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1 Introduction

We’ve seen significant progress in the recent past in research linking asset returns to macroe-
conomic fundamentals. Extant models provide quantitatively realistic predictions for the
mean, variance, and other moments of asset returns. The most popular models have rep-
resentative agents, with examples based on recursive preferences and habits contributing
prominently. These two classes of preferences are often treated as substitutes, two ways to
generate realistic asset prices and returns, yet their mechanisms are quite different. Are
they similar, then, or different?

The answer, of course, is some of each, but recursive preferences and habits share one
important feature: dynamics play a central role. With recursive preferences, dynamics in the
consumption growth process are required to distinguish them from additive power utility.
With habits, dynamics enter preferences directly. The question we address is whether these
dynamics, which are essential to explaining average excess returns, are realistic along other
dimensions.

What other dimensions, you might ask. We propose two measures that summarize
the behavior of asset pricing models. We base them on the pricing kernel, because every
arbitrage-free model has one. One measure concerns the pricing kernel’s dispersion, which
we capture with entropy . We show that the entropy of the pricing kernel is an upper bound
on mean excess returns. The second measure concerns the pricing kernel’s dynamics. We
summarize dynamics with what we call horizon dependence, a measure of how entropy
varies with the investment horizon. As with entropy, we can infer its magnitude from
asset prices: negative (positive) horizon dependence is associated with an upward-sloping
(downward-sloping) mean yield curve and positive (negative) mean yield spreads.

The approach is similar in spirit to Hansen and Jagannathan (1991), in which proper-
ties of theoretical models are compared to those implied by observed returns. In their case,
the properties are the mean and variance of the pricing kernel. In ours, the properties are
entropy and horizon dependence. Entropy, as a measure of dispersion, is a generalization of
the variance. Horizon dependence has no counterpart in the Hansen-Jagannathan method-
ology. It captures the dynamics essential to representative agent models in a convenient
and informative way.

Although entropy has been widely used in other fields, it has seen limited application
to economics and finance. Nevertheless, we find entropy-based measures natural ones for
our purpose. One reason is that most popular asset pricing models are loglinear, or nearly
so. Logarithmic measures like entropy and log-differences in returns are easily computed
for them. A second reason is that entropy extends more easily to multiple periods than,
say, the mean and standard deviation of the pricing kernel used in the Hansen-Jagannathan
bound. Similar reasoning underlies the treatment of long-run risk in Hansen (2008) and
Hansen and Scheinkman (2009). Finally, entropy incorporates nonnormal components of



the pricing kernel and returns in a particularly simple and transparent way. All of this will
be clearer once we’ve developed the appropriate tools.

These measures give us new insight into the behavior of popular asset pricing models.
The evidence suggests that a realistic model should have substantial entropy (to account
for observed mean excess returns) and modest horizon dependence (to account for observed
mean yield spreads). In models based on recursive preferences or habits, the two features
are often linked: dynamic ingredients designed to increase the pricing kernel’s entropy often
generate excessive horizon dependence as a result. The models are similar, therefore, in this
respect: tension between entropy and horizon dependence is an inherent feature.

We illustrate the tension between entropy and horizon dependence and point to a number
of ways of resolving it. One of the most useful, in our view, is to introduce jumps: nonnormal
innovations in consumption growth. Skewness and kurtosis are evident in asset returns, so
it seems natural to include them in asset pricing models. Jump risk can be added to either
class of models. With recursive preferences, persistent jump risk can increase entropy
substantially with only a small impact on horizon dependence.

All of these topics are developed below. We use closed-form loglinear approximations
throughout to make all the moving parts visible. We think this brings us some useful
intuition even in models that have been explored extensively elsewhere.

We use a number of conventions to keep the notation, if not simple, as simple as possible.
(i) For the most part, Greek letters are parameters. Latin letters are variables or coefficients.
(ii) We use a t subscript (xt, for example) to represent a random variable and the same letter
without a subscript (x) to represent its mean. In some cases, log x represents the mean of
log xt rather than the log of the mean of xt, but the subtle difference between the two has no
bearing on anything important. (iii) The letter B is the backshift or lag operator, shifting
what follows back one period: Bxt = xt−1, B

kxt = xt−k, and so on. (iv) Lag polynomials
are one-sided and possibly infinite: a(B) = a0 + a1B + a2B

2 + · · ·.

2 Properties of pricing kernels

In modern asset pricing theory, a pricing kernel accounts for asset returns. The reverse
is also true: asset returns contain information about the pricing kernel that gave rise to
them. We show that mean excess returns on equity, bonds, and other assets correspond
to properties of the pricing kernel, specifically its dispersion and horizon dependence. We
base these properties on entropy, a dispersion concept that is particularly convenient in the
loglinear environments common in the asset pricing literature.
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2.1 Properties of asset returns

We begin with a summary of the salient properties of excess returns. In Table 1 we report the
sample mean, standard deviation, skewness, and excess kurtosis of monthly excess returns
on a diverse collection of assets. None of this evidence is new, but it’s helpful to collect it
in one place. Excess returns are measured as differences in logs of gross returns over the
one-month Treasury.

We see, first, the equity premium. The mean excess return on a broad-based equity
index is 0.0040 = 0.40% per month or 4.8% a year. This return comes with risk: its sample
distribution has a standard deviation over 5%, skewness of −0.4, and excess kurtosis of 7.9.
Nonzero values of skewness and excess kurtosis are a clear indication that excess returns on
the equity index are not normal.

Other equity portfolios exhibit a range of behavior. Some have larger mean excess
returns and come with larger standard deviations and excess kurtosis. Consider the popular
Fama-French portfolios, constructed from a five-by-five matrix of stocks sorted by size (small
to large) and book-to-market (low to high). Small firms with high book-to-market have
mean excess returns more than twice the equity premium (0.90% per month). Option
strategies (buying out-of-the-money puts and at-the-money straddles on the S&P 500 index)
have large negative excess returns, suggesting that short positions will have large positive
returns, on average. Both exhibit substantial skewness and excess kurtosis.

Currencies have smaller mean excess returns and standard deviations but comparable
excess kurtosis, although more sophisticated currency strategies have been found to generate
large excess returns. Here we see that buying the pound generates substantial excess returns
in this sample.

Bonds have smaller mean excess returns than the equity index. About half the excess
return of the five-year US Treasury over the one-month Treasury (0.15% in our sample)
is evident in the one-year bond (0.08%). The increase in excess returns with maturity
corresponds to a mean yield curve that also increases with maturity over this range. (See,
for example, Appendix A.1.) The numbers are similar: the mean spread between yields
on one-month and five-year Treasuries over the last three decades has been 1.2% annually
or 0.1% monthly. Backus, Foresi, Mozumdar, and Wu (2001, Table 2) is one of the many
sources of evidence on this point. All of these numbers refer to nominal bonds. Data on
inflation-indexed bonds is available for only a short sample and a limited range of maturities,
leaving some range of opinion about their properties, including the mean slope of the real
yield curve. However, none of the evidence suggests that the absolute magnitudes, whether
positive or negative, are significantly greater than we see for nominal bonds. Chernov and
Mueller (2008) suggest that yield spreads are smaller on real than nominal bonds, which
would make our estimates upper bounds.

These properties of returns are estimates, but they’re suggestive of the facts a theoretical
model might try to explain. Our list includes: (i) Many assets have positive mean excess
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returns, and some have returns substantially greater than a broad-based equity index such
as the S&P 500. We use a lower bound of 0.01 = 1% per month. The exact number isn’t
critical, but it’s helpful to have a clear numerical benchmark. (ii) Excess returns on long
bonds are smaller than excess returns on an equity index and positive for nominal bonds.
We are agnostic about the sign of mean yield spreads, but suggest they are unlikely to be
larger than 0.001 = 0.1% monthly in absolute value. (iii) Excess returns on many assets
are decidedly nonnormal.

2.2 Entropy

Our goal is to connect these properties of excess returns to features of pricing kernels. We
summarize these features using entropy, a concept that has been used in such disparate fields
as physics, information theory, and (increasingly) economics and finance. Among notable
examples of the latter, Hansen and Sargent (2008) use entropy to quantify ambiguity, Sims
(2003) and Van Nieuwerburgh and Veldkamp (2010) use it to measure learning capacity, and
Ghosh, Julliard, and Taylor (2011) and Stutzer (1996) use it to limit differences between
true and risk-neutral probabilities subject to pricing assets correctly.

The distinction between true and risk-neutral probabilities is central to our work. The
relative entropy of the risk-neutral distribution might be expressed

Lt(p
∗
t+1/pt+1) = −Et log(p

∗
t+1/pt+1),

where pt+1 is the (true) conditional probability at date t of an arbitrary state at t+1, p∗t+1

is the corresponding risk-neutral probability, and Et is the conditional expectation based
on the true distribution.

Intuitively, we associate large risk premiums with large differences between true and risk-
neutral probabilities. One way to capture this difference is through a log-likelihood ratio.
For instance, we would use the log-likelihood ratio to test the null model pt+1 against the
alternative p∗t+1. A large statistic is evidence against the null and thus suggests significant
risk premiums. Entropy is the population value of this statistic.

Another way to look at the same issue is to associate risk premiums with variability in
the ratio p∗t+1/pt+1. Entropy captures this notion as well. Because Et(p

∗
t+1/pt+1) = 1, we

can rewrite entropy as

Lt(p
∗
t+1/pt+1) = logEt(p

∗
t+1/pt+1)− Et log(p

∗
t+1/pt+1). (1)

If the ratio is constant, it must equal one and entropy is zero. The concavity of the log
function tells us that entropy is nonnegative and increasing in the variability of p∗t+1/pt+1.
These properties are consistent with a measure of dispersion.

We make these ideas more precise in the next section by connecting risk-neutral proba-
bilities to the pricing kernel and entropy to expected excess returns.
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2.3 An entropy bound

Our next step is to show that suitably-defined entropy of the pricing kernel is an upper
bound on mean excess returns. This entropy bound is a close relative of the well-known
Hansen-Jagannathan (1991) bound and extends related work by Alvarez and Jermann
(2005), Bansal and Lehman (1997), and Cochrane (1992).

The foundation for both bounds is the fundamental result in asset pricing theory: in
environments that are free of arbitrage opportunities, there is a positive random variable
m that satisfies

Et (mt+1rt+1) = 1 (2)

for gross returns rt+1 on all traded assets. We refer to mt+1 as the pricing kernel . Here Et

denotes the expectation based on the distribution conditioned on the state at date t. In the
stationary ergodic environments we study, the unconditional expectation E is computed
from the unique equilibrium or invariant distribution.

The pricing kernel defines implicitly the risk-neutral probabilities viamt+1 = q1t p
∗
t+1/pt+1,

where q1t = Etmt+1 is the price of a one-period bond (a claim to “one” next period). If we
substitute for p∗t+1/pt+1 in (1), we see that

Lt(p
∗
t+1/pt+1) = logEtmt+1 − Et logmt+1 = Lt(mt+1), (3)

where the last equality defines the conditional entropy of the pricing kernel. If mt+1 is
lognormal, with logmt+1|t ∼ N (κ1t, κ2t), conditional entropy is

Lt(mt+1) = logEtmt+1 − Et logmt+1 = (κ1t + κ2t/2)− κ1t = κ2t/2. (4)

This supports our earlier intuition that entropy measures variability in the pricing kernel.

These two ingredients — the pricing relation (2) and the conditional entropy of the
pricing kernel (3) — lead to the entropy bound:

ELt(mt+1) ≥ E
(
log rt+1 − log r1t+1

)
, (5)

where r1t+1 = 1/q1t is the (gross) return on a one-period riskfree bond. In words: mean
excess returns are bounded above by mean conditional entropy of the pricing kernel. For
convenience, we refer to mean conditional entropy simply as entropy.

We derive the bound (5) as follows. Since log is a concave function, the pricing relation
(2) and Jensen’s inequality imply that for any positive return rt+1,

Et logmt+1 + Et log rt+1 ≤ log(1) = 0, (6)

with equality iff mt+1rt+1 = 1. This is the conditional version of an inequality reported by
Bansal and Lehmann (1997, Section 2.3) and Cochrane (1992, Section 3.2). The log return
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with the highest mean is, evidently, rt+1 = 1/mt+1. For the excess return, we need the
return on a one-period bond. Its price is q1t = Etmt+1, so the short rate is r1t+1 = 1/q1t .
The log of the short rate is therefore

log r1t+1 = − log q1t = − logEtmt+1 = −Lt(mt+1)−Et logmt+1.

