Discussion of: “Assortative Learning” by Eeckhout and Weng

Giuseppe Moscarini
Yale and NBER
Recap

- competitive labor market model with incomplete information about workers’ general human capital
Recap

- competitive labor market model with incomplete information about workers' general human capital
- two types of firms create comparative advantages
Recap

- competitive labor market model with incomplete information about workers’ general human capital
- two types of firms create comparative advantages
- information accrues from output
Recap

- competitive labor market model with incomplete information about workers’ general human capital
- two types of firms create comparative advantages
- information accrues from output
- supermodularity in payoffs implies PAM
Recap

- competitive labor market model with incomplete information about workers’ general human capital
- two types of firms create comparative advantages
- information accrues from output
- supermodularity in payoffs implies PAM
- speed of learning in different types of firms irrelevant for this conclusion
competitive labor market model with incomplete information about workers’ general human capital

two types of firms create comparative advantages

information accrues from output

supermodularity in payoffs implies PAM

speed of learning in different types of firms irrelevant for this conclusion

new boundary condition: No-Deviation condition equates second derivatives of the value function
Comments

- contributions
Comments

- contributions
- model predictions
Comments

- contributions
- model predictions
- technical issue
Comments

- contributions
- model predictions
- technical issue
- additional (more interesting) extensions
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish

\[R_1 p(1-p) f(H(p)) dp \]

proof of Lemma 6 missing
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about general human capital of the worker
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about general human capital of the worker
- with unemployment, beliefs also affect the value of unemployment and wages indirectly
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about general human capital of the worker
- with unemployment, beliefs also affect the value of unemployment and wages indirectly
- most (all?) economic predictions here similar to either Jovanovic or Papageorgiou
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about *general* human capital of the worker
- with unemployment, beliefs also affect the value of unemployment and wages indirectly
- most (all?) economic predictions here similar to either Jovanovic or Papageorgiou
- No-Deviation condition is new, valid in frictionless environment
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about general human capital of the worker
- with unemployment, beliefs also affect the value of unemployment and wages indirectly
- most (all?) economic predictions here similar to either Jovanovic or Papageorgiou
- No-Deviation condition is new, valid in frictionless environment
- PAM here means a cutoff property, not terribly surprising it arises, still allows for lots of mismatched workers: measure
 \[\int_{p}^{1} (1 - p) f_H(p) \, dp \] of type L workers work for type H firms
Contributions

- model is a special case of Papageorgiou (2008, Phd dissertation) with zero search frictions, rest is the same
- worth checking whether his Nash bargaining wage function converges to this particular competitive wage function as frictions vanish
- Papageorgiou’s main conceptual innovation: learning about general human capital of the worker
- with unemployment, beliefs also affect the value of unemployment and wages indirectly
- most (all?) economic predictions here similar to either Jovanovic or Papageorgiou
- No-Deviation condition is new, valid in frictionless environment
- PAM here means a cutoff property, not terribly surprising it arises, still allows for lots of mismatched workers: measure \(\int_{\frac{1}{p}}^{1} (1 - p) f_H(p) \, dp \) of type \(L \) workers work for type \(H \) firms
- proof of Lemma 6 missing
productivity increases in tenure (and experience): also in the Jovanovic model, on average, no need for human capital accumulation
Predictions

- productivity increases in tenure (and experience): also in the Jovanovic model, *on average*, no need for human capital accumulation
- variance of wages rises over the life cycle: also in the Jovanovic model, my 2005 version, at least for a while
Predictions

- productivity increases in tenure (and experience): also in the Jovanovic model, *on average*, no need for human capital accumulation
- variance of wages rises over the life cycle: also in the Jovanovic model, my 2005 version, at least for a while
- conjecture that it rises for ever if $\delta \geq s^2$: workers die before finding great match, same condition for declining tail in Pareto distribution
Predictions

- productivity increases in tenure (and experience): also in the Jovanovic model, *on average*, no need for human capital accumulation
- variance of wages rises over the life cycle: also in the Jovanovic model, my 2005 version, at least for a while
- conjecture that it rises for ever if $\delta \geq s^2$: workers die before finding great match, same condition for declining tail in Pareto distribution
- turnover decreases over the life cycle: also in standard on-the-job search models with worker mortality
Predictions

- productivity increases in tenure (and experience): also in the Jovanovic model, *on average*, no need for human capital accumulation
- variance of wages rises over the life cycle: also in the Jovanovic model, my 2005 version, at least for a while
- conjecture that it rises for ever if $\delta \geq s^2$: workers die before finding great match, same condition for declining tail in Pareto distribution
- turnover decreases over the life cycle: also in standard on-the-job search models with worker mortality
- not as rich as those of Papageorgiou’s model: for example, without unemployment, cannot predict which unemployed goes where based on labor market history
productivity increases in tenure (and experience): also in the Jovanovic model, *on average*, no need for human capital accumulation

variance of wages rises over the life cycle: also in the Jovanovic model, my 2005 version, at least for a while

conjecture that it rises for ever if $\delta \geq s^2$: workers die before finding great match, same condition for declining tail in Pareto distribution

turnover decreases over the life cycle: also in standard on-the-job search models with worker mortality

not as rich as those of Papageorgiou’s model: for example, without unemployment, cannot predict which unemployed goes where based on labor market history

can explain the U-shapes of occupational mobility, in fact similar to the “mini-model" in that paper.
Technical issue: optimal switching, not optimal stopping

