Where to draw lines: monetary and fiscal uncertainties

Thomas J. Sargent*

April 15, 2010

Abstract

What kinds of assets should financial intermediaries be permitted to hold and what kinds of liabilities should they be allowed to issue? This paper reviews how tensions between stability versus efficiency and regulation versus laissez faire have long run through macroeconomic analysis of these questions.

1 Introduction

The appropriateness of governmental responsibility for the monetary system has of course been long and widely recognized. . . . This habitual and by now almost unthinking acceptance of governmental responsibility makes thorough understanding of the grounds for such responsibility all the more necessary, since it enhances the danger that the scope of government intervention will spread from activities that are to those that are not appropriate in a free society, from providing a monetary framework to

*(New York University and Hoover Institution (email: thomas.sargent@nyu.edu).
determining the allocation of resources among individuals.
Milton Friedman (1960, p. 8)

This essay is about wise and timely things that macroeconomic theory has to say about where to draw lines between (1) markets for money and credit, and (2) monetary and fiscal policies. Historically it has been difficult for American statesmen to agree how to draw those lines. Macroeconomic theory helps explain why by shedding light on the tensions and trade-offs involved in drawing those lines. The issues are so formidable that the most brilliant economic minds have swerved, or been tempted to swerve, from one extreme position to another. And in drawing lines like (1), a government inevitably influences how it draws lines like (2). Ambiguities and uncertainties about the path forward arise partly because the choices are difficult and involve conflicts of interest. Macroeconomic theory helps by characterizing how alternative choices affect aggregate risk and how that risk is allocated among citizens and foreigners.

2 Histories and Theories

A companion paper (Sargent (2010)) uses U.S. historical examples to illustrate processes that have created, temporarily resolved, and then often reopened monetary and fiscal policy ambiguities. That paper describes histories of political struggles to fix four aspects of U.S. monetary and fiscal arrangements: (i) whether to allow an inconvertible paper currency to be a legal tender for public and private debts; (ii) whether the federal government should redeem impaired debts of state governments; (iii) after the civil war, whether and how the U.S. government should implement a gold standard; and (iv) whether to have a central bank and if so, what responsibilities to assign to it. Debates over these issues were fought long and hard and resolutions of them were at best temporary. Statesmen who argued one side when young advocated the opposite side of an issue when older (James Madison
and Henry Clay on a U.S. Bank and Salmon Chase on legal tender), possibly to revert again to one’s youthful position when even older (Salmon Chase on legal tender). I offer these examples to illustrate statesmen’s struggles with what we now call time-consistency problems; their mixed success in using constitutional clauses to improve outcomes by tying their successors’ hands; and the ways that a coherent fiscal and monetary policy occasionally emerged from intentions to implement grand principles, but more often from a haphazard sequence of improvisations and compromises made against the fact of the government’s intertemporal budget constraint.

This paper tries to shed light on these historical struggles by acknowledging ambiguities brought to us by a collection of economic theories designed to inform us about the consequences of arranging monetary and fiscal policies together in different feasible ways. I focus on theories that bear mainly on historical controversy (iv) above, but that also shed light on aspects of the other three topics. Versions of these theories are quite old because the policy issues that inspired them are even older. I mainly refer to rational expectations models, formalized in the 1970s and 1980s, themselves descendants of older models that were constructed to understand what central banks should do, and where, if anywhere, lines should be drawn to separate credit from money markets. The rational expectations hypothesis plays a role in sharpening these theories by highlighting how private agents’ expectations of future government actions affect outcomes today and shape the changing predicaments into which government officials are cast. I play by the rule that it takes a model to beat a model.

The models frame what can seem to be close calls. Studying these models makes it easy to appreciate why great American statesmen such as Madison and Clay changed their minds. Milton Friedman was also tempted to change his mind about whether to recommend financial laissez faire or strict regulations designed to put impermeable barriers between markets for money and credit. After describing two models that offer opposite perspectives on the
virtues of deposit insurance, I’ll argue that a well designed regulatory system has to manage time consistency issues that resemble those observed in our historical examples.

2.1 Bagehot: ideal versus practical banking regimes

To kick off my topic, I can’t do better than quote Walter Bagehot (1920), who described how the structure of the mid 19th century British money market rendered it vulnerable to recurrent panics and recommended that the Bank of England adopt his famous lender-of-last-resort strategy to minimize the adverse effects of incipient panics. Bagehot made it clear that he did not like the existing British banking system and the advantages and responsibilities that the Bank of England had acquired as owner of a preponderance of England’s reserves and through its special relationships with the government. Bagehot said that what he called a ‘natural’ competitive banking system without a ‘central’ bank would be better. Bagehot (1920, p. 98):

Nothing can be truer in theory than the economical principle that banking is a trade, and only a trade; and nothing can be more surely established by a larger experience than that a Government which interferes with any trade injures that trade. The best thing undeniably that a Government can do with the Money Market is to let it take care of itself.