If we subtract this from (6), we have

Lt(mt+1) ≥ Et

(
log rt+1 − log r1t+1

)
. (7)

We take the unconditional expectation of both sides to produce (5).

The entropy bound (5), like the Hansen-Jagannathan (1991) bound, produces an upper
bound on excess returns from the dispersion of the pricing kernel. In this broad sense the
ideas are similar, but the bounds use different measures of dispersion and excess returns.
They are not equivalent and neither is a special case of the other. We explore the differences
further in Appendix A.2.

Since the entropy bound is derived from the conditional distribution, it incorporates
conditioning information. The conditional entropy bound (7), for example, is a function of
the state at date t, so the equilibrium distribution across states characterizes its distribution.
The left side of (5) is simply the mean of this distribution. Alvarez and Jermann (2005,
Section 3) derive a similar bound based on unconditional entropy (entropy computed from
the equilibrium distribution). The two entropies are related by

L(mt+1) = ELt(mt+1) + L(Etmt+1).

There’s a close analog for the variance: the unconditional variance of a random variable
is the mean of its conditional variance plus the variance of its conditional mean. The
unconditional “Alvarez-Jermann” bound is therefore

L(mt+1) ≥ E
(
log rt+1 − log r1t+1

)
+ L(Etmt+1) ≥ E

(
log rt+1 − log r1t+1

)
.

(This is a byproduct of their Proposition 2.) The second term in the middle expression
represents the entropy of the one-period bond price. If we compare this with (5), we see
that the bound based on mean conditional entropy is tighter.

Conditional entropy has a nice connection to the cumulants of logmt+1. Cumulants, of
course, are close relatives of moments. The (conditional) cumulant-generating function (if
it exists) for logmt+1 is the log of its (conditional) moment-generating function:

kt(s) = logEt

(
es logmt+1

)
,

a function of the real variable s. As before, we denote conditioning with a subscript t. With
enough regularity, it has the power series expansion

kt(s) = logEt

(
es logmt+1

)
=

∞∑
j=1

κjts
j/j!
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over some suitable range of s. The (conditional) cumulant κjt is the jth derivative of kt
at s = 0; κ1t is the mean, κ2t is the variance, and so on. Skewness γ1t and excess kurtosis

γ2t are scaled versions of the third and fourth cumulants: γ1t = κ3t/κ
3/2
2t and γ2t = κ4t/κ

2
2t.

Entropy is therefore

Lt(mt+1) = kt(1)− κ1t

= κ2t(logmt+1)/2!︸ ︷︷ ︸
normal term

+κ3t(logmt+1)/3! + κ4t(logmt+1)/4! + · · ·︸ ︷︷ ︸
high-order cumulants

. (8)

If the conditional distribution of logmt+1 is normal, then high-order cumulants (those of
order j ≥ 3) are zero and we recover (4). Nonzero high-order terms are a defining feature
of models with jumps and disasters. Equation (8) and the bound (5) then tell us that these
high-order cumulants can generate additional entropy and larger risk premiums.

2.4 Horizon dependence

With the entropy bound, we use information about excess returns to describe the pricing
kernel’s dispersion. We now show how bond yields can be used to describe its dynamics.

Bond prices follow from the pricing kernel. Let qnt be the price at date t of a claim to
one at t + n. The one-period return on this bond is rnt+1 = qn−1

t+1 /q
n
t . Equation (2) then

gives us recursive pricing of bonds:

qnt = Et

(
mt+1q

n−1
t+1

)
(9)

starting with q0t = 1. Repeated substitution leads to

qnt = Et (mt+1mt+2 · · ·mt+n) = Etmt,t+n, (10)

where mt,t+n ≡ mt+1mt+2 · · ·mt+n is compact notation for the multiperiod pricing kernel .
Yields are defined from prices by qnt = exp(−nynt ) or nynt = − log qnt .

We summarize the pricing kernel’s dynamics with the entropy of the multiperiod pricing
kernel, which we term multiperiod entropy . From the pricing relation (10) for bonds and
the definition of entropy, you might guess that multiperiod entropy is closely related to long
bond prices. Multiperiod conditional entropy is

Lt(mt,t+n) = logEtmt,t+n − Et logmt,t+n = log qnt − Et

n∑
j=1

logmt+j .

Mean conditional multiperiod entropy (multiperiod entropy, for short) is therefore

ELt(mt,t+n) = E log qn − nE logm = −nEyn − nE logm. (11)
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The second equality follows from the definition of the n-period yield yn.

We use multiperiod entropy to describe the pricing kernel’s dynamics. Suppose, for
example, that successive pricing kernels are iid (independent and identically distributed).
Then mean multiperiod conditional entropy is simply a scaled-up version of one-period
entropy:

ELt(mt,t+n) = nELt(mt+1).

This is a generalization of a well-known result: the variance of a random walk is proportional
to the time interval. We refer to this as a case of neutral or zero horizon dependence. More
formally, we define horizon dependence by the per-period difference between the left and
right sides:

H(n) = n−1ELt(mt,t+n)− ELt(mt+1). (12)

If H(n) is positive we say there is positive horizon dependence, if negative, we say there is
negative horizon dependence. It’s possible for H(n) to be positive for some values of n and
negative for others, but that doesn’t occur in the examples we study. In a loglinear model,
such as the one in the next section, horizon dependence is governed by the autocorrelation
of the log pricing kernel. If autocorrelations are negative, then horizon dependence is, too.

More important for our purposes, horizon dependence is tied to bond yields. The dif-
ference between equation (11) for arbitrary n and n = 1 implies

H(n) = n−1ELt(mt,t+n)− ELt(mt+1) = −E(ynt − y1t ). (13)

In words: horizon dependence is negative if the mean yield curve slopes upward, positive if
it slopes downward, and zero if it’s flat.

If we look at horizon dependence through the lens of the evidence, it’s clear that it
must be small relative to entropy. Why? Because mean yield spreads (and returns on long
bonds) are small relative to returns on other assets.

3 Models of pricing kernels

We apply the concepts of entropy and horizon dependence to a loglinear example, a modest
generalization of the Vasicek (1977) model. We show, in this relatively simple setting, how
parameter values based on observed asset returns generate the two properties we’ve empha-
sized: entropy must be larger than observed excess returns (say, 0.01 = 1% per month) and
horizon dependence must be small in comparison (no larger in absolute value than 0.001 =
0.1% at 60 months). We then compare the model to one based on a representative agent
with additive power utility.
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3.1 The Vasicek model

Consider the loglinear statistical model of the pricing kernel,

logmt = logm+
∞∑
j=0

ajwt−j = logm+ a(B)wt, (14)

where wt is iid N (0, 1),
∑

j a
2
j <∞, and B is the lag or backshift operator. The implicitly

defined lag polynomial a(B) is described in Appendix A.3 along with some of its uses. The
infinite moving average gives us control over the pricing kernel’s dynamics, which reappear
in bond yields and horizon dependence. We’ll see that a0 governs entropy and the other
coefficients govern horizon dependence. Here mt is the real pricing kernel, which provides
a direct comparison with marginal rates of substitution in representative agent models.

Bond prices, returns, and yields follow from their definitions, the pricing relation (9),
and the pricing kernel (14). See Appendix A.4. The short rate is

log r1t+1 = −(logm+A2
0/2)−

∞∑
j=0

aj+1wt−j = −(logm+A2
0/2) + [a(B)/B]+wt. (15)

The subscript “+” means ignore negative powers of B; see Appendix A.3. The partial sums
An =

∑n
j=0 aj include A0 = a0. Mean excess returns and yield spreads are

E(log rnt+1 − log r1t+1) =
(
A2

0 −A2
n−1

)
/2

E(ynt − y1t ) = n−1
n∑

j=1

(A2
0 −A2

j−1)/2.

We see here how the dynamics of the pricing kernel, represented by the moving average
coefficients aj and their partial sums Aj , affect yields and returns. If aj = 0 for j ≥ 1
(the iid case), then Aj = A0 for all j, interest rates are constant, the mean yield curve is
flat, and mean excess returns on long bonds are zero. Otherwise, excess returns and yield
spreads are governed by terms like A2

0 −A2
j−1.

The same components drive entropy and horizon dependence. Conditional entropy is

Lt(mt+1) = logEtmt+1 − Et logmt+1 = a20/2 = A2
0/2. (16)

Entropy is the same. Multiperiod entropy is

Lt(mt,t+n) =

n∑
j=1

A2
j−1/2.

Horizon dependence is the difference, averaged over the number of periods:

H(n) = n−1
n∑

j=1

(
A2

j−1 −A2
0

)
/2, (17)
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the mirror image of the mean yield spread. Here, too, you can see how the pricing kernel’s
dynamics interact with its properties. A typical term in the sum can be expressed

A2
j −A2

0 = [(Aj −A0) +A0]
2 −A2

0

= (Aj −A0)
2 + 2(Aj −A0)A0.

A realistic model must have large enough entropy to account for observed excess returns
and small enough horizon dependence to account for the size of term premiums relative
to excess returns on other assets. The former requires large (in absolute value) a0 = A0.
The latter requires small Aj − A0, which in turn requires the individual moving average
coefficients aj for j ≥ 1 to be small relative to the initial term a0. A useful indicator in this
regard is the ratio, θ = a1/a0. For |a1| ≪ |a0| we need |θ| ≪ 1. Departures from the iid
case (aj = 0 for j ≥ 1) can’t be too big.

3.2 Entropy and horizon dependence in the Vasicek model

We can see more clearly how this works if we add some structure and choose parameter val-
ues that approximate the salient features of interest rates. We make logmt an ARMA(1,1)
process. Its three parameters are (a0, a1, φ), with |φ| < 1. They define the moving average
coefficients aj+1 = φaj for j ≥ 1. See Appendix A.3. This leads to an AR(1) for the short
rate, which turns the model into a legitimate discrete-time version of Vasicek. All three
parameters can be inferred from bond yields. We choose φ and a1 to match the autocorre-
lation and variance of the short rate and a0 to match the mean spread between one-month
and five-year bonds. The result is a statistical model of the pricing kernel that captures
some of its central features.

With this structure, we can connect parameters to properties of bond returns. The (log)
short rate, equation (15), is AR(1) with autocorrelation parameter φ. We set φ = 0.85,
an estimate of the monthly autocorrelation of the real short rate reported by Chernov and
Mueller (2008). The variance of the short rate is

Var(log r1t+1) =

∞∑
j=1

a2j = a21/(1− φ2).

Chernov and Mueller report a standard deviation of (0.02/12) (2% annually), which implies
|a1| = 8.78 × 10−4. Finally, we choose a0 to match the mean yield spread on the five-year
bond. If the yield spread is E(y60 − y1) = 0.001 = 0.1% a month, this implies a0 = 0.1953
and a1 < 0. The ratio θ = a1/a0 = −0.0045 is, indeed, much smaller than one in absolute
value. If we make a1 positive, the yield spread is negative.

We see the impact of these numbers on the moving average coefficients in Figure 1.
The first bar in each pair corresponds to a negative value of a1 and a positive yield spread,
the second bar to the reverse. We see in both cases that the initial coefficient a0 is larger
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by a wide margin. In fact, we have truncated it to make the others visible. The primary
difference is in sign: an upward sloping mean yield curve requires a0 and a1 to have opposite
signs, which we accomplish here by making a1 and its successors negative. Negative mean
yield spreads lead us to make aj positive for j ≥ 1.

We see the same thing from multiple perspectives in Figure 2. In each quadrant, the
solid line corresponds to parameter values chosen to generate a positive mean yield spread
and the dashed line corresponds to a negative mean yield spread. The upper left quadrant
contains sequences of moving average coefficients: a0, a1, a2, . . .. From this perspective, the
coefficients are essentially zero after the first one and the log pricing kernel is approximately
white noise. Departures from white noise are evident in the lower left quadrant, where we
zoom in on the sequence starting with a1. Both sequences approach zero at rate φ starting
with a1. The upper right quadrant shows the resulting partial sums Aj , which appear in
expressions for yield spreads and horizon dependence. The lower right quadrant shows the
mean yield spreads.

