Macroeconomic Effects of Financial Shocks

Urban Jermann and Vincenzo Quadrini

University of Pennsylvania and University of Southern California

Urban Jermann and Vincenzo Quadrini

Equity payout and Debt repurchase (/ GDP)

3

Business cycle properties, 1984-2009:1

	Std(Variable)	Corr(Variable,GDP)	
Macroeconomic variables			
GDP	0.84		
Consumption (N.D.& S.)	0.49	0.83	
Investment	5.98	0.87	
Hours	1.18	0.81	
TFP	0.60	0.38	
Financial variables			
EquPay/GDP	1.05	0.41	
DebtRep/GDP	1.29	-0.61	

All variables are detrended with a band-pass filter that preserves cycles of 1.5-8 years.

Urban Jermann and Vincenzo Quadrini

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

What do we do?

- Extend the Real Business Cycle model: financial frictions and financial shocks
- ② Construct series for 'financial shocks' and 'productivity shocks' from data using model restrictions
- ③ Evaluate the importance of financial (and productivity) shocks for macroeconomic fluctuations

- For financial flows we need financial shocks
- Financial shocks improve the model's performance for real macroeconomic variables
- Financial shocks have played a central role in all recent recessions: 1991, 2001, and 2008

イロト 不得 トイヨト イヨト 二日

The Model

Continuum of firms with revenue function

$$F(z_t, k_t, l_t) = e^{z_t} k_t^{\theta} l_t^{1-\theta}$$

 z_t is an exogenous productivity shock

Financial structure

• Firms raise funds with debt and equity. The cost of borrowing is:

$$R_t = 1 + r_t \left(1 - \tau\right)$$

Financial structure

• Firms raise funds with debt and equity. The cost of borrowing is:

$$R_t = 1 + r_t \left(1 - \tau \right)$$

• Debt is preferred to equity, but there is limited enforcement:

$$\underbrace{\{1-\eta(1-\psi_t)\}}_{\xi_t} \cdot \overline{V}_t (k_{t+1}, b_{t+1}) \geq F(z_t, k_t, l_t)$$

Financial structure

• Firms raise funds with debt and equity. The cost of borrowing is:

$$R_t = 1 + r_t \left(1 - \tau \right)$$

• Debt is preferred to equity, but there is limited enforcement:

$$\underbrace{\{\underline{1-\eta(1-\psi_t)}\}}_{\xi_t} \cdot \overline{V}_t (k_{t+1}, b_{t+1}) \geq F(z_t, k_t, l_t)$$

• Issuing/repurchasing shares and paying dividends are costly:

Cost of payout :
$$\varphi(d_t) = d_t + \kappa \cdot (d_t - \overline{d})^2$$

Urban Jermann and Vincenzo Quadrini

Recursive problem

$$V(\mathbf{s}; k, b) = \max_{d,l,k',b'} \left\{ d + Em'V(\mathbf{s}'; k', b') \right\}$$

subject to
$$F(z, k, l) + (1 - \delta) k_t - wl + \frac{b'}{R} = b + \varphi(d) + k'$$

$$\xi Em'V(\mathbf{s}'; k', b') \geq F(z, k, l)$$

Urban Jermann and Vincenzo Quadrini

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

Household sector

• There is a representative consumer with standard preferences:

$$E_{0}\sum_{t=0}^{\infty}\beta^{t}U(c_{t},I_{t}), \text{ with } U(.) = \ln(c) + \alpha \ln(1-I)$$

Budget constraint:

$$w_t l_t + b_t + s_t (d_t + q_t) = \frac{b_{t+1}}{1 + r_t} + s_{t+1} q_t + c_t + T_t$$

• Firms are owned by households, so that

$$m_{t+j} = \beta^j U_c(c_{t+j}, I_{t+j}) / U_c(c_t, I_t)$$

Urban Jermann and Vincenzo Quadrini

イロト イポト イヨト イヨト 二日

Calibration

- Some parameters are standard: $\beta = 0.9825$, $\alpha = 1.8991$, $\theta = 0.36$, $\delta = 0.025$
- Others are not standard but can be calibrated using steady state targets: $au=0.35,\,\overline{\xi}=0.1965$
- Payout cost parameter $\kappa = 0.246$ to match standard deviation of empirical equity payout