Continuing, Bagehot (1920, p. 103) said

Under a good system of banking a great collapse, except from rebellion or invasion, would probably not happen. A large number of banks each feeling that its credit was at stake in keeping a good reserve probably would keep one; if any one did not, it would be criticised constantly, and would soon lose its standing, and in the end disappear.
But Bagehot said that this ideal system was not practical for late 19th century Britain. He described Britain as having evolved through a long process of political and economic improvisations to reach a system of banking arrangements that a good theorist could criticize but that a pragmatist must acknowledge was invulnerable to proposals for reform.1 “Thus our one reserve system of banking was not deliberately founded upon definite reasons; it was the gradual consequence of many singular events and of an accumulation of legal privileges on a single bank which has now been altered and which no one would now defend.” Bagehot (1920, p. 97) Centralizing the entire banking system’s reserves with the bank of England made the system more unstable than the ‘natural’ competitive system that Bagehot preferred. “And this system has plain and grave evils. 1st. Because being created by State aid it is more likely than a natural system to require State help.” Bagehot (1920, p. 105) “The English Government not only created this singular system but it proceeded to impair it and demoralise all the public opinion respecting it.” This happened when by requiring the Bank of England to suspend convertibility of its notes into specie, “[Mr. Pitt] removed the preservative apprehension which is the best security of all banks.” Bagehot (1920, p. 106) (italics added)

3 Efficiency versus stability

The shifting opinions of politicians and voters mentioned in the introduction and documented in Sargent (2010) become more understandable when we recognize the ‘model uncertainty’ about what a central bank should do that has prevailed among leading economists (and sometimes even within the

1“Credit is a power which may grow but cannot be constructed. Those who live under a great and firm system of credit must consider that if they break up that one they will never see another, for it will take years upon years to make a successor to it. On this account I do not suggest that we should return to a natural or many reserve system of banking. I should only incur useless ridicule if I did suggest it. (Bagehot (1920, p. 68)) So much for mechanism design.
For hundreds of years, a tension between economic efficiency and financial stability has run through economists’ thinking about banks and central banks. The names of the liabilities (bank notes and bills of exchange in the 18th century, bank notes and deposits in the 19th and 20th centuries, claims on money market mutual funds and maybe even credit default derivatives in the 21st century) – and the names of the assets (self-liquidating commercial loans in the 18th and 19th centuries, sovereign debt in the 20th, and mortgage backed securities in the 21st century) have changed, but the underlying theoretical issues endure. What kinds of assets should financial intermediaries be permitted to hold and what kinds of liabilities should they issue? Regulating banks’ portfolios can foster a stable price level and stable monetary (narrow) aggregates, but only by creating rate of return wedges that open incentives for evasion and that impose costs in terms of economic efficiency. These rate-of-return wedges thus provoke tensions that can surface even within recommendations made a single author. Later, I’ll use writings of Milton Friedman to illustrate these tensions and the conflicting policy recommendations to which they can give rise.\footnote{Pervading the literature on these issues is a suspicion that it is good for the relative prices of some assets (interest rates on assets not called money) but not others (an asset called money) to fluctuate over time and across contingencies. Usually, such a preference for price stability cannot be represented for reasons internal to the models that we’ll be using. That there are ill-understood forces for prices to be sticky comes through clearly in the striking evidence about the consequences of pure changes in monetary units of account in the early 18th century; see Velde (2009).} I’ll organize my discussion around a centuries old contest pitting a free banking or real bills policy against a narrow banking policy that is rationalized by the quantity theory of money and that was embodied in both Peel’s Bank Act of 1844 and the original Chicago plan for banking reform.
4 The real bills doctrine

The real bills doctrine emphasizes the efficiency gains associated with financial competition. It prescribes dismantling legal barriers that separate money and credit markets. Legal barriers to unfettered competition can either be torn down directly to allow unfettered financial intermediation, or else disarmed indirectly, by having a central bank issue notes that it uses to purchase enough private loans to eradicate the rate of return wedges that the legal barriers were designed to sustain.

The author of the real bills doctrine, Adam Smith (1806, bk. II, ch. II), conducted what today we call a small-country analysis when he took as given the price of gold in terms of consumption goods. Starting from a system in which gold coins alone served as money, Smith argued that a country could improve the allocation of resources by allowing banks to issue notes backed by assets that take the form of safe short-term evidences of private indebtedness (which he called ‘real bills’).3 It is feasible for the bank notes to be convertible on demand into gold because the short term loans backing them are risk-free. This policy would prompt private agents to rearrange their cash holdings in a way that would induce a country as a whole to export the gold coins displaced by the more convenient to hold but ‘good-as-gold’ bank notes and to use the proceeds to finance imports of goods to be consumed or invested. Smith said that this operation would no impact on the domestic price level but that it would make the country better off.4

3In saying that “... a bank discounts to a merchant a real bill of exchange drawn by a real creditor upon a real debtor and which as soon as it becomes due is really paid by that debtor,” Smith (1806, p. 44) indicates that he is thinking about low risk IOUs.

4Smith’s argument for using bank notes that are intermediated evidences of safe private indebtedness to economize on gold was adopted and carried forward by Ricardo and Keynes. Antecedents for Smith’s idea are to be found in the writings of John Law, a writer and public financier whose reputation had suffered so badly after the collapse of the Mississippi bubble that Smith chose not to mention his works. Antoin E. Murphy found and published John Law’s long-lost manuscript Law (1994), originally written in about 1705. See Murphy (1997) for a fascinating account of Law’s life and ideas.
4.1 Precautionary savings and mercantilism

Why did Smith choose to include extensive passages on money in a book remembered today for attacking mercantilism and advocating free trade? Smith’s advocacy of using financial deregulation to economize on the stocks of gold and silver tied up as money was an important component of his criticism of mercantilism. Smith described mercantilism as a set of restrictions on trade designed to protect a country’s commodity money from disturbances to supplies and demands for goods emanating at home and abroad.\(^5\) I view Smith’s proposal for a limited form of free banking as being an important part of his comprehensive package of policy proposals to dismantle mercantilist restrictions on trade without having adverse effects on a domestic monetary system.