Entropy and horizon dependence are pictured in Figure 3. The dotted line in the mid-
dle is our estimated entropy lower bound. The top three lines report average multiperiod
entropy: multiperiod entropy divided by the number of periods. The top dashed line corre-
sponds to positive horizon dependence: per period entropy rises (slightly) with the number
of periods. The center line is (one-period) entropy, which serves here as a benchmark. The
downward-sloping line below it corresponds to negative horizon dependence. The three lines
at the bottom are horizon dependence, which we see is small relative to entropy. The dotted
lines surrounding them are our estimated upper and lower bounds. Horizon dependence hits
the bounds by construction: we chose parameters precisely to match these quantities at a
time horizon of 60 months.

3.3 A representative agent with additive power utility

In representative agent models, pricing kernels are marginal rates of substitution. Typically
a pricing kernel follows from applying a preference ordering to a given consumption growth
process. The form is particularly simple if the representative agent has additive power
utility. To fix notation, let period utility be cρ/ρ with ρ < 1. Then the pricing kernel is

mt+1 = β(ct+1/ct)
ρ−1 = βgρ−1

t+1 , (18)

where gt+1 = ct+1/ct is consumption growth. Here ρ governs both risk aversion and in-
tertemporal substitution.

If the consumption growth process is loglinear, the pricing kernel has the same form as
the Vasicek model. Let

log gt = log g + γ(B)v1/2wt, (19)
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where {wt} ∼ NID(0, 1), γ0 = 1 (a normalization), and v is the conditional variance. The
pricing kernel is then

logmt = log β + (ρ− 1) log g + (ρ− 1)γ(B)v1/2wt.

This is equivalent to the Vasicek model (14), with all the moving average coefficients scaled
by (ρ − 1): aj = (ρ − 1)v1/2γj . The ratio θ = a1/a0 = γ1/γ0 is controlled entirely by the
consumption process.

With this structure, entropy and horizon dependence are both scaled by (ρ− 1)2: if we
increase 1 − ρ to magnify entropy, we also raise the absolute value of horizon dependence.
Consider a given consumption growth process with partial sums Γn =

∑n
j=0 γj . Entropy is

ELt(mt+1) = a20/2 = (ρ− 1)2Γ2
0v/2 = (ρ− 1)2v/2,

which puts a lower bound on 1 − ρ. If the conditional variance of monthly consumption
growth is 0.00722 (see Table 2), then to generate entropy of (say) 0.01, we need 1 − ρ ≥
(2× 0.01)1/2/0.0072 = 19.6. Horizon dependence is also scaled by (ρ− 1)2:

H(n) = n−1(ρ− 1)2
n∑

j=1

(Γ2
j−1 − Γ2

0)v/2.

Our upper bound on the absolute value of horizon dependence thus places an upper bound
on 1−ρ. Whether we can satisfy both bounds at the same time depends on the consumption
growth process. This tension between entropy and horizon dependence is a feature of many
of the models we study.

We study three classes of models in the following sections: models based on recursive
preferences, habits, and jumps. Recursive preferences and habits each add an extra term to
the pricing kernel relative to the additive case. With recursive preferences, the extra term
involves future utility, which in turn depends on the consumption growth process. With
habits, the extra term involves a state variable (the habit) whose dynamics depend on past
consumption. Jumps are a device for introducing nonnormal innovations into models. We
show how each class of models works, focusing on their pricing kernels and the ways in
which they generate entropy and horizon dependence.

4 Pricing kernels with recursive preferences

Our first class of representative agent models is based on Bansal and Yaron (2004), who
show that a combination of consumption dynamics and recursive preferences can generate
risk premiums similar to those we observe. They build on related work by Campbell (1993),
Epstein and Zin (1989), and Weil (1989).

12



4.1 Recursive preferences

We define “utility from date t on” Ut recursively with the time aggregator,

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]
1/ρ

, (20)

and certainty equivalent function,

µt(Ut+1) =
[
Et(U

α
t+1)

]1/α
. (21)

Additive power utility is a special case with α − ρ = 0. In standard terminology, ρ < 1
captures time preference (with intertemporal elasticity of substitution 1/(1−ρ)) and α < 1
captures risk aversion (with coefficient of relative risk aversion 1−α). The terminology is a
useful shortcut, but it’s somewhat misleading: α describes risk aversion over future utility,
which depends on (among other things) ρ. As in other multigood environments, there is no
clear separation between preference across goods and preference across states.

The time aggregator and certainty equivalent functions are both homogeneous of degree
one, which allows us to scale everything by current consumption. If we define scaled utility
ut = Ut/ct, equation (20) becomes

ut = [(1− β) + βµt(gt+1ut+1)
ρ]1/ρ , (22)

where, as before, gt+1 = ct+1/ct is consumption growth. This relationship serves, essentially,
as a Bellman equation.

We use a loglinear approximation of (22) to give us transparent closed-form expressions
for pricing kernels. The approach is similar to that of Hansen, Heaton, and Li (2008, Section
III). The loglinear approximation is

log ut = ρ−1 log [(1− β) + βµt(gt+1ut+1)
ρ]

= ρ−1 log
[
(1− β) + βeρ log µt(gt+1ut+1)

]
≈ b0 + b1 logµt(gt+1ut+1). (23)

The last line is a first-order approximation of log ut in log µt around the point logµt = log µ,
with

b1 = βeρ log µ/[(1− β) + βeρ log µ] (24)

b0 = ρ−1 log[(1− β) + βeρ log µ]− b1 logµ.

The equation is exact when ρ = 0, in which case b0 = 0 and b1 = β. Otherwise, it is the
only source of approximation in what follows.

The pricing kernel (marginal rate of substitution) is

mt+1 = β(ct+1/ct)
ρ−1 [Ut+1/µt(Ut+1)]

α−ρ

= βgρ−1
t+1 [gt+1ut+1/µt(gt+1ut+1)]

α−ρ . (25)
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See Appendix A.5. This has a convenient loglinear structure as long as g and u do. The
pricing kernel reduces to additive power utility (18) in two cases: when α−ρ = 0 and when
gt+1 is iid. The latter illustrates the central role of dynamics. If gt+1 is iid, ut+1 is constant
and the pricing kernel is proportional to gα−1

t+1 . This is arguably different from power utility,
where the exponent is ρ−1, but with no intertemporal variation in consumption growth we
can’t tell the two apart. Beyond the iid case, dynamics in consumption growth introduce
an extra term to the pricing kernel: in logs, the innovation in future utility plus a risk
adjustment.

4.2 Entropy and horizon dependence with consumption dynamics

Our first example generates additional entropy relative to additive power utility through a
combination of recursive preferences and a persistent component in consumption growth.
The model is Bansal and Yaron’s (2004) Case I with one change: we replace their bivariate
process for log consumption growth with a univariate process that has the same autocovari-
ance function. We think this captures their idea in a (slightly) simpler way.

Consider the univariate loglinear consumption growth process (19). Persistence is re-
flected in nonzero values of γj for j ≥ 1. The loglinear approximation to the pricing kernel
is

logmt+1 = log β + (ρ− 1) log g − (α− ρ)(α/2)γ(b1)
2v

+ [(ρ− 1)γ0 + (α− ρ)γ(b1)]v
1/2wt+1 + (ρ− 1)[γ(B)/B]+v

1/2wt. (26)

See Appendix A.6. This has the same form as the Vasicek model (14) with

aj =

{
[(ρ− 1)γ0 + (α− ρ)γ(b1)]v

1/2 j = 0

(ρ− 1)γjv
1/2 j ≥ 1.

Entropy then follows from equation (16):

ELt(mt+1) = a20/2 = [(ρ− 1)γ0 + (α− ρ)γ(b1)]
2 v/2.

Horizon dependence follows from equation (17).

The only departure from additive power utility is in the initial moving average coefficient,
a0. The key ingredient is the term

γ(b1) =
∞∑
j=0

bj1γj .

The logic for this sum is that the impact of shocks to consumption growth on future utility
depends on their persistence (represented by γ) and discounting (represented by b1). If
α − ρ = 0, none of this matters: future utility does not appear in the pricing kernel and
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we’re back to the additive case. Similarly, if consumption growth is iid, so that γj = 0 for
j ≥ 1 and γ(b1) = γ0, the coefficient of wt+1 becomes (α−1)γ0v1/2, which is indistinguishable
from additive power utility. The impact of recursive preferences depends, then, on having
dynamics in consumption growth. With γ(b1) > 0 and α − ρ < 0, the ratio θg = a1/a0 is
smaller than with additive power utility.

We get a quantitative sense of the importance of consumption growth dynamics for
entropy from a numerical example. We let log consumption growth be ARMA(1,1), with
γ0 = 1 (a normalization) and γj+1 = φgγj for j ≥ 1. See Appendix A.3. As before, |φg| < 1
governs persistence. With this structure, we have

γ(b1) = 1 + b1γ1/(1− b1φg),

which increases as b1 and φg approach one. We use parameter values adapted from Bansal,
Kiku, and Yaron (2009); see Appendix A.9.

We consider two thought experiments that highlight the difference between recursive
preferences and additive power utility. Bansal, Kiku, and Yaron (2009) use, in our notation,
α = −9 and ρ = 1/3. One thought experiment is to move toward power utility by setting
α = ρ = 1/3. This has the advantage of keeping intertemporal preferences the same in
the two models. The two sets of moving average coefficients are pictured in Figure 4. The
impact of recursive preferences shows up entirely in the initial moving average coefficient,
specifically the term (α− ρ)γ(b1) in (26). Subsequent coefficients are identical.

A second thought experiment is to move toward power utility by setting ρ = α = −9.
The results are reported in column (1) of Table 2. Entropy is 0.0026, well below our
estimated lower bound of 0.01, and horizon dependence is 0.0305, well above our estimated
upper bound of 0.001. We can increase entropy by making α = ρ larger in absolute value,
or decrease horizon dependence by making them smaller, but we can’t do both at once.
Recursive preferences make progress along both fronts — see column (2). When we set
ρ = 1/3, keeping α = −9, we increase entropy by increasing (α − ρ) in the initial moving
average coefficient. And with a smaller value of 1− ρ, we also reduce horizon dependence.

Horizon dependence, however, remains large: 0.0042 at a maturity of 60 months. This
corresponds to an annualized mean yield spread of −5%(= −0.0042 × 1200), which is
well outside our bounds. Beeler and Campbell (2009, Section 7) and Koijen, Lustig, Van
Nieuwerburgh, and Verdelhan (2009) make similar observations. There is some uncertainty
about the slope of the real yield curve, but the magnitude here is well beyond existing
estimates.

4.3 Entropy and horizon dependence with volatility dynamics

The most popular version of the Bansal-Yaron model has two persistent components: con-
sumption growth and volatility. Both affect future utility and for that reason interact with
recursive preferences to generate additional entropy in the pricing kernel.
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The model is based on the bivariate consumption growth process

log gt = log g + γ(B)v
1/2
t−1wgt (27)

vt = v + ν(B)wvt, (28)

where wgt and wvt are N (0, 1) series that are independent of each other and over time. The
volatility process allows vt to be negative in some states. We can keep it positive by using
a square-root process instead, but with some loss in the transparency of the solution. See
Appendix A.7.

We take the same approach to the solution as in the previous example. The pricing
kernel is

logmt+1 = log β + (ρ− 1) log g − (α− ρ)(α/2)γ(b1)
2
[
v + (α/2)2γ(b1)

2b21ν(b1)
2
]

+ [(ρ− 1)γ0 + (α− ρ)γ(b1)]v
1/2
t wgt+1 + (ρ− 1)[γ(B)/B]+v

1/2
t−1wgt

+ (α− ρ)(α/2)γ(b1)
2[b1ν(b1)wvt+1 − ν(B)wvt]. (29)

See Appendix A.6. The new features concern volatility. Although innovations in consump-
tion growth and volatility are independent, their roles interact in the pricing kernel. The
coefficient of the volatility innovation wvt+1 depends on the dynamics of volatility [repre-
sented by ν(b1)], the dynamics of consumption growth [γ(b1)], and recursive preferences
[(α− ρ)]. This interaction between the two components shows up in many of its properties.