Constructing the shocks

• Productivity shocks are standard Solow residuals

$$\hat{z}_t = \hat{y}_t - \theta \, \hat{k}_t - (1 - \theta) \, \hat{l}_t$$

Constructing the shocks

Productivity shocks are standard Solow residuals

$$\hat{z}_t = \hat{y}_t - \theta \, \hat{k}_t - (1 - \theta) \, \hat{l}_t$$

 Financial shocks are measured with the linearized enforcement constraint

$$\xi_t \overline{V}_t = y_t$$
$$\hat{\xi}_t = c_z \hat{z}_t + c_y \hat{y}_t + c_k \hat{k}_{t+1} + c_b \hat{b}_{t+1}^r$$

イロト イロト イモト イモト 三日

Constructing the shocks

Productivity shocks are standard Solow residuals

$$\hat{z}_t = \hat{y}_t - \theta \, \hat{k}_t - (1 - \theta) \, \hat{l}_t$$

 Financial shocks are measured with the linearized enforcement constraint

$$\begin{aligned} \tilde{\xi}_t V_t &= y_t \\ \hat{\xi}_t &= c_z \hat{z}_t + c_y \hat{y}_t + c_k \hat{k}_{t+1} + c_b \hat{b}_{t+1}^r \end{aligned}$$

Based on constructed time series (1984-2009.1) we estimate

$$\begin{pmatrix} \hat{z}_{t+1} \\ \hat{\zeta}_{t+1} \end{pmatrix} = A \begin{pmatrix} \hat{z}_t \\ \hat{\zeta}_t \end{pmatrix} + \begin{pmatrix} \varepsilon_{z,t+1} \\ \varepsilon_{\xi,t+1} \end{pmatrix}$$

Urban Jermann and Vincenzo Quadrini

イロト イポト イヨト イヨト

Fig 3: Productivity Shocks only: Data (thick line), No Financial Frictions (-), Financial Frictions (--)

Urban Jermann and Vincenzo Quadrini

11 / 20

Fig 6: Impulse Responses to Productivity Shock

Urban Jermann and Vincenzo Quadrini

12 / 20

Fig 4: Model with Financial Shocks versus Data (thick line)

Urban Jermann and Vincenzo Quadrini

13 / 20

Urban Jermann and Vincenzo Quadrini

うへで 14 / 20

First-order condition for labor

$$F_{l}(z, k, l) = w \cdot \left(\frac{1}{1 - \mu \varphi_{d}(d)}\right)$$

Urban Jermann and Vincenzo Quadrini

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇ < ○ Q ○ 15 / 21

Urban Jermann and Vincenzo Quadrini

16 / 21

Fig 2: Productivity Shocks and Financial Shocks

Urban Jermann and Vincenzo Quadrini

New project

- Our financial frictions in a model like Smets and Wouters (2007)
- Sticky prices, sticky wages, investment adjustment cost, variable capital utilization, and Taylor rule
- ullet 8 shocks, including our financial shock ξ

イロト イポト イヨト イヨト 二日

Preliminary findings

Variance decomposition

	TFP shock	Investment shock	Intertemp shock	Price MK shock	Wage MK shock	Monetary shock	Government shock	Financial shock
GDP	4.1%	20.4%	3.5%	16.4%	10.9%	2.5%	0.2%	42.0%
Consumption	8.5%	25.4%	39.1%	2.7%	17.0%	0.1%	6.4%	0.9%
Investment	1.9%	13.9%	13.2%	15.9%	5.6%	2.6%	4.4%	42.6%
FF rate	1.0%	30.7%	0.4%	27.4%	3.6%	10.5%	0.8%	25.7%
Hours	1.9%	19.8%	3.9%	16.7%	11.5%	2.7%	0.3%	43.4%
Wages	3.8%	36.7%	9.3%	8.2%	25.0%	0.9%	2.8%	13.4%
DebtPay	0.7%	16.3%	0.1%	57.4%	0.6%	7.7%	0.8%	16.5%
Inflation	1.2%	19.4%	1.6%	8.6%	2.9%	63.8%	1.0%	1.6%

Conclusion

- The model with financial shocks (and productivity shocks) replicates business cycles for real variables and financial flows reasonably well
- The simulated model displays significant financial tightening in the recessions of 1991, 2001 and 2008, suggesting an important role for financial shocks in these downturns

イロト イポト イヨト イヨト

Equity Payout and Debt Repurchases UPATED TO 2009 Q1

Urban Jermann and Vincenzo Quadrini

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ
○ Q <>
21 / 21