4.2 Criticism of real bills doctrine

Smith’s analysis, which presumed a commodity standard, later came to be regarded as promising that the money supply could be trusted to regulate itself if a central bank were freely to rediscount banks’ holdings of safe private securities at an interest rate set “with a view of accommodating commerce and business.”\(^6\) That prescription came in for widespread criticism especially after the price level anchor that Smith had assumed disappeared when fiat money replaced gold. With promises to convert bank notes into gold no longer anchoring the price level, some monetary economists asserted that a limit on the quantity of fiat currency had to be imposed, and this, or so it was claimed, the real bills rule could not do. Critics asserted that discounting short term private evidences of indebtedness at a fixed interest rate would

\(^{5}\)See Smith (1806, bk. III, ch. I). Smith did not attack a straw man. His is one of the most coherent and persuasive accounts of mercantilism that I have read. See Sargent and Smith (1997) and Durdu et al. (2007) for formal models that cast a version of Smith’s argument against forms of over saving that are associated with mercantilist policies.

\(^{6}\)The words in quotes are from section 14 of the Federal Reserve Act of 1913.
unhinge both the quantity of fiat money and the price level. The real bills ‘doctrine’ became known as the real bills ‘fallacy’.\footnote{For example, Ahamed (2009) mentions the real bills doctrine often, but only as a discredited and mischievous misconception.}

4.3 Indeterminacy under real bills?

Formally, this criticism of the real bills doctrine can be cast as Wicksellian price level and money supply indeterminacy, as was done for example by Sargent (1987b, pp. 96-99) and Sargent and Wallace (1975). They cast indeterminacy results in terms of 1960s vintage models that depended sensitively on special assumptions about private actors’ preferences over portfolios came from what Leontief (1947) called ‘implicit theorizing’ because they were not derived from preferences defined over properties of asset returns. In particular, those models adopted what Tobin (1961) called the Keynesian assumption that government bonds are perfect substitutes with private bonds and equity, but imperfect substitutes with government issued money. To obtain a determinate price level and money supply in these models required pegging the money supply, not an interest rate.\footnote{Policy rules that set an interest rate schedule as a function of the price level could be used to restore determinacy in some formulations. However, such a rule seems difficult to interpret in terms of an instruction to the bank’s trading desk to put loans on tap.}

4.4 Real bills partly rehabilitated by Tobin

Tobin (1961, 1963) enriched the asset menu and the assumptions about private actors’ portfolio preferences beyond those elementary Keynesian ones, then focused attention on how outcomes of open market operations depend not just on the liabilities emitted by the central bank, but on the assets that ‘back’ those liabilities. For example, Tobin (1961) interpreted Keynes as assuming that government bonds and capital are perfect substitutes and focusing his theory of liquidity preference on the margin between money versus...
bonds-capital. Tobin said that if one had to model with only two aggregates of assets, it was better to make government bonds perfect substitutes with money and to focus on a money-bonds versus private capital margin.9

Tobin typically used models with a sticky wage that diverted attention away from how to sustain a nominal anchor (a sticky wage or a sticky price is a nominal anchor). But his work had very much of a ‘real bills’ flavor10 because it asserted that you cannot judge a monetary policy by looking only at the liability side of banks’ balance sheets.11 For Tobin, it was important to distinguish ‘outside’ (unbacked) from ‘inside’ (backed by private assets) money. Tobin advocated a research program that would apply portfolio theory to analyze central bank open market operations.

4.5 Real bills rehabilitated in general equilibrium

To complete Tobin’s research agenda required working with general equilibrium models, whose all-cards-on-the-table nature makes them immune from the Leontief (1947) ‘implicit theorizing’ barb. This was accomplished when Wallace (1981), Chamley and Polemarchakis (1984), and their followers brought key insights from Modigliani and Miller (1958) to bear on analysis of monetary and fiscal policies. I interpret papers cast in the mold of Wallace (1981) and Chamley and Polemarchakis (1984) as ‘back-solving’ exercises.12 For a given monetary-fiscal policy, determine an equilibrium price system and allocation. Then freeze the allocation and price system and attempt to solve

9John Stuart Mill asserted “The issues of a Government paper, even when not permanent, will raise prices: because Governments usually issue their paper in purchases for consumption. If issued to pay off a portion of the national debt, we believe they would have no effect. Mill (1844, p. 589) as quoted by Friedman and Schwartz (1982, p. 30), who cite this passage as an example of faulty doctrine.

10And very much an anti-naive-quantity theory flavor.

11For example, Tobin (1955) sets up a model so that central banks’ open market exchanges of money for government bonds have no effects, but exchanges of money for capital do.

12‘Back solving’ means exchanging the roles of what we usually think are the endogenous (prices and allocations) and exogenous (endowments and monetary and fiscal policies).
the model’s equilibrium conditions for the class of monetary-fiscal policies that support the same equilibrium. By doing this, these papers constructed nontrivial equivalence classes of policies that support the same allocation and price system. Movements within such an equivalence class of policies can be said to be ‘irrelevant’.

