Bailouts, Time Inconsistency, and Optimal Regulation

V. V. Chari
University of Minnesota and
Federal Reserve Bank of Minneapolis

Patrick Kehoe
Federal Reserve Bank of Minneapolis,
University of Minnesota, and
Princeton University
Stern-Feldman Question

- Assume:
 - Government cannot credibly commit not to bail out firms

- Question:
 - How should ex ante regulation be designed taking into account government temptation to bail out ex post?

- Analysis motivated by ideas of Stern-Feldman *Too Big To Fail*
3 Points

• Optimal contracts often involve ex post inefficiency
 ○ Implies time inconsistency problem

• Gov’t faces more severe sustainability constraint than private agents
 ○ Ability to improve “firesale” prices for bankrupt assets

• Given government is tempted to bail out ex post
 ○ Optimal to regulate contracts ex ante to reduce temptation
Optimal contracts involve ex-post inefficiency
Simplified Version of Benchmark Model

- Agents: managers and lenders
 - Risk neutral, measure 1 of each
 - Lenders have e units of endowment
 - Managers exert costly unobservable effort a

- Technologies
 - Corporate technology

 endowments \rightarrow capital goods \rightarrow consumption goods
 - Storage

 endowments \rightarrow consumption goods
• 1 unit of goods, a units of manager effort produces capital goods

$$\begin{cases} A_H (1 + \varepsilon) & \text{prob } p_H (a) \\ A_L (1 + \varepsilon) & \text{prob } p_L (a) \end{cases}$$

where $\varepsilon \sim H(\varepsilon)$ manager specific shock

• Given capital goods, decide \textit{continue} or \textit{bankruptcy}

 ○ If continue, produce consumption goods 1:1 rate

 ○ If bankruptcy, two costs

 – manager suffers -B

 – use inferior technology called traditional technology
Corporate Technology

Inputs
1 unit of goods
a units effort
(a unobserved)

→

Capital Goods

AH(1+ε) prob pH(a)
AL(1+ε) prob pL(a)

Consumption Goods

Corporate Technology

Y_{ci}(ε) = A_i(1+ε)

Traditional Technology

Y_{bi}(ε) = RA_i(1+ε)

R ≤ 1

Manager: -B
Optimal Contract

- Maximize utility of manager s.t. zero profit constraint
- Set $c_H(\varepsilon) = c_H$ and $c_L(\varepsilon) = 0$
- Bankruptcy has cutoff form:
 - In low state declare bankruptcy for $\varepsilon \in [\varepsilon, \varepsilon^*]$, continue otherwise
 - In high state no bankruptcy
Optimal Contract

\[
\max p_H(a)c_H - p_L(a)BH(\varepsilon^*) - a
\]

(MIC) \[a \in \arg \max_a p_H(a)c_H - p_L(a)BH(\varepsilon^*) - a \]

(Budget) \[p_Hc_H + 1 \leq p_H A_H + p_L A_L \left[\int_{\varepsilon^*}^{\bar{\varepsilon}} (1 + \varepsilon)dH(\varepsilon) + R \int_{\varepsilon}^{\varepsilon^*} (1 + \varepsilon)dH(\varepsilon) \right] \]

- Equilibrium ex-ante efficient but ex-post inefficient
Recap

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem
 - Incentive to renegotiate to avoid bankruptcy costs
Develop private sustainability constraint
Benchmark Economy: Four Alterations

- Four alterations

1. Infinite repetition of static model
 - Triggers can make renegotiation costly

2. Variable scale in corporate technology
 - Investment k_c produces $A_i(1+\varepsilon)g(k_c)$ units of capital goods
 - Allows for inefficient level of k_c
3. Probability α_0 managers lose ability to turn capital goods into consumption goods

 - Gives supply of capital goods to traditional sector even if $\varepsilon^* = \varepsilon$

4. Replace traditional technology $R < 1$ with CRS technology $F(k_1, k_2)$

 - Gives endogenous “firesale price” for bankrupt capital

![Diagram](attachment:image.png)
If manager ever renegotiates, then believe always will

- Benefit of renegotiation: lower costs today

- Costs of renegotiation: worse outcomes tomorrow
 - Let $U^N = \text{utility when always renegotiate}$
 - Under U^N have no bankruptcy $\varepsilon^* = \underline{\varepsilon}$, but get low effort
Develop Private Sustainability Constraint

- Private sustainability constraint

\[U(a, k_c, \varepsilon^*) + \frac{\beta}{1-\beta} U(a, k_c, \varepsilon^*) \geq \hat{U}(a, k_c, \varepsilon) + \frac{\beta}{1-\beta} U^N \]

- Best one shot deviation
 - Stop all bankruptcy
 - But evaluate change at original “firesale price” \(R_2 \)

\[\hat{U} = \alpha_1 [p_H(a)A_H + p_L(a)A_L]g(k_c) + R_2 \hat{k}_2 - a - k_c \]