Stochastic volatility gives the pricing kernel a different form from the Vasicek model.
We might express it as

logmt = logm+ ag(B)(vt−1/v)
1/2wgt + av(B)wvt

with

agj =

{
[(ρ− 1)γ0 + (α− ρ)γ(b1)]v

1/2 j = 0

(ρ− 1)γjv
1/2 j ≥ 1

avj =

{
(α− ρ)(α/2)γ(b1)

2b1ν(b1) j = 0
−(α− ρ)(α/2)γ(b1)

2νj−1 j ≥ 1.

The first is the same as the previous example, but the second is new. That gives us an
additional term in entropy:

ELt(mt+1) = [(ρ− 1)γ0 + (α− ρ)γ(b1)]
2/2 + (α− ρ)2(α/2)2γ(b1)

4[b1ν(b1)]
2/2.

The second term is the contribution of stochastic volatility. Multiperiod entropy and horizon
dependence are reported in Appendix A.8.

We see the results in Table 2. As in the previous example, the structure and parameter
values are adapted from Bansal, Kiku, and Yaron (2009). The structure is the ARMA(1,1)
process for log gt (γj+1 = φgγj for j ≥ 1) and an AR(1) process for vt (νj+1 = φvνj for
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j ≥ 0). The result, reported in column (3), is a substantial increase in entropy. Most of
the increase comes from the volatility term, but its magnitude depends (as we’ve seen) on
consumption dynamics. There is also an increase in (positive) horizon dependence.

It’s not evident in these numbers, but the two components generate qualitatively dif-
ferent horizon dependence. In the calculations they’re intertwined, but you can get a sense
from the moving average coefficients pictured in Figure 6. The consumption coefficients
in the top panel all have the same sign and therefore generate positive horizon depen-
dence. The volatility coefficients in the bottom panel switch signs and therefore generate
negative horizon dependence. Note, too, that the volatility coefficients are zero in the ad-
ditive case (α − ρ = 0). Both components have small ratios: θg = ag1/ag0 = 0.0018 and
θv = av1/av0 = ν0/[b1ν(b1)] = −0.0077. The positive horizon dependence reported for this
model indicates that the consumption component is more important to horizon dependence
with these parameter values.

4.4 Discussion

The combination of recursive preferences and consumption dynamics is capable of generating
a huge increase in entropy relative to additive power utility. In this respect the approach is
a clear success. However, the persistence in consumption growth that underlies this success
also generates strong positive horizon dependence with standard parameter values. Even
with some uncertainty about the slope of the real yield curve, horizon dependence is too
large.

Since recursive preferences rely on dynamics to affect the pricing kernel, the tension
between entropy and horizon dependence is an inherent feature of the approach. However,
the magnitudes are not. It’s not hard to imagine alternative parameter values that could
reduce horizon dependence without reducing entropy unduly. One approach is to reduce
the size of the persistent component of consumption growth. Column (4) of Table 2 shows
how this might work: with a smaller persistent component in consumption growth (smaller
γ1), horizon dependence falls below our estimated upper bound. The associated decline in
entropy can be reversed, if desired, by increasing risk aversion 1−α; see equation (29). An-
other approach is to place more weight on the volatility term, which (on its own) generates
negative horizon dependence. Gallmeyer, Hollifield, Palomino, and Zin (2007) provide an
example. Yet another approach is to specify direct interaction between consumption and
volatility dynamics, as in Backus, Routledge, and Zin (2008, Section 3) and Hansen and
Scheinkman (2009, Section 3.3). The model is sufficiently complex that it’s hard to know in
advance which of these alternatives will work best, but we think they show enough promise
to merit further exploration.
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5 Pricing kernels with habit formation

Our second class of models introduces dynamics into the pricing kernel directly through pref-
erences. This mechanism has a long history, with applications ranging from microeconomic
studies of consumption behavior (Deaton, 1993) to business cycles (Lettau and Uhlig, 2000,
and Smets and Wouters, 2003). The asset pricing literature includes notable contributions
by Abel (1992), Campbell and Cochrane (1999), Chan and Kogan (2002), Chapman (2002),
Constantinides (1990), Heaton (1993, 1995), Otrok, Ravikumar, and Whiteman (2002), and
Sundaresan (1989). We consider three examples here based on different functional forms.

All of our examples start with utility functions that include a state variable xt, which
we refer to as the “habit.” A recursive formulation is

Ut = (1− β)f(ct, xt) + βEtUt+1. (30)

Typically xt is tied to past consumption in some way. The examples we study have “exter-
nal” habits: the agent ignores any impact of her consumption choices on future values of
xt. They differ in the functional form of f(ct, xt) and in the law of motion for xt.

5.1 Entropy and horizon dependence with a ratio habit

With so-called ratio habits, preferences follow (30) with f(ct, xt) = (ct/xt)
ρ/ρ and ρ ≤ 1.

Examples include Abel (1992) and Chan and Kogan (2002). The pricing kernel is

mt+1 = β (ct+1/ct)
ρ−1 (xt+1/xt)

−ρ. (31)

As with recursive models, we add an extra term to the additive power utility pricing kernel.

Our first result follows from the habit being predetermined: xt+1 is known at date t. A
direct consequence is that the habit has no impact on conditional entropy:

Lt (mt+1) = Lt

(
gρ−1
t+1

)
.

There is no entropy contribution beyond additive power utility.

We can be more specific if we impose additional structure on the processes for consump-
tion growth and the habit. We use our reliable loglinear moving averages, the consumption
growth process (19) and the habit

log xt+1 = log x+ χ(B) log ct. (32)

Note the timing in the second equation: the habit at date t+1 depends on consumption at
dates t and before. The log pricing kernel is then

logmt+1 = log β + (ρ− 1) log gt+1 − ρχ(B) log gt

= log β + (ρ− 1) log g + [(ρ− 1)− ρχ(B)B]γ(B)v1/2wt+1.

18



Its dynamics combine those of consumption growth [γ(B)] and the habit [χ(B)]. Chan and
Kogan (2002) use an AR(1) habit, with χj+1 = φxχj for j ≥ 0 and 0 ≤ φx < 1. Abel’s
(1990) one-period habit corresponds to φx = 0. They differ in one other respect. Chan and
Kogan set χ0 = 1−φx so that the coefficients sum to one. Abel allows χ0 to vary, allowing
attenuation or exaggeration of the habit — or even durability if we allow χ0 < 0.

The impact of the habit lies in the pricing kernel’s dynamics. We can see this most
simply when consumption growth is iid: γ(B) = γ0 = 1 (that is, γj = 0 for j ≥ 1). Then
all the dynamics come from the habit and the pricing kernel is

logmt+1 = log β + (ρ− 1) log g + (ρ− 1)v1/2wt+1 − ρχ(B)v1/2wt.

This corresponds to the Vasicek model with

aj =

{
(ρ− 1)v1/2 j = 0

−ρχj−1v
1/2 j ≥ 1.

Then θ = a1/a0 = ρχ0/(ρ−1). Apparently 1−ρ must be large to generate enough entropy,
just as with additive power utility, and χ0 must be small to keep horizon dependence modest.

We see the result in Figure 7. The initial term in the moving average is unchanged
relative to additive power utility, but the others change from zero to negative. Entropy is,
of course, unchanged, but horizon dependence is negative; see Table 3. We set φx = 0.75
here, which is close to Chan and Kogan’s (2002, Table 1) choice converted to a monthly
time interval, but it makes little difference to any of these properties. Horizon dependence
is governed, in large part, by the choice of χ0. If χ0 = 1− φx, so that the χjs sum to one,
horizon dependence is −0.0025 at n = 60, corresponding to a mean yield spread of 3.1% per
year at a maturity of 60 months. See column (2). Horizon dependence declines if we choose
smaller values, and if we use χ0 < 0 (“durability”) it changes sign. To summarize: a ratio
habit has no impact on entropy, but it introduces a second source of horizon dependence
beyond the dynamics in the consumption growth process.

5.2 Entropy and horizon dependence with a difference habit

A second functional form has significantly different properties. So-called difference habits
are based on f(ct, xt) = (ct−xt)

ρ/ρ and (again) a law of motion for the habit xt that ties it
to past consumption. Examples include Campbell and Cochrane (1999), Chapman (2002),
Constantinides (1990), Heaton (1993, 1995), and Sundaresan (1989).

Campbell and Cochrane (1999) define the “surplus consumption ratio” st = (ct−xt)/ct =
1− xt/ct, which takes on values between zero and one. The pricing kernel becomes

mt+1 = β

(
ct+1 − xt+1

ct − xt

)ρ−1

= βgρ−1
t+1 (st+1/st)

ρ−1 .
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As in our other examples, we gain an extra term relative to additive power utility.

The challenge lies in transforming this into something tractable. One approach is to use
a loglinear approximation. Define zt = log xt− log ct so that st = 1− ezt . If zt is stationary
with mean z = log x− log c, then a linear approximation of log st around z is

log st = constant− [(1− s)/s]zt = constant− [(1− s)/s] log(xt/ct).

Here s = 1 − x/c = 1 − ez is the surplus ratio corresponding to z. The pricing kernel
becomes

logmt+1 = log β + (ρ− 1)(1/s) log gt+1 − (ρ− 1)[(1− s)/s] log(xt+1/xt).

Campbell (1999, Section 5.1) has a similar analysis. This pricing kernel differs in a couple
ways from the ratio habit case, equation (31). The first difference is the coefficient of log
consumption growth, which now includes a magnification factor (1/s). If the habit is zero,
then s = 1 and there’s no change. But if s < 1, the habit increases the sensitivity of
marginal utility to changes in consumption. In this respect the habit works like an increase
in |ρ− 1|. The second difference is the impact of the habit. The coefficient of log(xt+1/xt)
changes from −ρ in the ratio case to (1− ρ)(1− s)/s.

Using the same moving average representations for consumption growth (19) and the
habit (32), the pricing kernel becomes

logmt+1 = log β + (ρ− 1) log g + (ρ− 1)(1/s)[1− (1− s)χ(B)B]γ(B)v1/2wt+1.

As with ratio habits, the pricing kernel reflects a combination of consumption and habit
dynamics. We get a sense of the impact from a numerical example. Column (3) of Table
3 uses s = 1/2, but is otherwise the same as the ratio habit example reported in column
(2), including iid consumption growth. Entropy rises from 0.0026 to 0.0104 through the
magnification effect noted above. Horizon dependence also increases sharply. Looking at
the two components, we see that entropy and horizon dependence are governed by different
features of the habit: entropy is driven by the average habit (through s = 1 − x/c), while
horizon dependence is governed by the volatility (the magnitude of the χjs).

The loglinear approximation highlights a familiar tension between entropy and horizon
dependence: to generate enough of the former we end up with too much of the latter. To
resolve this tension, Campbell and Cochrane (1999) suggest the nonlinear surplus process

log st+1 − log st = (φs − 1)(log st − log s) + λ(log st)v
1/2wt+1

1 + λ(log st) = v−1/2

(
(1− ρ)(1− φs)− b

(1− ρ)2

)1/2

(1− 2[log st − log s])1/2 .

The pricing kernel is

logmt+1 = log β + (ρ− 1) log gt+1 + (ρ− 1) log(st+1/st)

= log β − (ρ− 1) log g + (ρ− 1)(φs − 1)(log st − log s)

+ (ρ− 1) [1 + λ(log st)] v
1/2wt+1.
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As in the previous model, dynamics in the pricing kernel follow from those of the habit,
in this case through the surplus. The difference here is that the conditional variance also
depends on the habit.

The properties of the pricing kernel follow immediately. Conditional entropy is

Lt(mt+1) = (ρ− 1)2[1 + λ(log st)]
2

= [(1− ρ)(1− φs)− b/2] + b(log st − log s).

Entropy is therefore

ELt(mt+1) = [(1− ρ)(1− φs)− b/2].

Campbell and Cochrane (1999) use b = 0, so entropy is governed by the curvature parameter
ρ and the autoregressive parameter φs of the surplus. With their suggested values of ρ = −1
and φs = 0.9885 = 0.871/12, entropy is 0.0231, far more than we get with additive power
utility and ρ = −9. See columns (1) and (4) of Table 3.

5.3 Discussion

The impact of habits depends, clearly, on their form. With ratio habits, the sole impact
is on horizon dependence: there is no additional contribution to entropy. With difference
habits, there is an impact on both entropy and horizon dependence. In both cases, horizon
dependence is larger in absolute value than the bound we estimated earlier.