In some directions, these irrelevance classes bear out many of the real bills hunches present in Tobin’s work. These models are also very good vehicles for describing the tensions that pit the gains in stability against the losses of efficiency brought by financial regulation.13

4.6 Real bills versus the quantity theory, or efficiency versus stability

Sargent and Wallace (1982) and Smith (1988) used models of this class, in particular, versions of the overlapping generations model of Samuelson (1958), to analyze claims made for and against the real bills doctrine. The overlapping generations model is a natural vehicle for this purpose because it can be rigged so that objects that resemble both inside and outside money are traded in equilibria with aggregate fluctuations.14 The structure of endowments and preferences can be arranged to make an unbacked fiat money issued by a government be valued in a competitive equilibrium. This government issued liability pays zero nominal interest and plays the role of outside money. Sargent and Wallace (1982) and Smith (1988) used within-generation heterogeneity of endowments and preferences to motivate private borrowing and lending. Private IOUs available in zero net supply are safe assets that can be used to back inside money, i.e., they are Adam Smith’s ‘real bills’. To

13Wallace (1989) offers a characterization of potential irrelevance of open market operations in terms of an absence of apparent arbitrage opportunities in an equilibrium price system.

14Many of the ideas can also be represented in the context of models in the style of Bewley (1980, 1983), but versions of these models with aggregate fluctuations are more difficult to work with than are overlapping generations models with short-lived agents.
inject aggregate volatility that impacts the credit market and the money market, Sargent and Wallace (1982) assume a strictly periodic inter-generational pattern in the endowments of the people who are natural borrowers, a class of rich agents who are relatively well endowed later in their lives. These rich borrowers issue safe interest-bearing IOUs that are purchased by rich lenders (rich agents who are well endowed early in life). Poor lenders might also hold some of them too, but only if there is enough financial intermediation. The rich lenders are naturally holders of large denomination ‘bonds’ while the poor lenders are naturally holders of small denomination ‘money’. The poor lenders can hold claims on the large denomination loans issued by rich private borrowers only indirectly, that is, only if banks purchase private IOUs and hold them to back small denomination notes or deposits that the poor lenders can afford. The endowment patterns of rich and poor lenders are constant across generations, so the demand for credit from the rich borrowers is the only source of instability in money and credit markets.

This model environment is constructed to represent the quantity theory case for imposing legal restrictions that separate markets for credit and for money, and to raise questions about it. When legal restrictions are in place, say in the form of a minimal denomination for liabilities that banks can issue, poor lenders are confined to holding outside money while rich lenders will choose to hold the IOUs issued by the rich borrowers.\[15\] The legal restriction preventing production of inside money props up the demand for outside money and leads to rate-of-return wedges that indicate that credit and money markets have been decoupled.\[16\] With money and credit mar-

\[15\] This restriction is designed to mimic Peel’s Bank Act of 1844.

\[16\] A legal restrictions theory can also be used to rationalize the cash-in-advance restrictions in the models of Lucas and Stokey (1983), Lucas (1986), and Sargent (1987a, ch. 5). Furthermore, paying interest on government-issued fiat currency emerges as a necessary condition for solving a Ramsey problem (see Lucas and Stokey (1983), Lucas (1986)). The optimal policy eradicates the rate-of-return wedges opened up by the legal restrictions protecting the money market from competition with the credit market. Another way to implement the optimal policy is to permit free entry of intermediaries offering riskless liabilities backed by riskless assets purchased in the credit market. Arbitrage profits
kets thus separated, an equilibrium exists with a constant price level; poor lenders hold outside money while rich lenders hold private securities that yield a positive but fluctuating nominal rate of return. Fluctuations in the rate of return on private loans are driven by the demand for credit emanating from the periodically varying endowments of rich borrowers. Those fluctuations don’t affect the money market, which is protected by the legal limits on producing inside money. Here the quantity-theory-inspired legal restrictions stabilize the price level by separating the markets for credit and money. For the quantity theory of money to fit the data in this regime, ‘money’ should be defined as outside money.17

Evidently, the restrictions that separate money and credit markets achieve stability of the price level at a cost in terms of economic efficiency. Because different agents face different rates of return on assets with identical risks, the equilibrium allocation of resources is not Pareto optimal. A Pareto optimal allocation can be attained by implementing a real bills policy that creates a sufficiently large quantity of inside money backed by private IOUs. This can be done in superficially different but economically equivalent ways. One way is to instruct a central bank to circumvent the legal restriction on note size by purchasing private IOUs and use them to back inside money in the form of small denomination notes that the poor lenders can hold. This can lead to one of two possible outcomes, depending on whether or not endowments and preferences of the overlapping generations imply a low or high interest rate equilibrium without fiat money.18 In the low-interest-rate case in which the economy is naturally short of borrowers, there exists an equilibrium in which fiat money continues to be valued and interest rates on inside and outside money are equated. In this equilibrium, the nominal rate of interest

17This conforms with a Chicago tradition in the 1950s and 1960s that one should define ‘money’ by choosing among monetary aggregates that explain the price level best.

18See Samuelson (1958) for an analytic characterization of these cases.
is zero, but now the price level fluctuates because fluctuations in the demand for credit affect the supply of inside money. A quantity theory equation linking the price level and a money supply will still fit the data, but now it is necessary to define money as the sum of outside and inside money. This real bills equilibrium is Pareto optimal, but not Pareto superior to the quantity theory equilibrium that separates the money and credit markets. Moving from one equilibrium to another produces winners and losers.

