 16.14

p3 0.056 0.068 0.046 0.053 0.057 0.052 0.051
f3 0.12 0.07 0.12 0.11 0.14 0.26 0.07
µ3 26.8 24.32 27.6 25.58 26.4 21.19 23.95

p4 0.05 0.059 0.043 0.038 0.056 0.032 0.036
f4 0.07 0.15 0.08 0.05 0.1 0.11 0.02
µ4 35.9 29.89 35.91 36.58 35.69 32.09 34.92

p5 0.044 0.049 0.038 0.03 0.054 0.022 0.029
f5 0.028 0.043 0.034 0.016 0.052 0.031 0.008
µ5 46.49 39.18 46.78 46.79 46.06 44.53 44.72

p6 0.04 0.039 0.035 0.024 0.053 0.017 0.023
f6 0.015 0.012 0.018 0.01 0.039 0.012 0.009
µ6 57.6 52.67 56.4 58.33 58.38 55.97 57.52

p7 0.035 0.03 0.032 0.019 0.052 0.013 0.019
f7 0.006 0.001 0.005 0.004 0.01 0.007 0.003
µ7 71.87 72.15 70.42 72.71 72.56 71.59 71.97

p8 0.029 0.023 0.027 0.014 0.049 0.009 0.014
f8 0.002 0.001 0.002 0.001 0.005 0.001 0.001
µ8 97.27 100.03 92.55 99.98 97.75 98.98 99.98

σw 3.33 3.02 3.28 2.97 3.16 3.84 2.59
η = β 0.789 0.604 0.786 0.656 0.97 0.708 0.772
s 0.003 0.006 0.002 0.004 0.003 0.002 0.007
rU -45.78 -13.2 -65.86 -0.85 -424.93 4.64 -4.2
ln L -60,602.4 -4,467.1 -7,384.7 -11,407. -5,999.5 -12,592.3 -5,250.6
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Table 6: 5% & 95% Confidence Bands for Specification D Estimates
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p1 (0.07,0.08) (0.09,0.12) (0.05,0.06) (0.12,0.16) (0.06,0.2) (0.12,0.15) (0.1,0.14)
f1 (0.49,0.57) (0.33,0.48) (0.45,0.51) (0.53,0.6) (0.38,0.6) (0.1,0.53) (0.68,0.76)
µ1 (9.9,10.8) (10.3,11.6) (11.4,11.6) (9.1,9.7) (9.7,12.3) (10.8,11.5) (7.7,8.2)

p2 (0.06,0.07) (0.07,0.09) (0.04,0.06) (0.07,0.08) (0.06,0.13) (0.12,0.15) (0.06,0.08)
f2 (0.02,0.27) (0.14,0.32) (0.23,0.29) (0.22,0.27) (0.01,0.27) (0.03,0.51) (0.14,0.19)
µ2 (11.5,19.7) (15.2,20) (18.4,19.9) (16.2,18.2) (16.1,23.4) (10.8,11.6) (14.1,17.2)

p3 (0.05,0.06) (0.06,0.08) (0.04,0.05) (0.05,0.06) (0.06,0.09) (0.05,0.06) (0.05,0.06)
f3 (0.09,0.24) (0.04,0.25) (0.1,0.15) (0.09,0.13) (0,0.2) (0.23,0.28) (0.05,0.09)
µ3 (20.1,27.7) (20.1,28.8) (26.1,28.9) (23.7,26.9) (20.7,34.6) (19.9,22.1) (20.6,25.5)

p4 (0.05,0.06) (0.05,0.06) (0.04,0.05) (0.04,0.04) (0.05,0.07) (0.03,0.04) (0.03,0.04)
f4 (0.06,0.11) (0.04,0.18) (0.06,0.09) (0.04,0.06) (0,0.14) (0.09,0.12) (0.01,0.03)
µ4 (28.5,36.6) (28.8,36.1) (34.7,37.2) (32.7,37.9) (26,45.9) (29,33.2) (27.8,37.5)

p5 (0.04,0.05) (0.04,0.05) (0.04,0.04) (0.03,0.03) (0.05,0.06) (0.02,0.03) (0.03,0.03)
f5 (0.03,0.06) (0.01,0.06) (0.02,0.04) (0.01,0.03) (0.01,0.11) (0.02,0.05) (0,0.02)
µ5 (36.6,47.1) (37.6,43.1) (45.5,48.2) (42.1,48.8) (34.6,58.5) (37.2,46.5) (37.9,49.3)

p6 (0.04,0.04) (0.04,0.04) (0.03,0.04) (0.02,0.02) (0.05,0.06) (0.02,0.02) (0.02,0.03)
f6 (0.01,0.03) (0.01,0.02) (0.01,0.02) (0.01,0.01) (0.01,0.06) (0.01,0.03) (0,0.01)
µ6 (46.6,58.1) (49.1,54.9) (55,57.6) (55.9,59.9) (45.1,72.8) (46.9,58.1) (53.3,61)

p7 (0.03,0.04) (0.01,0.04) (0.03,0.03) (0.02,0.02) (0.05,0.05) (0.01,0.02) (0.02,0.02)
f7 (0,0.02) (0,0) (0,0.01) (0,0.01) (0,0.05) (0,0.01) (0,0.01)
µ7 (57.8,72.5) (55.4,95.3) (69,71.6) (70.8,74.5) (58.1,97.2) (57,72.7) (63.8,76.9)

p8 (0.03,0.03) (0.01,0.03) (0.03,0.03) (0.01,0.01) (0.01,0.05) (0.01,0.01) (0.01,0.02)
f8 (0,0.01) (0,0) (0,0) (0,0) (0,0.02) (0,0.01) (0,0)
µ8 (77.9,98.8) (75.1,100.2) (87.1,99.1) (100,100) (77,100) (76,100) (99.9,100)

σw (3.3,3.9) (2.6,3.2) (3.1,3.3) (2.8,3.1) (3,4.5) (3.6,4.3) (2.3,2.7)
η = β (0.77,0.8) (0.57,0.63) (0.75,0.82) (0.63,0.68) (0.7,0.98) (0.69,0.72) (0.73,0.81)
s (0,0) (0.01,0.01) (0,0) (0,0) (0,0.01) (0,0) (0.01,0.01)
rU (-51.8,-40.1) (-17,-9.5) (-89.5,-50.7) (-2.9,0.7) (-555.4,-10.6) (3.6,5.6) (-8.8,-0.9)
Note: Bootstrapping with 500 draws were used to determine the intervals.
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Figure 1: Aggregate
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Figure 2: Construction
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Figure 3: Manufacturing
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Figure 4: Trade, Transportation, & Utilities
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Figure 5: Professional & Business Services
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Figure 6: Education & Health Services
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Figure 7: Leisure & Hospitality
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