The Campbell-Cochrane model reduces horizon dependence by giving the state variable
offsetting effects on the conditional mean and variance of the pricing kernel. In its original
form, horizon dependence is zero by construction. In later applications by Verdelhan (2010)
and Wachter (2006), the model is parameterized to generate realistic bond yields, hence
horizon dependence. The interaction between the mean and variance is a useful device that
we think is worth exploring in other models, including those with recursive preferences.

6 Pricing kernels with jumps and disasters

The examples so far are based on normal innovations, yet the evidence is overwhelming that
monthly log returns on common assets are not normal. See Table 1, for example. If that’s
true of the high-return asset, then the log pricing kernel must be nonnormal as well. We
therefore consider a third class of models, in which departures from normality contribute
to entropy and horizon dependence.

The standard mechanism in finance for generating nonnormal innovations is to introduce
a “jump” component. The word jump is used here to mean an innovation with a distribution
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other than normal, but the connection to jump processes will be clear shortly. Prominent
examples of jumps in the macro-finance literature include Barro (2006), Barro, Nakamura,
Steinsson, and Ursua (2009), Bekaert and Engstrom (2010), Benzoni, Collin-Dufresne, and
Goldstein (2011), Branger, Rodrigues, and Schlag (2011), Drechsler and Yaron (2011), Er-
aker and Shaliastovich (2008), Gabaix (2010), Garcia, Luger, and Renault (2003), Longstaff
and Piazzesi (2004), and Wachter (2008).

We illustrate the potential impact of jumps on entropy and horizon dependence with a
series of examples. We start by adding jumps to iid environments with additive power utility,
then go on to explore the interaction of persistent jump risk and recursive preferences.

6.1 Entropy and horizon dependence with iid jump risk

Our starting point is a jump component in log consumption growth. Let log consumption
growth be iid, the sum of a normal component wgt and a jump component zgt:

log gt = wgt + zgt. (33)

The normal component has arbitrary mean and variance: wgt ∼ N (µ, v). The jump com-
ponent is a Poisson mixture of normals, a specification that has been widely used in the
option pricing literature. Its central ingredient is a Poisson random variable j (the number
of jumps) that takes on nonnegative integer values with probabilities p(j) = e−hhj/j!. The
parameter h ≥ 0 (the “jump intensity”) is the mean of j. Each jump triggers a draw from
a normal distribution with mean θ and variance δ2. Conditional on the number of jumps j,
the component is normal:

zgt|j ∼ N (jθ, jδ2) for j = 0, 1, 2, . . . . (34)

If h is small, the jump component is well approximated by a Bernoulli mixture of normals:
there is at most one jump per period and it occurs with probability h. If h is large there
can be a significant probability of multiple jumps.

With additive power utility, the pricing kernel is

logmt = log β + (ρ− 1)(wgt + zt).

Its entropy is

Lt(mt+1) = (ρ− 1)2v/2 +
{
[e(ρ−1)θ+(ρ−1)2δ2/2 − 1]− (ρ− 1)θ)

}
h.

The first term represents the normal component, the second the jump component. Horizon
dependence is, of course, zero, because the pricing kernel is iid.
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Even with additive power utility, the impact of jumps rises sharply with 1 − ρ. The
expansion (8) shows how high-order cumulants contribute to entropy. With power utility,
the cumulants of logmt+1 are closely tied to those of log consumption growth:

κj(logmt+1) = (ρ− 1)jκj(log gt+1).

In words, the jth cumulant of the pricing kernel is the same cumulant of log consumption
growth multiplied by (ρ − 1)j , which can be large for ρ < 0 and j > 1. As a result, a
small jump component in consumption growth can make a large contribution to the pricing
kernel.

We report numerical examples in Table 4. In each one, we hold the mean and variance of
log consumption growth constant and equal to the same values we’ve used in other examples.
With this structure, they are

E(log gt) = µ+ hθ

Var(log gt) = v + h(θ2 + δ2).

There is no jump component in column (1): we’re simply reproducing column (1) of Table
3 with lower risk aversion. We introduce a jump component in column (2). The parameter
values are taken from Backus, Chernov, and Martin (2011, Section III) and are similar to
those suggested by Barro, Nakamura, Steinsson, and Ursua (2009). We see that entropy
rises sharply. The point is a general one: increasing the probability of adverse outcomes
relative to the normal distribution increases entropy, even when we hold constant the mean
and variance of log consumption growth.

6.2 Entropy and horizon dependence with persistent jump risk

We can get further magnification of entropy if we make jumps persistent and apply recursive
preferences. The following example is similar to Wachter’s (2008).

There are a number of ways to introduce dynamics into this model. We use one here:
we make the jump intensity ht stochastic. Let consumption growth be

log gt = wgt + zgt

ht = h+ η(B)wht,

where (wgt, zgt) are shocks of the same form as the previous section and wht is an inde-
pendent iid N (0, 1) series. The only change is in the dynamics of jump risk ht, which are
controlled by η(B). If η(B) = 0, ht is constant and we are back to the model of the previous
subsection. Otherwise η(B) governs the persistence of jump risk.

With this process and recursive preferences, the pricing kernel is

logmt+1 = log β + (ρ− 1) log g − (α− ρ)(α/2)(v + η20)− (α− ρ)[(eαθ+(αδ)2/2 − 1)/α]h

+ (α− 1)(v1/2wgt+1 + zgt+1)

+ (α− ρ)[(eαθ+(αδ)2/2 − 1)/α][b1η(b1)wht+1 − η(B)wht].
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See Appendix A.6. Note the similarity of the last term to that of equation (29). Persistent
jump risk and stochastic volatility are different mechanisms, but they have a similar impact
on the pricing kernel with recursive preferences. Neither appears in the pricing kernel with
additive power utility (α− ρ = 0).

From the pricing kernel we see that conditional entropy is

Lt(mt+1) = (α− 1)2v/2 +
{
[e(α−1)θ+(α−1)2δ2/2 − 1]− (α− 1)θ

}
ht

+ (α− ρ)2[(eαθ+(αδ)2/2 − 1)/α]2[b1η(b1)]
2/2.

Multiperiod entropy and horizon dependence are reported in Appendix A.8. For entropy
(mean conditional entropy), we simply replace ht with its mean h. Relative to the previous
example, we have one additional term — the last one — which reflects a combination of
recursive preferences [(α− ρ)] and dynamics in the intensity of jump risk [η(b1)].

We report the features of a numerical example in column (3) of Table 4. Here the jump
intensity is AR(1): ηj+1 = φhηj for j ≥ 0. We adapt parameter values for (φh, η0) from
Wachter (2008); see Appendix A.9. The results are striking. Entropy rises above 0.5 even
with risk aversion of 1−α = 5. We think these jump parameters are somewhat extreme, but
they make the point that jumps and disasters can increase entropy enormously. Moreover,
they do it without adding much to horizon dependence. As we saw with stochastic volatility,
and for the same reason, there is negative horizon dependence, but the magnitude is close
to zero.

6.3 Discussion

Jumps and disasters can generate enormous amounts of entropy without generating much
in the way of horizon dependence. It’s not hard to imagine that jumps could play a useful
role, then, in accounting not only for entropy and horizon dependence, but for the skewness
and excess kurtosis evident in asset returns.

These examples barely scratch the surface, as our earlier list of related work makes clear.
In the class of models with recursive preferences, we can add dynamics to both components
of consumption growth, stochastic volatility, and jump intensity, and jumps can be added to
volatility as well as consumption growth. Jumps can also be added to models with habits,
as Bekaert and Engstrom (2010) show. With such a wide range of possibilities, it will take
some time to sort out which ones are most useful.

7 Final thoughts

We’ve shown that an asset pricing model, represented here by its pricing kernel, must have
two properties to be consistent with the evidence on asset returns. The first is entropy, a

24



measure of the pricing kernel’s dispersion. Entropy must be at least as large as the largest
mean excess return, which is likely well above the equity premium. The second property is
horizon dependence, a measure of the pricing kernel’s dynamics. Horizon dependence must
be small enough to account for the relatively small premiums we observe on long bonds.

The challenge is to accomplish both at once: to generate enough entropy but not too
much horizon dependence. Representative agent models with recursive preferences and
habits use dynamics to increase entropy, but as a result they often increase horizon de-
pendence as well. Figure 8 is a summary of how a number of representative agent models
do along these two dimensions. The top panel reports entropy, which should be above
the estimated lower bound marked by the dotted line. The bottom panel reports horizon
dependence, which should lie between the bounds also noted by dotted lines. All of these
numbers depend on parameter values and are therefore subject to change, but they provide
targets for the future evolution of these models. We’ve suggested a number of directions
this evolution might take.

25



A Appendix

A.1 Premiums in forward rates and bond returns

We connect term premiums reflected in bond yields, returns, and forward rates. We start
with the latter; the others follow from their definitions.

Let qnt be the price at date t of an n-period zero-coupon bond. Yields y and forward rates
f are defined from prices by

− log qnt = nynt = f0
t + f1

t + · · ·+ fn−1
t .

The definition of forward rates implies fn
t = log(qnt /q

n+1
t ). One-period returns are rnt+1 =

qn−1
t+1 /q

n
t . The short rate is log r1t+1 = y1t = f0

t .

We define (forward) term premiums tp by

fn
t = Etf

0
t+n + tpnt .

(Aficionados will see the expectations hypothesis lurking here.) We define bond premiums
from (log) excess returns:

bpnt = Et(log r
n
t+1 − log r1t+1).

The question is how the two are related.

The answer follows from the definitions. The excess return on an (n+ 1)-period bond is

log rnt+1 − log r1t+1 = (f1
t − f0

t+1) + ...+ (fn
t − fn−1

t+1 ).

The typical term is

f j
t − f j−1

t+1 = (Etf
0
t+j − Et+1f

0
t+j) + tpjt − tpj−1

t+1 .

That is, you get innovations in forward rates and changes in term premiums. Since the
former have (conditional) mean zero by construction, only the latter show up in bond risk
premiums:

bpn+1
t = Et(tp

1
t+1 − tp0t ) + Et(tp

2
t+1 − tp1t ) + ...+ Et(tp

n
t+1 − tpn−1

t )

= Et(tp
1
t+1 − tp1t ) + Et(tp

2
t+1 − tp2t ) + ...+ Et(tp

n−1
t+1 − tpn−1

t ) + tpnt .

In short, bond premiums are functions of term premiums. In stationary ergodic settings,
the unconditional means have a more simple form: E(bpn+1) = E(tpn).

Yield premiums also follow from term premiums. Note that yields are averages of forward
rates: ynt = n−1

∑n
j=1 f

j−1
t . The yield spread is therefore

ynt − y1t = n−1
n−1∑
j=0

[
Et(f

0
t+j − f0

t ) + tpjt

]
.

26



A natural definition of the yield premium is the last term,

ypnt = n−1
n−1∑
j=0

tpjt ,

a simple average of term premiums. In stationary settings, the mean has the same form:
E(ypn) = n−1

∑n−1
j=0 E(tpj).

Many models have the property that long terms premiums are constant:

lim
n→∞

tpnt = tp∞.

If the limit exists, bond premiums and yield premiums converge to the same value.

A.2 Entropy and Hansen-Jagannathan bounds

The entropy and Hansen-Jagannathan bounds play similar roles, but the bounds and the
maximum returns they imply are different. We describe them both, show how they dif-
fer, and illustrate their differences further with an extension to multiple periods and an
application to lognormal returns.

Bounds and returns. The HJ bound defines a high-return asset as one whose return rt+1

maximizes the Sharpe ratio: given a pricing kernel mt+1, its excess return xt+1 = rt+1 −
r1t+1 maximizes SRt = Et(xt+1)/Var t(xt+1)

1/2 subject to the pricing relation (2). The
maximization leads to the bound,

SRt = Et(xt+1)/Var t(xt+1)
1/2 ≤ Var t(mt+1)

1/2/Etmt+1,

and the return that hits the bound,

xt+1 = Et(xt+1) + [Et(mt+1)−mt+1] ·
Var t(xt+1)

1/2

Var t(mt+1)1/2

rt+1 = xt+1 + r1t+1.