Using a central bank open market strategy is not the only possible way to knock down barriers between credit and money markets. Another way to implement the same Pareto optimal allocation is simply to remove the legal restriction and to permit unfettered financial intermediation, also known as free banking. This will lead to the same equilibrium price level as well as the same allocation.

Thus, in the case in which the economy is naturally short of borrowers, removing barriers between money and credit markets creates instability in the price level and the money supply but leaves fiat money valued. But in the high interest rate case in which the economy has enough borrowers, removing barriers between money and credit markets causes fiat money to become worthless as the economy switches to a commodity standard. Here, legal restrictions protect the value of fiat money.\footnote{However, in this case it is also true that an equilibrium without valued fiat money is Pareto optimal.}

4.7 Using financial regulation to suppress excessive fluctuations emanating from sunspots

In the Sargent and Wallace (1982) model, with or without restrictions that separate money and credit markets, fluctuations in the price level, interest rates, and allocations emanate from fluctuations in fundamentals. Smith (1988) observes that historically concerns about adverse effects of waves of optimism and pessimism not linked to fundamental sources of fluctuations
seem to have motivated at least some quantity theoretic proposals to separate money and credit markets. To represent and evaluate those concerns, Smith constructs an overlapping generations structure in which regulations to separate credit and money markets succeed in eradicating equilibria that depend on sunspots. Smith describes restrictions that move the economy to an equilibrium with excessive fluctuations driven by sunspots to one without sunspots. Removing those restrictions produces winners and losers, so equilibria with and without legal restrictions that draw lines between money and credit are not Pareto comparable. As with the Sargent and Wallace (1982) model, the welfare comparisons that Smith performs sharply expose some of the ambiguities that necessarily confront a policy maker pondering whether he or she should want rates of return on some assets to be stable while accepting that other rates of return on other assets are not.

5 The Chicago plan for 100% reserves and Milton Friedman’s improvements

Sargent and Wallace (1982) and Smith (1988) designed their quantity theory regime legal restrictions to emulate the Chicago plan for 100% reserve requirements that Friedman (1960, p. 65) credited to Henry Simons and Lloyd Mints. Friedman modified the original Chicago plan to correct defects that he said were associated with the inefficiencies and incentives for avoidance brought by the legal restrictions that prevent people from exploiting the arbitrage opportunities presented by the rate of return discrepancies that prevail in equilibrium under the original Chicago plan. Friedman (1960, ch. 3) suggested two ways to overcome these difficulties. The first is to pay interest on reserves, to be financed either through taxation or through earnings on the central bank’s portfolio. (That financing details form essential parts of the plan becomes a good example of how monetary and fiscal policies are inextricably linked.) The second is to ‘move in the opposite direction’ advo-
cated by Gary Becker (1956) by abandoning restrictions on intermediation and permitting free banking (Friedman (1960, ftnt. 10, p. 108)).

5.1 General equilibrium analysis of Friedman’s improvements

Subsequent researchers aimed to clarify the sense in which these two proposals are really opposites. As we’ll see, when interest payments are financed from earnings on the central bank’s portfolio, they are not opposites. Sargent and Wallace (1985) and Sargent (1987a, pp. 177-182) study versions of Friedman’s proposal in the context of two different general equilibrium models with potentially valued fiat money, an overlapping generations model in Sargent and Wallace (1985) and a cash-in-advance model in Sargent (1987a, pp. 177-182). Both models reveal that while Friedman’s proposal to pay interest on reserves eliminates the inefficiencies and incentives for avoidance that concerned Friedman, they have side effects that come from erasing the lines between money and credit markets put there by the original Chicago plan.

When interest payments are financed by earnings on the government portfolio, either no equilibrium with valued fiat money exists, or there is an equilibrium with a zero nominal interest rate and an allocation equivalent to one that would emerge under free banking. Thus, a proposal to pay interest on reserves financed by earnings on the central bank’s portfolio is equivalent in its economic effects on relative prices and quantities with the ‘move in the opposite direction’ advocated by Gary Becker.

When payments of interest on reserves are financed by taxes, both models reveal that while Friedman’s proposal to pay interest on reserves eliminates the inefficiencies and incentives for avoidance that concerned Friedman, it

20 The tensions between efficiency and stability run through the vast literature critically evaluated by Friedman and Schwartz (1986).

21 Both models assume lump sum taxes.
does so by making the price level either indeterminate or infinite because it eradicates the barriers between the money and credit markets. These outcomes emerge because paying interest on reserves at the market rate converts reserves into as good an investment for banks as are the alternative assets that earn that market rate, rendering the demand for reserves indeterminate. When the demand for reserves becomes indeterminate, so do the taxes that have to be raised to pay interest on reserves. In the overlapping generations model, the market interest rate itself as well as tax rates and total tax collections are indeterminate. Similar results prevail under a cash-in-advance model, though the interest rate becomes determinate under tax financing even though the price level and taxes are indeterminate.\footnote{See Sargent (1987a, pp. 177-182). Lucas (1986, p. 124) proposes a closely related scheme with interest payments on currency to be financed by government earnings from private IOUs that it purchases in period 0. Lucas does not emphasize the indeterminacy lurking in his scheme, but I believe it is there nonetheless.} \footnote{Things are somewhat different in interesting ways in Bewley models and extensions of Townsend turnpike models. See Ljungqvist and Sargent (2004, pp. 594–597) and Manuelli and Sargent (2010).}