\(\hat{k}_2 = \) only exogenously liquidated capital
Develop government sustainability constraint
Bailout Authority

- Instruments: Lump sum transfers, $T_L(\varepsilon)$, to firms in low state, financed by lump sum taxes on firms in high state

- Chooses transfers/taxes after action a chosen

- Can “bribe” firms to avoid bankruptcy
 - Effectively bailout authority can choose ε^*
No Commitment by Bailout Authority

- Add *sustainability to bailouts* constraint

\[
U(a, k_c, \varepsilon^*) + \frac{\beta}{1-\beta} U(x) \geq \hat{U}^G(a, k_c, \varepsilon) + \frac{\beta}{1-\beta} U^N
\]

- Best one shot deviation
 - Stop all bankruptcy
 - Evaluate change at new “non-firesale” price \(\tilde{R}_2 \)

\[
\hat{U}^G = \alpha_1 [p_H(a)A_H + p_L(a)A_L]g(k_c) + \tilde{R}_2 k_2 - a - k_c
\]
No Commitment by Bailout Authority

- **Proposition:** Equilibrium with bailouts worse than private equilibrium

- Key idea: Sustainability with bailouts **tighter** than private sustainability

 - Government temptation
 \[
 \hat{U}^G = \alpha_1[p_H(a)A_H + p_L(a)A_L]g(k_c) + \tilde{R}_2\hat{k}_2 - a - k_c
 \]

 - Private temptation
 \[
 \hat{U} = \alpha_1[p_H(a)A_H + p_L(a)A_L]g(k_c) + R_2\hat{k}_2 - a - k_c
 \]

 - Tighter for government since \(\tilde{R}_2 > R_2\) so
 \[
 \hat{U}^G - \hat{U} = (\tilde{R}_2 - R_2)\hat{k}_2 > 0
 \]
Recap

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem

- Gov’t faces more severe sustainability constraints than private agents
 - Ability to improve “firesale” prices for bankrupt assets
Can ex ante regulator improve welfare?
Can ex ante regulator improve welfare?

Yes

Why: Regulation reduces temptation to bailout
Ex Ante Regulator

- Instruments: Lump sum transfers, $T_L(\varepsilon)$, to firms in low state, financed by lump sum taxes on firms in high state, and a tax on k_c

- Proposition: Regulator improves welfare relative to equilibrium with bailouts
Best Bailout Equilibrium

- Maximize manager’s utility subject to
 - Manager’s incentive constraint
 - Resource constraint
 - \(F_1(k_1, k_2) = 1 \) and
 - Sustainability constraint
 \[
 U(a, k_c, \varepsilon^*) + \frac{\beta}{1 - \beta} U \geq \hat{U}(a, k_c, \varepsilon) + \frac{\beta}{1 - \beta} U^N
 \]
 and
 - Return in corporate technology = Return in traditional technology
Regulator’s Problem is More Relaxed

- Maximize manager’s utility subject to
 - Manager’s incentive constraint
 - Resource constraint
 - \(F_1(k_1, k_2) = 1 \) and
 - Sustainability constraint

\[
U(a, k_c, \varepsilon^*) + \frac{\beta}{1-\beta} U \geq \hat{U}(a, k_c, \varepsilon) + \frac{\beta}{1-\beta} U^N
\]
Regulator’s Problem is More Relaxed

• Maximize manager’s utility subject to
 ○ Manager’s incentive constraint
 ○ Resource constraint
 ○ $F_1(k_1, k_2) = 1$ and
 ○ Sustainability constraint

\[
U(a, k_c, \varepsilon^\ast) + \frac{\beta}{1 - \beta} U \geq \widehat{U}(a, k_c, \varepsilon) + \frac{\beta}{1 - \beta} U^N
\]

• Regulator has higher ε^\ast, lower k_c than bailout authority

• Intuition: ε^\ast more important than k_c for incentives
Can Have Symmetric Instruments ______________________________

- Add tax on k_c to bailout authority instrument
 - No incentive to alter k_c ex post
 - With tiny tax distortions, strict incentive not to alter k_c

- Key to our results
 - Time inconsistency problem, not difference in instruments
Interpreting equilibrium with debt and equity

• Face value of debt = $A_L(1 + \varepsilon^*)(g(k_c))$

• Equity is residual claimant

• In bankruptcy: debt gets liquidation value, equity 0

• Regulatory equilibrium implemented with
 ○ Tax on returns to corporate technology
 ○ cap on debt to value

\[\frac{\text{debt}}{\text{value}} \leq \left(\frac{\text{debt}}{\text{value}} \right)^r \]
3 Points

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem

- Gov’t faces more severe sustainability constraint than private agents
 - Ability to improve “firesale” prices for bankrupt assets

- Given government is tempted to bail out ex post
 - Optimal to regulate contracts ex ante to reduce temptation