There is one degree of indeterminacy in xt+1: if xt+1 is a solution, then so is λxt+1 for λ > 0
(the Sharpe ratio is invariant to leverage). If we use the normalization Var t(xt+1) = 1, the
return becomes

rt+1 =
1 +Var t(mt+1)

1/2

Et(mt+1)
+

Et(mt+1)−mt+1

Var t(mt+1)1/2
,

which connects it directly to the pricing kernel. The first term is a constant: the mean
excess return. The second shows that the return is a decreasing linear function of the
pricing kernel.
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Bryan Routledge suggested a similar approach to the entropy bound. The bound defines a
high-return asset as one whose return rt+1 maximizes Et(log rt+1 − log r1t+1) subject to the
pricing relation (2). The maximization leads to the return

rt+1 = −1/mt+1 ⇔ log rt+1 = − logmt+1.

Its mean log excess return Et(log rt+1 − log r1t+1) hits the entropy bound (7).

It’s clear the returns that attain the HJ and entropy bounds are different: the former is
linear in the pricing kernel, the latter loglinear. They represent solutions to two different
problems.

Entropy and maximum Sharpe ratios over different time horizons. We find it helpful in
comparing the two bounds to express each in terms of the (conditional) cumulant-generating
function of the log pricing kernel. The approach was suggested by Ian Martin and is
summarized in Backus, Chernov, and Martin (2011, Appendix A.2). Suppose logmt+1 has
conditional cumulant-generating function and associated power series expansion

kt(s) = logEt

(
es logmt+1

)
=

∞∑
j=1

κjts
j/j!.

Entropy is then

Lt(mt+1) = kt(1)− κ1t =
∞∑
j=2

κjt/j!.

In the lognormal case, only the variance is nonzero: Lt(mt+1) = κ2t/2. The maximum
Sharpe ratio follows from the mean and variance of mt+1, which depends on the cumulants
of logmt+1 of all order:

Etmt+1 = ekt(1)

Var t(mt+1) = Et(m
2
t+1)− (Etmt+1)

2 = ekt(2) − e2kt(1).

The maximum squared Sharpe ratio is therefore

Var t(mt+1)/Et(mt+1)
2 = ekt(2)−2kt(1) − 1.

The exponent has the expansion

kt(2)− 2kt(1) =

∞∑
j=1

κjt(2
j − 2)/j!,

a complicated combination of cumulants. In the lognormal case, cumulants above order two
are zero and kt(2)− 2kt(1) = κ2t.

We can get a sense of how entropy and the Sharpe ratio vary with the time horizon by
looking at the iid case. We drop the subscript t from k (there’s no conditioning) and add a
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superscript n denoting the time horizon. In the iid case, the n-period cumulant-generating
function is n times the one-period function:

kn(s) = nk1(s).

The same is true of cumulants. As a result, entropy is proportional to n:

L(mt,t+n) = n
[
k1(1)− κ1

]
.

This is the zero horizon dependence result we saw earlier for the iid case. The time horizon
n is an integer in our environment, but if the distribution is infinitely divisible we can extend
it to any positive real number.

The maximum Sharpe ratio also varies with the time horizon. We can adapt our earlier
result:

Var(mt,t+n)/E(mt,t+n)
2 = ek

n(2)−2kn(1) − 1 = en[k
1(2)−2k1(1)] − 1.

For small time intervals n, this is approximately

en[k
1(2)−2k1(1)] − 1 ≈ n[k1(2)− 2k1(1)],

which is also proportional to n. In general, however, the squared Sharpe ratio increases
exponentially with n.

Excess returns and Sharpe ratios in lognormal settings. It’s common to report the mean,
standard deviation, and Sharpe ratio for data and models. We show how this works if
returns are lognormal.

Suppose asset j’s return is conditionally lognormal: log rjt+1|t ∼ N (log r1t+1 + κj1t, κ
j
2t). Our

analysis focuses on the mean log excess return:

Et(log r
j
t+1 − log r1t+1) = κj1t.

That’s it. Most asset pricing research focuses on the simple excess return: xt+1 = rjt+1−r1t+1.
Here we see that the Sharpe ratio reflects both moments of the log return. The mean and
variance of the excess return are

Et(xt+1) = r1t+1

(
eκ

j
1t+κj

2t/2 − 1
)

Var t(xt+1) =
(
r1t+1e

κj
1t+κj

2t/2
)2 (

eκ
j
2t − 1

)
.

The conditional Sharpe ratio is therefore

SRt =
Et(xt+1)

Var t(xt+1)1/2
=

eκ
j
1t+κj

2t/2 − 1

eκ
j
1t+κj

2t/2
(
eκ

j
2t − 1

)1/2 .
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Evidently there are two ways to generate a large Sharpe ratio. The first is to have a large
mean log return: a large value of κj1t. The second is to have a small variance: as κj2t
approaches zero, so does the denominator. If we go beyond lognormal, other cumulants
enter, too.

Comparisons of Sharpe ratios thus reflect both the mean and variance of the log return —
and possibly higher-order cumulants as well. Binsbergen, Brandt, and Koijen (2010) and
Duffee (2010) are interesting examples. They show that Sharpe ratios for dividends and
bonds, respectively, decline with maturity. In the former, this reflects a decline in the mean,
in the latter, an increase in the variance.

A.3 Lag polynomials

We use notation and results from Hansen and Sargent (1980, Section 2) and Sargent (1987,
Chapter XI), who supply references to the related mathematical literature. Our primary
building block is the infinite one-sided moving average,

xt =

∞∑
j=0

ajwt−j = a(B)wt,

where {wt} is an iid sequence with zero mean and unit variance. This defines implicitly the
lag polynomial

a(B) =

∞∑
j=0

ajB
j .

The result is a stationary process if
∑

j a
2
j < ∞ (we say the sequence of ajs is square

summable).

In this form, prediction is simple. If the information set at date t includes current and past
values of w, forecasts of future x are

Etxt+k = Et

∞∑
j=0

ajwt+k−j =

∞∑
j=k

ajwt+k−j = [a(B)/Bk]+wt

for k ≥ 0. We simply chop off the terms that involve future values of w. The subscript
“+” applied to the final expression is compact notation for the same thing: it means ignore
negative powers of B.

We use the ARMA(1,1) repeatedly:

φ(B)xt = θ(B)v1/2wt

with φ(B) = 1 − φ1B and θ(B) = 1 − θ1B. Special cases include the AR(1) (set θ1 =
0) and the MA(1) (set φ1 = 0). The infinite moving average representation is xt =
[φ(B)/θ(B)]v1/2wt = a(B)v1/2wt, with a0 = 1, a1 = φ1 − θ1, and aj+1 = φj

1(φ1 − θ1)

for ȷ ≥ 1. We typically choose φ1 and a1, leaving θ1 implicit. Then aj+1 = φj
1a1 = φaj for

j ≥ 1. An AR(1) is simply aj+1 = φ1aj for j ≥ 0.
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A.4 Bond prices, yields, and returns in the Vasicek model

We report bond prices, entropy, and related objects for the Vasicek model of Section 3. If
the pricing kernel is (14), then (9) implies

log qnt = n logm+

n∑
j=1

A2
j−1/2 +

∞∑
j=0

(An+j −Aj)wt−j ,

where An =
∑n

j=0 aj . See Backus and Zin (1994, Section 3). Forward rates, yields, and
returns follow from prices (see Appendix A.1):

fn
t = − logm−A2

n/2− [a(B)/Bn]+wt

ynt = − logm− n−1
n∑

j=1

A2
j−1/2− n−1

∞∑
j=0

(An+j −Aj)wt−j

log rnt+1 = − logm−A2
n−1/2 + (An −A0)wt+1 − [a(B)/B]+wt.

The short rate r1t+1 = 1/q1t is

log r1t+1 = y1t = f0
t = −(logm+A2

0/2)− [a(B)/B]+wt.

Mean excess returns and yield spreads are

E(log rnt+1 − log r1t+1) =
(
A2

0 −A2
n−1

)
/2

E(ynt − y1t ) = n−1
n∑

j=1

(A2
0 −A2

j−1)/2.

Multiperiod entropy is

Lt(mt,t+n) = logEtmt,t+n − Et logmt,t+n =
n∑

j=1

A2
j−1/2.

Horizon dependence is therefore

H(n) = n−1ELt(mt,t+n)− ELt(mt+1) = n−1
n∑

j=1

(A2
j−1 −A2

0)/2.

The (unconditional) expectation is unnecessary in this case: conditional entropy is constant.

A.5 The marginal rate of substitution with recursive preferences

Consider a stationary Markovian environment based on a state variable st at date t. Denote
transition probabilities by p(st+1|st). In this setting, the pricing kernel in a representative
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agent model is the marginal rate of substitution between (say) consumption in state st
[c(st), or ct for short] and consumption in state st+1 [c(st+1), or ct+1 for short].

Here’s how that works with the recursive preferences described in Section 4. With this
notation and a finite set of states, the certainty equivalent (21) might be expressed less
compactly as

µt(Ut+1) =

∑
st+1

p(st+1|st)U(st+1)
α

1/α

,

where U(st+1) is continuation utility. With this in hand, we differentiate (20) and (21):

∂Ut/∂ct = U1−ρ
t (1− β)cρ−1

t

∂Ut/∂µt(Ut+1) = U1−ρ
t βµt(Ut+1)

ρ−1

∂µt(Ut+1)/∂U(st+1) = µt(Ut+1)
1−αp(st+1|st)U(st+1)

α−1.

The marginal rate of substitution between consumption at date t and consumption in state
st+1 is therefore

∂Ut/∂c(st+1)

∂Ut/∂ct
=

[∂Ut/∂µt(Ut+1)][∂µt(Ut+1)/∂U(st+1)][∂U(st+1)/∂c(st+1)]

∂Ut/∂ct

= p(st+1|st) β
(
c(st+1)

ct

)ρ−1( U(st+1)

µt(Ut+1)

)α−ρ

.

Equation (25) is the same with the probability left out and the state left implicit.

A.6 The pricing kernel with recursive preferences

We derive the pricing kernel for a representative agent model with recursive preferences,
consumption growth dynamics, stochastic volatility, and jumps with time-varying intensity.
The models in Sections 4 and 6 are special cases.

We posit a consumption growth process with

log gt = log g + γ(B)v
1/2
t−1wgt + zgt

vt = v + ν(B)wvt

ht = h+ η(B)wht.

Here {wgt, wvt, wht} are N (0, 1) and independent of each other and over time. zgt is a jump
component. Conditional on the number of jumps j, zgt is normal: zgt|j ∼ N (jθ, jδ2). The

probability of j ≥ 0 jumps at date t is e−ht−1hjt−1/j!. This covers most of the models in
the literature, but we can generalize further by (for example) adding dynamics to the jump
component, jumps to volatility and intensity, or interdependence among the three processes.
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Given a value of b1, we solve the model by using the “Bellman equation” (23) to characterize
the value function and substituting the result into the marginal rate of substitution cum
pricing kernel (25). Our use of value functions mirrors Hansen, Heaton, and Li (2008) and
Hansen and Scheinkman (2009). Our use of lag polynomials mirrors Hansen and Sargent
(1980) and Sargent (1987).

We use two results about certainty equivalents, evaluations of the power certainty equivalent
function (21). The first one applies to normal risks. If wt+1|t ∼ N (κ1t, κ2t), then the log of
the certainty equivalent of eawt+1 is log µt(e

awt+1) = κ1t+(α/2)a2κ2t. The second applies to
Poisson-normal mixtures like the jump component zgt+1. The analogous certainty equivalent

result is log µt(e
azt+1) = ht(e

aαθ+(aαδ)2/2 − 1)/α.

We find the value function by guess and verify:

• Guess. We guess a value function of the form

log ut = log u+ pg(B)v
1/2
t−1wgt + pv(B)wvt + ph(B)wht

with parameters (u, pg, pv, ph) to be determined.

• Compute. We need the certainty equivalent µt(gt+1ut+1) for (23). Given our guess,
log(gt+1ut+1) is

log(gt+1ut+1) = log g + log u+ [γ(B) + pg(B)]v
1/2
t wgt+1 + zgt+1

+ pv(B)wvt+1 + ph(B)wht+1

= log(gu) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ [pv(B)− pv0]wvt+1 + [ph(B)− ph0]wht+1

+ (γ0 + pg0)v
1/2
t wgt+1 + zgt+1 + pv0wvt+1 + ph0wht+1.