\section{5.2 Indeterminacy theme}

Thus, a threat of indeterminacy runs through the literatures that convey economists’ thoughts about real bills doctrine, the quantity theory of money, and proposals to supply an ‘optimal quantity of money’ by paying interest on reserves. Avoiding the Wicksellian indeterminacy alleged to be endemic to a real bills policy motivated quantity theory restrictions to arrest indeterminacy. Those restrictions worked, but they produced collateral damage in the form of equilibrium rate-of-return wedges that indicate inefficiencies and avoidance vulnerabilities. Implementing interest-on-reserves proposals to correct those rate-of-return discrepancies reconstructed indeterminacies.
5.3 Paying interest on reserves subverts independence of the central bank and the fiscal authority

From Friedman (1960) onward, analyses of schemes to pay interest on reserves financed by taxes have highlighted the fiscal ramifications of such a policy. The interdependence of monetary and fiscal policies inherent in such policies is one more illustration of how the sequence of government budget constraints make the ‘independence of the Fed’ a fiction. That it is perhaps a useful fiction comes from comparing what seem to be diametrically opposed proposals for coordinating monetary and fiscal policy made by Milton Friedman. Friedman (1953) proposed a debt management policy in which the Fed purchases 100% of all debt issued by the Treasury and thus automatically and immediately finances 100% of all government deficits. Later, Friedman (1960) proposed that the Fed increase the monetary base at k percent per year, thereby telling the Treasury that it will finance at most a small part of any large deficit. In hesitating between such apparently opposite proposals, Friedman was struggling to find a way for a determined monetary authority to get the upper hand over the fiscal authorities in what can become a game of chicken presented by the unpleasant arithmetic of the government budget constraint.\(^{24}\)

In summary:

- Proposals to separate money and credit markets introduce inefficiencies. Proposals to construct optimal policies from Friedman (1960) to Lucas and Stokey (1983) strive to reduce or eliminate those inefficiencies. But those proposals all end up reintegrating the credit and money markets.

- Proposals to pay interest on reserves financed by earnings on the central bank’s portfolio are economically equivalent to implementing a real bills

\(^{24}\)See Sargent (1993, ch. 2).
or free banking regime. They therefore undo any stabilizing effects sought by the original Chicago plan for separating markets for money and credit.

• Proposals to pay interest on reserves financed by taxes also subvert restrictions designed to separate markets for money and credit. In addition, they further confuse the line between fiscal and monetary policy and raise substantial issues about central bank independence.

• There are winners and losers in moving from a regime that separates money and credit markets to one that unfetters intermediaries.

6 What is a real bill? Maturity and risk transformations

I have alluded to formal models that interpret Smith’s ‘real bills’ as safe evidences of private indebtedness and the wedges that the real bills doctrine aims to eradicate as being wedges between risk-free rates of return faced by different people. But analogous efficiency-versus-stability issues arise when we ask whether financial intermediaries should be allowed to transform maturities and risks to help complete missing insurance and lending markets. Rate of return wedges and the associated inefficiencies are tell-tale signs of equilibria in models with incomplete markets. Expanded intermediation can reduce those wedges. Should banks and other intermediaries be allowed to improve efficiency by offering products that rely on statistical averaging and censoring to transform bundles of risky assets of various durations into much less risky assets that can back short-term risk-free deposits? Whether financial institutions should be allowed to purchase or to create such wedge reducing, efficiency improving assets and use them to back putatively risk-free liabilities raises questions about proper policies toward public lenders of last resort and suppliers of deposit insurance.
7 Another separation issue: how to fight bank runs

I have described how Milton Friedman and other economists have struggled with tensions between stability and efficiency in deciding where to draw the line between money and credit markets. The issue can be phrased as “what assets and liabilities should banks be allowed to hold and to issue?” We have also touched on Milton Friedman’s changing opinions on where and how to draw the line between decisions parceled out to monetary and fiscal authorities.

More such separation issues are at the heart of the competing models of panics and deposit insurance that inform policy makers’ opinions about lenders of last resort and deposit insurance. That prospective actions that *ex ante* should seem desirable to government functionaries later seem suboptimal *ex post* is at the heart of the predicament in designing deposit insurance and lenders of last resort. Long before Stern and Feldman (2004) wrestled with this thorny incentive problem, Bagehot (1920) had identified the problem:

A panic, in a word, is a species of neuralgia, and according to the rules of science you must not starve it. The holders of the cash reserve must be ready not only to keep it for their own liabilities, but to advance it most freely for the liabilities of others. They must lend to merchants to minor bankers, to “this man and that man” whenever the security is good. In wild periods of alarm, one failure makes many, and the best way to prevent the derivative failures is to arrest the primary failure which causes them. Bagehot (1920, pp. 100-101).

but

If the banks are bad, they will certainly continue bad and will probably become worse if the Government sustains and encour-
ages them. The cardinal maxim is that any aid to a present bad bank is the surest mode of preventing the establishment of a future good bank. Bagehot (1920, pp. 51-52).