- stopping problem: *given functions* u *and* U, choose a (continuation) set C such that the stopping time

 $$ T = \inf \{ t > 0, p_t \not\in C \} $$

 maximizes

 $$ W(p_0, T) = E \left[\int_0^T u(p_t) \, dt + U(p_T) \mid p_0 \right] $$
Technical issue: optimal switching, not optimal stopping

- Stopping problem: *given functions* u and U, choose a (continuation) set C such that the stopping time

$$T = \inf \{ t > 0, p_t \notin C \}$$

maximizes

$$W(p_0, T) = E \left[\int_0^T u(p_t) \, dt + U(p_T) \mid p_0 \right]$$

- Verification Theorem: *if* u and U are sufficiently well-behaved, solution C^* or $T^*(p_0)$ exists and the value function $V(p_0) = W(p_0, T^*(p_0))$ solves a 2nd order ODE with value matching and smooth pasting
Technical issue: optimal switching, not optimal stopping

- Stopping problem: given functions u and U, choose a (continuation) set C such that the stopping time

$$T = \inf \{ t > 0, p_t \notin C \}$$

maximizes

$$W(p_0, T) = E \left[\int_0^T u(p_t) \, dt + U(p_T) \mid p_0 \right]$$

- Verification Theorem: if u and U are sufficiently well-behaved, solution C^* or $T^*(p_0)$ exists and the value function $V(p_0) = W(p_0, T^*(p_0))$ solves a 2nd order ODE with value matching and smooth pasting.

- In this labor market model, circularity: u is well-behaved (wage function), but stopping value U is not known, it is itself a value function of another stopping problem.
must find a fixed point in space of values solving “mutual stopping problems”
must find a fixed point in space of values solving “mutual stopping problems”

could it be that true maximized values are another fixed point, which is not a C^2 pair? so cannot be found by ODE methods?
must find a fixed point in space of values solving “mutual stopping problems”

could it be that true maximized values are another fixed point, which is \textit{not} a C^2 pair? so cannot be found by ODE methods?

in standard stopping problem, U is given, and then smooth pasting is necessary. Not here. Transition is not irreversible. Switching problem, not stopping problem. Smooth pasting can be derived by alternative method
Extensions

- **any continuous time process**: PAM means "cutoff property," you do not need to solve ODEs explicitly, just check that there is single crossing in values, e.g. third derivatives are ranked properly (if they exist)
Extensions

- **any continuous time process**: PAM means “cutoff property," you do not need to solve ODEs explicitly, just check that there is single crossing in values, e.g. third derivatives are ranked properly (if they exist)

- **heterogeneity in priors** \(p_0 \) (it should work with Beta distribution) to generate initial wage dispersion
Extensions

- **any continuous time process**: PAM means "cutoff property," you do not need to solve ODEs explicitly, just check that there is single crossing in values, e.g. third derivatives are ranked properly (if they exist)

- **heterogeneity in priors** p_0 (it should work with Beta distribution) to generate initial wage dispersion
 - explore empirically correlation between initial wages and subsequent wage growth. In baseline model, where learning is faster at H firms, it should be positive
Extensions

- **any continuous time process**: PAM means “cutoff property,” you do not need to solve ODEs explicitly, just check that there is single crossing in values, e.g. third derivatives are ranked properly (if they exist)

- **heterogeneity in priors** p_0 (it should work with Beta distribution) to generate initial wage dispersion
 - explore empirically correlation between initial wages and subsequent wage growth. In baseline model, where learning is faster at H firms, it should be positive
 - low p_0 people stuck in dead end jobs, learn nothing: application to labor market discrimination
Extensions

- **any continuous time process**: PAM means "cutoff property," you do not need to solve ODEs explicitly, just check that there is single crossing in values, e.g. third derivatives are ranked properly (if they exist)

- **heterogeneity in priors** p_0 (it should work with Beta distribution) to generate initial wage dispersion
 - explore empirically correlation between initial wages and subsequent wage growth. In baseline model, where learning is faster at H firms, it should be positive
 - low p_0 people stuck in dead end jobs, learn nothing: application to labor market discrimination

- **job creation costs** create information externality and free-riding problem: let competitors try out a worker, pay the cost of drawing bad workers, and cherry pick the good workers. Connection to strategic experimentation literature.