We use a clever trick here from Sargent (1987, Section XI.19): we rewrite (for example)
pv(B)wvt+1 as the sum of (pv(B)−pv0)wvt+1 and pv0wvt+1. As of date t, the former is
constant (despite appearances, it doesn’t depend on wvt+1) and the latter is not. The
other terms are treated the same way. As a result, the last line consists of innovations,
the others of (conditional) constants. The certainty equivalent treats them differently:

logµt(gt+1ut+1) = log(gu) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ [pv(B)− pv0]wvt+1 + [ph(B)− ph0]wht+1

+ (α/2)(γ0 + pg0)
2vt + (α/2)(p2v0 + p2h0) + [(eαθ+(αδ)2/2 − 1)/α]ht

= log(gu) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ [pv(B)− pv0]wvt+1 + [ph(B)− ph0]wht+1

+ (α/2)(γ0 + pg0)
2[v + ν(B)wvt] + (α/2)(p2v0 + p2h0)

+ [(eαθ+(αδ)2/2 − 1)/α][h+ η(B)wht].
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• Verify. We substitute the certainty equivalent into (23) and solve for the parameters.
Matching like terms, we have

constant : log u = b0 + b1[log(gu) + (α/2)(p2v0 + p2h0)]

v
1/2
t−1wgt : pg(B) = b1

[
γ(B) + pg(B)− (γ0 + pg0)

B

]
wvt : pv(B) = b1

[
pv(B)− pv0

B
+ (α/2)(γ0 + pg0)

2ν(B)

]
wht : ph(B) = b1

[
ph(B)− ph0

B
+ [(eαθ+(αδ)2/2 − 1)/α]η(B)

]
.

We skipped the constants v and h in the first equation, because we’re going to include
them in vt and ht below.

We solve the equations one at a time. The second equation leads to forward-looking
geometric sums like those in Hansen and Sargent (1980, Section 2) and Sargent (1987,
Section XI.19). Following their lead, we set L = b1 to get γ0 + pg0 = γ(b1). The
other coefficients of pg(B) are of no concern to us: they don’t show up in the pricing
kernel. The third equation has a similar structure. Setting B = b1 gives us pv0 =
(α/2)γ(b1)

2b1ν(b1). In the last equation, setting B = b1 gives us ph0 = [(eαθ+(αδ)2/2−
1)/α]b1η(b1). Finally, the first equation implies

log u = (1− b1)
−1
{
b0 + b1

[
log g + (α/2)(p2v0 + p2h0)

]}
.

We can substitute for pv0 and ph0 with some loss of simplicity.

Now that we know the value function, we construct the pricing kernel from (25). One
component is

log(gt+1ut+1)− logµt(gt+1ut+1) = γ(b1)v
1/2
t wgt+1 + zgt+1 + pv0wvt+1 + ph0wht+1

− (α/2)[γ(b1)
2vt + (p2v0 + p2h0)]− [(eαθ+(αδ)2/2 − 1)/α]ht,

a combination of innovations to future utility (the first line) and adjustments for risk (the
second). The pricing kernel then becomes

logmt+1 = log β + (ρ− 1) log g − (α− ρ)(α/2)(p2v0 + p2h0) + (α− 1)zgt+1

+ [(ρ− 1)γ0 + (α− ρ)γ(b1)]v
1/2
t wgt+1 + (ρ− 1)[γ(B)/B]+v

1/2
t−1wgt

+ (α− ρ)[pv0wvt+1 − (α/2)γ(b1)
2vt]

+ (α− ρ){ph0wht+1 − [(eαθ+(αδ)2/2 − 1)/α]ht}.

The examples in Sections 4 and 6 follow from setting various combinations of γ(B), ν(B),
and η(B) equal to zero and rearranging terms.
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A.7 Recursive models based on square root processes

We like the simplicity and transparency of linear processes; expressions like ν(b1) summarize
clearly and cleanly the impact of volatility dynamics. A less appealing feature is that they
allow the conditional variance vt and intensity ht to be negative. Here we describe and
solve an analogous model based on square-root processes, discrete-time analogs of well-
known continuous-time processes. The analysis parallels Appendix A.6.

Consider the consumption process

log gt = log g + γ(B)v
1/2
t−1wgt + zgt

vt = (1− φv)v + φvvt−1 + σvv
1/2
t−1wvt

ht = (1− φh)h+ φhht−1 + σhh
1/2
t−1wht.

The innovations (wgt, zgt, wvt, wht) are described in Appendix A.6. With the exception of
the processes for vt and ht, the model is the same one we saw earlier.

We start with the value function:

• Guess. We guess a value function of the form

log ut = log u+ pg(B)v
1/2
t−1wgt + pvvt + phht

with parameters to be determined.

• Compute. Since log(gt+1ut+1) is

log(gt+1ut+1) = log(gu) + [γ(B) + pg(B)]v
1/2
t wgt+1 + zgt+1 + pvvt+1 + phht+1

= log(gu) + pv(1− φv)v + ph(1− φh)h+ pvφvvt + phφhht

+ [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ (γ0 + pg0)v
1/2
t wgt+1 + zgt+1 + pvσvv

1/2
t wvt+1 + phσhh

1/2
t wht+1,

its certainty equivalent is

logµt(gt+1ut+1) = log(gu) + pv(1− φv)v + ph(1− φh)h+ pvφvvt + phφhht

+ [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ (α/2)(γ0 + pg0)
2vt + [(eαθ+(αδ)2/2 − 1)/α]ht

+ (α/2)(pvσv)
2vt + (α/2)(phσh)

2ht.
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• Verify. We substitute the certainty equivalent into (23) and collect similar terms:

constant : log u = b0 + b1[log(gu) + pv(1− φv)v + ph(1− φh)h]

v
1/2
t−1wgt : pg(B) = b1

[
γ(B) + pg(B)− (γ0 + pg0)

B

]
vt : pv = b1[pvφv + (α/2)(γ0 + pg0)

2 + (α/2)(pvσv)
2]

ht : ph = b1[phφh + (eαθ+(αδ)2/2 − 1)/α+ (α/2)(phσh)
2].

The second equation is the same one we saw in Appendix A.6 and has the same
solution: γ0 + pg0 = γ(b1).

The third and fourth equations are new. Their quadratic structure is different from
anything we’ve seen so far, but familiar to anyone who has worked with square-root
processes. The quadratic terms arise because risk to future utility depends on ht and
vt through their innovations. We solve them using value function iterations: starting
with zero, we substitute a value into the right side and generate a new value on the
left. If this converges, we have the solution as the limit of a finite-horizon problem.

A more formal approach is to solve the quadratic equations directly and select the
appropriate root. The third equation implies

b1(α/2)(pvσv)
2 − (1− b1φv)pv + b1(α/2)γ(b1)

2 = 0.

It has two real roots if

(1− b1φv)
2 − (b1ασv)

2γ(b1)
2 ≥ 0.

(If not, there’s no solution of the specified form.) This requires that α and σv not be
too large in absolute value. Descartes’ rule of signs tells us that both roots have the
same sign as α. The quadratic formula gives us their values:

pv =
(1− b1φv)±

[
(1− b1φv)

2 − (b1ασv)
2γ(b1)

2
]1/2

b1ασ2
v

.

Now consider the stability of our value function iterations,

pv ← b1[pvφv + (α/2)γ(b1)
2 + (α/2)(pvσv)

2].

The slope of the right-hand side at pv is

b1φv + b1ασ
2
vpv.

This is positive since αpv > 0 and less than one (locally stable) if

pv < (1− b1φv)/(b1ασ
2
v).
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The smaller root is therefore the only one that is locally stable. Hansen and Scheinkman
(2009, Appendix A) make the same argument.

Similar logic applies to ph. The two roots are

ph =
(1− b1φh)±

[
(1− b1φh)

2 − 2(b1σh)
2(eαθ+(αδ)2/2 − 1)

]1/2
b1ασ2

h

.

Again, the discriminant must be positive. If it is, stability leads us to choose the
smaller root.

Finally, the first equation implies

log u = (1− b1)
−1 {b0 + b1[log g + pv(1− φv)v + ph(1− φh)h], } .

where pv and ph are understood to be functions of primitive parameters.

Given these value function coefficients, the pricing kernel is

logmt+1 = log β + (ρ− 1) log g + (α− 1)zgt+1

+ [(ρ− 1)γ0 + (α− ρ)γ(b1)]v
1/2
t wgt+1 + (ρ− 1)[γ(B)/B]+v

1/2
t−1wgt

+ (α− ρ)
{
pvσvv

1/2
t wvt+1 − (α/2)[γ(b1)

2 + (pvσv)
2]2vt

}
+ (α− ρ)

{
phσhh

1/2
t wht+1 − [(eαθ+(αδ)2/2 − 1)/α+ (α/2)(phσh)

2]ht

}
.

There’s a marked resemblance to the pricing kernel in Appendix A.6, but they’re not, of
course, identical.

A.8 Horizon dependence with recursive models

We derive horizon dependence for the model described in Appendix A.6. The results are
used on Sections 4 and 6. The pricing kernel has the form

logmt+1 = logm+ ag(B)(vt/v)
1/2wgt+1 + av(B)wvt+1 + azzgt+1 + ah(B)wht+1

vt = v + ν(B)wvt

ht = h+ η(B)wht

with {wgt, wvt, zgt, wht} defined above. This differs from the Vasicek model in the roles of
vt in scaling wgt and of the intensity ht in the jump component zgt. For future reference,
we define the partial sums Axn =

∑n
j=0 axj for x = g, v, h and Hn =

∑n
j=0 ηxj .

We derive multiperiod entropy from bond prices as described in (11). Suppose bond prices
have the form

log qnt+1 = γn0 + γng (B)(vt/v)
1/2wgt+1 + γnv (B)wvt+1 + γnh (B)wht+1.
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(If we had dynamics in zgt, that would be here, too. Be thankful for small mercies.) Then
the pricing relation (9) tells us

log qn+1
t = logEt(mt+1q

n
t+1).

The log of the term in brackets is

logmt+1 + log qnt+1 = logm+ γn0 +
[
ag(B) + γng (B)

]
(vt/v)

1/2wgt+1 + [av(B) + γnv (B)]wvt+1

+ azzgt+1 + [ah(B) + γnh (B)]wht+1.

Evaluating the expectation and lining up terms gives us

γn+1
0 = logm+ γn0 +

[
(ag0 + γng0)

2 + (av0 + γnv0)
2 + (ah0 + γnh0)

2
]
/2 + h(eazθ+(azδ)2/2 − 1)

γn+1
gj = γngj+1 + agj+1

γn+1
vj = γnvj+1 + avj+1 + (ag0 + γng0)

2νj/(2v)

γn+1
hj = γnhj+1 + ahj+1 + (eazθ+(azδ)2/2 − 1)ηj .

The second equation mirrors the Vasicek model:

γngj =
n∑

i=1

agj+i = Agn+j −Agj .

The third equation implies

γnvj = Avn+j −Avj + (2v)−1
n−1∑
i=0

νj+iA
2
gi.

The fourth equation implies

γnhj =
n∑

i=1

[ahj+i + (eazθ+(azδ)2/2 − 1)ηj+i−1]

= Ahn+j −Ahj + (eazθ+(azδ)2/2 − 1) · (Hn+j−1 −Hj−1).

And at long last, the first equation implies

γn0 = n[logm+ h(eazθ+(azδ)2/2 − 1)]

+
1

2

n∑
j=1

A2
gj−1 +

1

2

n∑
j=1

[
Avj−1 + (2v)−1

j−2∑
i=0

νiA
2
gi

]2
+

1

2

n∑
j=1

[
Ahj−1 + (eazθ+(azδ)2/2 − 1)Hj−2

]2
.

If subscripts are beyond their bounds, the expression is zero. Horizon dependence is there-
fore

H(n) = (2n)−1
n∑

j=1

(A2
gj−1 −A2

g0) + (2n)−1
n∑

j=2

(Avj−1 + (2v)−1
j−2∑
i=0

νiA
2
gi

)2

−A2
v0


+ (2n)−1

n∑
j=2

[
(Ahj−1 + (eazθ+a2zδ

2/2 − 1)Hj−2)
2 −A2

h0

]
.
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The first term is a Vasicek-like expression for wgt. The second reflects the interaction
between wgt and volatility. The last term is the interaction between the jump component
zgt and the intensity process.