7.1 Deposit insurance is good

In the Diamond and Dybvig (1983) model, ‘banks’ enable risk-sharing and maturity transformation that can improve the allocation of resources by allowing society to exploit investment opportunities efficiently. But with first-come, first-serve deposit contracts, there are multiple equilibria and some of these are not good. In a no-runs equilibrium, outcomes are good – maturity transformation facilitates risk-sharing and the appropriate financing of long-lived projects (the allocation is Pareto optimal). In an equilibrium with a ‘run’, risk-sharing and maturity transformation break down and the allocation of resources is inferior.

In this environment, government supplied deposit insurance works like a charm by knocking out the bad equilibrium. The government removes the runs equilibrium by promising payoffs that will be made only off the desirable and unique no-run equilibrium. This means that in equilibrium, deposit insurance ends up being costless.

How would someone armed only with the Diamond and Dybvig model approach the events of fall 2008? The model asserts that explicit deposit insurance immunizes banks from runs. That means that FDIC insured banks should be protected from runs. But the model regards a ‘bank’ to be any intermediary that conducts maturity transformation by issuing shorter term liabilities to fund longer-term assets. In 2008, that meant not just institutions that called themselves banks, but also money market mutual funds, special purpose vehicles known as shadow banks, insurance companies, and even parts of companies manufacturing durable goods like automobiles. Because they were not insured by the FDIC, such intermediaries were vulnerable to

\footnote{Also see the closely related earlier paper Bryant (1980).}
runs. It was natural to apply the Diamond and Dybvig model to argue that the contagion rapidly gathering steam in the fall of 2008 could be arrested by extending deposit insurance to all such Diamond and Dybvig ‘banks’, institutions whose maturity mismatches made them vulnerable to a run; that by doing so aggressively, the contagion would be arrested; that the ultimate cost of doing so would be small because adverse events that pass high costs to the government would occur only if the run failed to be arrested, an outcome that the government’s extension of deposit insurance had eliminated.

In this way, the Diamond and Dybvig model justifies the aggressive extension of ‘deposit insurance’ to previously uninsured creditors of non-bank financial intermediaries. It also inspires hope that a more serious breakdown has been avoided by using a policy that will not impose substantial costs on tax payers.

While this application of the Diamond and Dybvig paper offers grounds for optimism, words in the concluding section Diamond and Dybvig (1983) might cause us to think again. There the authors noted that by studying deposit insurance within a model that rigorously excludes moral hazard, they had purposefully excluded a countervailing force that had been analyzed by Kareken and Wallace (1978) in a paper that offers a very different perspective on deposit insurance.

7.2 Deposit insurance is bad

In the Diamond and Dybvig model, deposit insurance is unambiguously a good thing. In the model of Kareken and Wallace (1978), deposit insurance is unambiguously a bad thing when unaccompanied by a set of portfolio regulations that prevent banks from taking the excessive risks that deposit insurance tempts them to accept.

Kareken and Wallace studied an economy with complete markets that provide individuals ample opportunities to take or avoid risk. Like Diamond and Dybvig, Kareken and Wallace assumed rational expectations, so deposi-
tors 'see through' intermediaries and view themselves as holding shares of a bank’s portfolio. Kareken and Wallace compared two scenarios that might conceivably confront banks and their depositors. In the first scenario, a bank can attract depositors who want to hold risk-free assets if and only if it holds a risk-free portfolio. In this scenario, banks are safe in equilibrium because withdrawing depositors would immediately punish banks that do not hold safe portfolios.

In Kareken and Wallace’s second scenario, a government guarantees deposits, so depositors have no reason to be concerned about the riskiness of a bank’s portfolio. But a bank’s shareholders do because shareholders’ value is maximized when a bank becomes as large and as risky as possible. The deposit insurance allows shareholders to gamble on favorable terms with other peoples’ money (the depositors’ and the government’s), and shareholders want to do this as much as possible. The bank is bound to fail sooner or later, and then the government will have to pay the depositors. Note that the moral hazard problem is not solved by having the shareholders take losses when adverse events occur. The Kareken and Wallace model assumes that shareholders do take losses when a bank fails, a risk that they accept. The problem occurs when the bank’s creditors expect not to take losses, enabling the bank’s shareholders to gamble at the government’s expense.

In this way, Kareken and Wallace isolated the moral hazard problem created by improperly priced government-supplied deposit insurance. Kareken (1983) used the Kareken and Wallace analysis to argue that financial deregulation without accompanying reform of deposit insurance would be putting ‘the cart before the horse’.

26 This situation approximates the ‘natural’ competitive banking system of Bagehot (1920, p. 68) wherein banks experience a ‘preservative apprehension’ (Bagehot (1920, p. 106)).
7.3 Aligning political incentives must be part of the solution

The Diamond and Dybvig and the Kareken and Wallace models take government policy as exogenous. To appreciate the problem of banking regulation requires making government policy endogenous in ways that recognize the incentives that confront policy makers as time and chance unfold.

