Discussion of Gonzalez and Shi "An Equilibrium Theory of Learning, Search, and Wages"

Robert Shimer

November 19, 2009

Partial Equilibrium Models

existence of a reservation wage

- Dirichlet: Rothschild
- Gaussian: DeGroot
- general conditions: Burdett-Vishwanath

Partial Equilibrium Models

existence of a reservation wage

Dirichlet: Rothschild

Gaussian: DeGroot

general conditions: Burdett-Vishwanath

results:

- reservation wage declines with duration
- individual-specific job finding rate increases
- ▷ job finding rate conditional on duration may or may not fall

Partial Equilibrium Models

existence of a reservation wage

Dirichlet: Rothschild

Gaussian: DeGroot

general conditions: Burdett-Vishwanath

results:

- reservation wage declines with duration
- individual-specific job finding rate increases
- ▷ job finding rate conditional on duration may or may not fall

simple case: search intensity model

Search Intensity Model

a worker contacts the market at an unknown rate, a_h or a_l

 \triangleright prior of a_h is $\mu \in (0,1)$

$$\triangleright \alpha(\mu) = a_h \mu + a_l (1 - \mu)$$

] the worker chooses search intensity at those moments, θ , at cost θc

 \triangleright succeeds in finding a job with probability $f(\theta)$

she cannot distinguish why a job was not found

 \Box a job generates flow income y

Search Intensity Model

a worker contacts the market at an unknown rate, a_h or a_l

 \triangleright prior of a_h is $\mu \in (0,1)$

$$\triangleright \alpha(\mu) = a_h \mu + a_l (1 - \mu)$$

 \Box the worker chooses search intensity at those moments, θ , at cost θc

 \triangleright succeeds in finding a job with probability $f(\theta)$

she cannot distinguish why a job was not found

 \Box a job generates flow income y

Bellman equation:

$$rV(\mu) = \max_{\theta} \left(\alpha(\mu) \left(f(\theta) \left(\frac{y}{r} - V(\mu) \right) - \theta c \right) - V'(\mu) (a_h - a_l) f(\theta) \mu (1 - \mu) \right)$$

Results

- **]** search intensity falls with unemployment duration (i.e. with μ)
- **C** change in $\alpha(\mu)f(\theta(\mu))$ is ambiguous
- 🔲 no change in wages
 - obviously, but in contrast to reservation wage models

Results

- \square search intensity falls with unemployment duration (i.e. with μ)
- **C** change in $\alpha(\mu)f(\theta(\mu))$ is ambiguous
- no change in wages
 - obviously, but in contrast to reservation wage models

proof: see Gonzalez and Shi

Continuous Time Model

workers: $rV(\mu) = \max_{\theta} \left(\alpha(\mu) f(\theta) (J_e(w(\theta)) - V(\mu)) + V'(\mu) \phi(\mu, \theta)) \right)$

$$\triangleright \alpha(\mu) = a_h \mu + a_l (1 - \mu)$$
$$\triangleright \phi(\mu, \theta) = -(a_h - a_l) f(\theta) \mu (1 - \mu)$$
$$\triangleright J_e(w) = w/r$$

Continuous Time Model

■ workers: $rV(\mu) = \max_{\theta} \left(\alpha(\mu) f(\theta) (J_e(w(\theta)) - V(\mu)) + V'(\mu) \phi(\mu, \theta)) \right)$ ▷ $\alpha(\mu) = a_h \mu + a_l (1 - \mu)$ ▷ $\phi(\mu, \theta) = -(a_h - a_l) f(\theta) \mu (1 - \mu)$ ▷ $J_e(w) = w/r$

☐ firms: $c = \frac{f(\theta)}{\theta} J_f(w(\theta))$ ▷ $J_f(w) = (y - w)/r$

Continuous Time Model

workers: $rV(\mu) = \max_{\theta} \left(\alpha(\mu) f(\theta) (J_e(w(\theta)) - V(\mu)) + V'(\mu) \phi(\mu, \theta)) \right)$ $\triangleright \alpha(\mu) = a_h \mu + a_l (1 - \mu)$ $\triangleright \phi(\mu, \theta) = -(a_h - a_l) f(\theta) \mu (1 - \mu)$ $\triangleright J_e(w) = w/r$

☐ firms:
$$c = \frac{f(\theta)}{\theta} J_f(w(\theta))$$

▷ $J_f(w) = (y - w)/r$

solve for $w(\theta)$ using the firms' problem:

$$rV(\mu) = \max_{\theta} \left(\alpha(\mu) \left(f(\theta) \left(\frac{y}{r} - V(\mu) \right) - \theta c \right) - V'(\mu) (a_h - a_l) f(\theta) \mu (1 - \mu) \right)$$

identical to the single-agent decision problem

"Discussion of Gonzalez and Shi"

Block Recursivity

note that it was not necessary to keep track of the belief distribution

but in steady state, this is not really a big deal

we can therefore study a standard search model

Standard Search Model

workers: $rV(\mu) = \alpha(\mu)f(\theta)(J_e(\phi_e(\mu)) - V(\mu)) + V'(\mu)\phi_u(\mu))$

$$\triangleright \alpha(\mu) = a_h \mu + a_l (1 - \mu)$$

$$\triangleright \phi_u(\mu) = -(a_h - a_l) f(\theta) \mu (1 - \mu)$$

$$\triangleright \phi_e(\mu) = \frac{a_h \mu}{a_h \mu + a_l (1 - \mu)}$$

$$\triangleright J_e(\mu) = w(\mu)/r$$

☐ firms:
$$c = \frac{f(\theta)}{\theta} \int J_f(g(\mu)) dF(\mu)$$

▷ $J_f(\mu) = (y - w(\mu))/r$

Nash bargaining: $J_f(\mu) = J_e(\mu) - V(\mu)$

 \square $F(\mu)$ is the appropriate stationary distribution

Results

- $\square \mu$ falls during an unemployment spell
- $\Box V$ is increasing in μ
- $\Box w$ is increasing in V

summary:

reemployment wage is decreasing in duration
 job finding probability is decreasing in duration

Summary

- Iearning in search is a neglected and likely important topic
- Gonzalez and Shi's analysis is clever and very clean
- but other frameworks are also useful for addressing these questions
 - partial equilibrium
 - search and bargaining

value-added of competitive search may be clearer out of steady state