The good and bad aspects of deposit insurance isolated by the Diamond and Dybvig and Kareken and Wallace models, respectively, present a tension that governs the choice of how the government should administer deposit insurance and lender of last resort functions. At least informally, the dilemma has been long been recognized. Bagehot said that in normal times, the Bank of England should act in a way that convinces other banks not to expect to be bailed out when they experience adverse portfolio shocks; but nevertheless that when banks are threatened by a run, the Bank of England should lend freely to other banks, albeit while charging a high rate of interest and requiring good collateral. Bagehot warned that this policy might not work. Indeed, under rational expectations it cannot work because it is not coherent intertemporally. At the time that Northern Rock failed in 2007, Lawrence Summers chided Governor Mervyn King of the Bank of England with the advice that ‘now is not the time to bring out the moral hazard police’. Summers’s advice is both correct, according to a pure Diamond and Dybvig view, and incorrect, according to a pure Kareken and Wallace view that would make you ask ‘if not now, when?’ When a run threatens, government agents face incentives that will make them not choose to follow through on the tough policies needed to generate the ‘preservative apprehensions’ on the part of banks’ creditors that would stop banks from taking on too much risk. Such intertemporal conflicts among the things preferred by a benevolent government are called time-consistency problems.

Keister (2010) extends the Diamond and Dybvig model to incorporate a moral hazard problem under a policy that bail's out banks. He does this
by amending the Diamond and Dybvig model to include a government that uses taxes to finance a public good and on occasional at least partially to bail out some depositors. *Ex post*, bailouts are part of an efficient government policy. But when they *anticipate* bailouts, intermediaries choose portfolios with socially suboptimal levels of liquidity. That adverse outcome captures a moral hazard problem. The *ex ante* efficient policy calls for the government is *not* to offer bailouts, a policy that prompts intermediaries to hold enough liquid assets adequately to insure depositors. A downside of that *ex ante* efficient policy is that it makes runs more likely, an outcome that captures the destabilizing effects of a no-bailout policy. Keister constructs a tax on banks’ illiquidity that together with an appropriate bailout policy achieves both efficiency and stability.

Stern and Feldman (2004) and Chari and Kehoe (2010) explore other ways of coping with the (time-consistency) incentive problem confronting government agents that is provoked by the tension between the *ex post* good (arresting contagion) and *ex ante* bad (provoking excess risk-taking) aspects of deposit insurance and other lender-of-last resort activities. These writings take us into the realms of and political economy and sustainable government plans.

The analysis of Stern and Feldman addresses the time-consistency problem by focusing attention on ways to rearrange the interests and choice menus available to voters and government policy makers that can make it in their interests to follow through with policies designed to ameliorate the excessive risk-taking that government creditor insurance policies promote. Their perspective is that what has thus far impeded protecting ourselves against both contagion and efficient risk-taking is a set of incentive problems confronting not just banks and their creditors but also the elected officials and other government officers with the authority to insure creditors and act as lenders of last resort. Inspired by ways we have learned to cope with the time inconsistency problem created by temporarily exploitable trade-offs between inflation
and unemployment, Stern and Feldman seeks ways to structure government programs and appointment procedures that will give government agents the incentives to execute policies that will confirm a set of expectations on the part of private creditors that will attenuate excessive risk-taking at government expense.

I began by quoting words from Milton Friedman that asserted the importance of properly regulating monetary arrangements. I conclude with these troubling recent words written by Paul Volcker.

\[\ldots \text{some central structural issues have not yet been satisfactorily addressed.} \]

A large concern is the residue of moral hazard from the extensive and successful efforts of central banks and governments to rescue large failing and potentially failing financial institutions. The long-established safety net undergirding the stability of commercial banks deposit insurance and lender of last resort facilities has been both reinforced and extended in a series of ad hoc decisions to support investment banks, mortgage providers and the worlds largest insurance company. In the process, managements, creditors and to some extent stockholders of these non-banks have been protected.

The phrase too big to fail has entered into our everyday vocabulary. It carries the implication that really large, complex and highly interconnected financial institutions can count on public support at critical times. \ldots Beyond the emotion, the result is to provide those institutions with a competitive advantage in their financing, in their size and in their ability to take and absorb risks.

As things stand, the consequence will be to enhance incentives to risk-taking and leverage, with the implication of an even more
fragile financial system. We need to find more effective fail-safe arrangements. Volcker (2010)

A Incorporation into Federal Reserve Act

The real bills doctrine was written into the Federal Reserve Act of 1913 and taken seriously by early Federal Reserve Boards. Thus,

\[
\ldots\text{any Federal reserve bank may discount notes, drafts, and bills of exchange arising out of actual commercial transactions; that is, notes, drafts, and bills of exchange issued or drawn for agricultural, industrial, or commercial purposes} \ldots\text{Nothing in this Act contained shall be construed to prohibit such notes, drafts, and bills of exchange, secured by staple agricultural products or other goods, wares, or merchandise from being eligible for such discount; but such definition shall not include notes, drafts, or bills covering merely investments or issued or drawn for the purpose of carrying or trading in stocks, bonds, or other investment securities, except bonds and notes of the Government of the United States. Notes, drafts, and bills admitted to discount under the terms of this paragraph must have a maturity at the time of discount of not more than ninety days} \ldots
\]

Federal Reserve Act, 1913. section 13, paragraph 2

From the Annual Report of the Federal Reserve Board in 1923 we have:

\[
[T]\text{here will be little danger that the credit created and contributed by the Federal reserve banks will be in excessive volume if restricted to productive uses. Board of Governors (1923, p. 34)}
\]
References

Kareken, John H. 1983. Deposit Insurance Reform or Deregulation is the Cart, Not the Horse. Federal Reserve Bank of Minneapolis Quarterly Review.