A.9 Parameter values for recursive models

Bansal-Yaron models. Bansal, Kiku, and Yaron (2009, Table I) report parameters for a
monthly model, so we can take them as is. The only change is to approximate their two-
component model of log consumption growth with a univariate model. We use the univariate
model with the same autocovariance function, which is an ARMA(1,1) in this case.

Their model consists of two equations,

log gt = log g + xt−1 + σgwgt

xt = φxt−1 + σxwxt,

with |φ| < 1 and (wg, wx) independent iid series with zero mean and unit variance. The
autocovariance function is

Var(log gt) = σ2
g + σ2

x/(1− φ2)

Cov(log gt, log gt−k) = φk−1σ2
x/(1− φ2), k ≥ 1,

which has the form of an ARMA(1,1).

Our model can be expressed as an infinite moving average with coefficients γj satisfying
γj+1 = φγj = φjγ1 for j ≥ 1. The kth autocovariance is

Cov(log gt, log gt−k) =

∞∑
j=0

γjγj+k

for any k ≥ 0. Therefore

Var(log gt) = γ20 + γ21/(1− φ2)

Cov(log gt, log gt−k) = φk−1
[
γ0γ1 + φγ21/(1− φ2)

]
k ≥ 1.

Evidently φ plays the same role in each model. We then choose (γ0, γ1) to match the
variance and first autocovariance in the first model. This involves a quadratic equation in
the ratio γ1/γ0. We choose the root associated with an invertible moving average coefficient
for reasons outlined in Sargent (1987, Section XI.15).

Jump models. We adapt the parameters governing the dynamics of the intensity process ht
from Wachter (2008, Table 1). Most of that consists of converting continuous-time objects
to discrete time with a monthly time interval that we represent by τ = 1/12. We use the
same mean value h we used in our iid example: h = 0.01τ . The remaining parameters are
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connected to hers as follows (our parameters on the left, her parameters and numbers on
the right):

φh = e−κτ = e−0.08/12 = 0.9934

η0 = 0.0114 · τ1/2 = 0.0033.

This gives our process the same autocorrelation and variance as hers.

Finding b1. We’ve described approximate solutions to recursive models given a value of
the approximating constant b1. See equations (23, 24) and the surrounding discussion. We
compute b1 this way:

0. Initialize. Set b1 = β.

1. Solve. Compute the solution to the model, including logµ, the mean value of log µt.

2. Verify. Substitute logµ into equation (24) and compute a new approximation for b1.

3. Check. If the new value of b1 is close to the previous one, stop. Otherwise, return to
step 1.
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Table 1
Properties of monthly excess returns

Standard Excess
Asset Mean Deviation Skewness Kurtosis

Equity
S&P 500 0.0040 0.0556 −0.40 7.90
Fama-French (small, low) −0.0030 0.1140 0.28 9.40
Fama-French (small, high) 0.0090 0.0894 1.00 12.80
Fama-French (large, low) 0.0040 0.0548 −0.58 5.37
Fama-French (large, high) 0.0060 0.0775 −0.64 11.57
Equity options
S&P 500 6% OTM puts (delta-hedged) −0.0184 0.0538 2.77 16.64
S&P 500 ATM straddles −0.6215 1.1940 −1.61 6.52
Currencies
CAD 0.0013 0.0173 −0.80 4.70
JPY 0.0001 0.0346 0.50 1.90
AUD −0.0015 0.0332 −0.90 2.50
GBP 0.0035 0.0316 −0.50 1.50
Nominal bonds
1 year 0.0008 0.0049 0.98 14.48
2 years 0.0011 0.0086 0.52 9.55
3 years 0.0013 0.0119 −0.01 6.77
4 years 0.0014 0.0155 0.11 4.78
5 years 0.0015 0.0190 0.10 4.87

Notes. Entries are sample moments of monthly observations of (monthly) log excess re-
turns: log r − log r1, where r is a (gross) return and r1 is the return on a one-month bond.
Sample periods: S&P 500, 1927-2008 (source: CRSP), Fama-French, 1927-2008 (source:
Kenneth French’s website); nominal bonds, 1952-2008 (source: Fama-Bliss dataset, CRSP);
currencies, 1985-2008 (source: Datastream); options, 1987-2005 (source: Broadie, Cher-
nov and Johannes, 2009). For options, OTM means out-of-the-money and ATM means
at-the-money.
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Table 2
Parameters and properties of Bansal-Yaron models

Power Bansal-Yaron Bansal-Yaron Bansal-Yaron
Parameter/ Utility Version 1 Version 2 Version 3
Property (1) (2) (3) (4)

Preferences
α −9 −9 −9 −9
ρ −9 1/3 1/3 1/3
β 0.9970 0.9970 0.9970 0.9970
Consumption growth
log g 0.0015 0.0015 0.0015 0.0015
γ0 1 1 1 1
γ1 0.1246 0.1246 0.1246 0.0250
φg 0.9750 0.9750 0.9750 0.9750

v1/2 0.0072 0.0072 0.0072 0.0110
ν0 0 0 0.280× 10−5 0.280× 10−5

φv 0.9990 0.9990
Derived
CRRA 10 10 10 10
IES 0.1 1.5 1.5 1.5
E(log gt) 0.0015 0.0015 0.0015 0.0015

Var(log gt)
1/2 0.0135 0.0135 0.0135 0.0135

b1 0.9954 0.9933 0.9967
γ(b1) 5.2054 4.9247 1.8829
ν(b1) 0.364× 10−3 0.651× 10−3

θg 0.1246 0.0017 0.0018 0.0009
θv −0.0077 −0.0043
Entropy and horizon dependence
ELt(mt+1) 0.0026 0.0631 0.1241 0.0248
H(60) 0.0305 0.0042 0.0077 0.0009

Notes. Entries summarize the parameters and properties of Bansal-Yaron models (Section
4). All models have persistent consumption growth. Column (1) is additive power utility
(α − ρ = 0). Column (2) is recursive preferences. Column (3) adds stochastic volatility.
Column (4) has less persistence in consumption growth (smaller γ1).
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Table 3
Parameters and properties of habit models

Power Ratio Difference Campbell-
Parameter/ Utility Habit Habit Cochrane
Property (1) (2) (3) (4)

Preferences
ρ −9 −9 −9 −1
Consumption growth
γ0 1 1 1 1
γ1 0 0 0 0

v1/2 = Var(log gt)
1/2 0.0135 0.0135 0.0135 0.0135

Habit
χ0 0.25 0.25
φx or φs 0.75 0.75 0.9885
s 0.5
b 0
Derived
θ = a1/a0 0 −0.2250 −0.1250
Entropy and horizon dependence
ELt(mt+1) 0.0091 0.0091 0.0365 0.0231
H(60) 0 −0.0086 −0.0258 0

Notes. Entries summarize the parameters and properties of habit models (Section 5). Con-
sumption growth is iid in all cases. Column (1) is additive power utility (no habit). Column
(2) is a ratio habit. Column (3) is a loglinear approximation of a difference habit. Column
(4) is the Campbell-Cochrane model.
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Table 4
Parameters and properties of jump models

Power Power Persistent
Utility Utility Jump

Parameter/ No Jump With Jump Risk
Property (1) (2) (3)

Preferences
α −4 −4 −4
ρ −4 −4 0
β 0.9990 0.9990 0.9990
Consumption growth

v1/2 0.0135 0.0094 0.0094
h× 12 0.0100 0.0100
θ −0.3000 −0.3000
δ 0.1500 0.1500
η0 0.0033
φh 0.9934
Derived
CRRA 5 5 5
IES 0.2 0.2 1
E(log gt) 0.0015 0.0015 0.0015

Var(log gt)
1/2 0.0135 0.0135 0.0135

η(b1) 0.3419
θh
Entropy and horizon dependence
ELt(mt+1) 0.0023 0.0051 0.5193
H(60) 0 0 −0.0002

Notes. Entries summarize the parameters and properties of jump models (Section 6). Col-
umn (1) is additive power utility with no jump. Column (2) adds a jump. Column (3) has
a jump with persistent intensity ht and recursive preferences.
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Figure 1
The Vasicek model: moving average coefficients
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Notes. The bars depict moving average coefficients aj of the pricing kernel for two versions
of the Vasicek model (Section 3). For each j, the first bar corresponds to the model with
parameters chosen to produce a positive mean yield spread, the second with parameters that
produce a negative yield spread of comparable size. The initial term has been truncated in
both cases to make the others visible.
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Figure 2
The Vasicek model: moving average coefficients and mean yields
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Notes. Like Figure 1, the four panels describe two versions of the Vasicek model (Section 3).
In each panel, the solid line corresponds to the model with a positive mean yield spread and
the dashed line to one with a negative yield spread. The upper left panel reports the moving
average coefficients we saw earlier. The lower left panel gives us a closer look at the same
coefficients starting with a1. The upper right panel reports the partial sums Aj =

∑j
i=0 ai

that show up in expressions for bond yields, entropy, and horizon dependence. The lower
right panel reports the corresponding mean yield spreads.
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Figure 3
The Vasicek model: entropy and horizon dependence
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Notes. The lines represent entropy per period and horizon dependence for three versions of
the Vasicek model based, respectively, on positive, zero, and negative mean yield spreads.
The trio of lines at the top depict entropy per period over different time horizons. The
top (dashed) line is derived from the Vasicek model with a negative yield spread, which
corresponds to increasing entropy per period and positive horizon dependence. The bottom
line is derived from the same model with a negative yield spread, which corresponds to de-
creasing entropy per period and negative horizon dependence. The center line is horizontal;
it implies zero yield spreads and horizon dependence. The dotted line in the center is an
estimated lower bound for entropy. The lines at the bottom of the figure are the same three
from the top of the figure, shifted down to represent horizon dependence, the difference
between entropy per period and one-period entropy. The dotted lines around them are
estimates of maximum and minimum horizon dependence.
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Figure 4
The Bansal-Yaron model with consumption dynamics: moving average
coefficients
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Notes. The figure depicts the moving average coefficients of the pricing kernel for the
Bansal-Yaron model with consumption dynamics and constant volatility (Section 4.2). For
each j, the first bar corresponds to moving average coefficients with power utility, the second
with recursive utility (the Bansal-Yaron model). Power utility, in this case, is based on the
same value of ρ as recursive preferences with α set equal to ρ to eliminate the recursive
terms in the pricing kernel. We have reversed the sign to correspond to the convention used
for the Vasicek model (positive initial coefficient). The initial term has been truncated to
make the others visible.
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Figure 5
The Bansal-Yaron model with consumption dynamics: entropy and hori-
zon dependence
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Notes. The lines represent entropy and horizon dependence for the Bansal-Yaron model
with consumption dynamics and constant volatility (Section 4.2). The solid line at the top
is entropy. The dotted line below it is an estimated lower bound. The upward-sloping line
below that is the model’s horizon dependence as a function of the time horizon. The last
dotted line is an estimated upper bound on horizon dependence.
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Figure 6
The Bansal-Yaron model with consumption and volatility dynamics: mov-
ing average coefficients
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Notes. The figure depicts the moving average coefficients of the pricing kernel for the Bansal-
Yaron model with consumption dynamics and stochastic volatility (Section 4.3). For each
j, the first bar corresponds to the moving average coefficient with power utility, the second
with recursive utility (the Bansal-Yaron model). As in Figure 4, power utility is based on the
same value of ρ as recursive preferences, with α set equal to ρ. We have reversed the signs to
correspond to the convention used for the Vasicek model (positive initial coefficient). The
top panel reports the consumption growth coefficients agj , the bottom panel the volatility
coefficients avj . In the bottom panel, the coefficients are all zero in the power utility case.
In both panels, the initial terms for recursive preferences have been truncated to make the
others visible.
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Figure 7
The ratio habit model: moving average coefficients
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Notes. The figure depicts the moving average coefficients of the pricing kernel for a model
with a ratio habit (Section 5.1). For each j, the first bar corresponds to the moving average
coefficient with power utility, the second with a ratio habit (the Bansal-Yaron model).
We have reversed their signs to correspond to the convention used for the Vasicek model
(positive initial coefficient).
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Figure 8
Model summary: entropy and horizon dependence
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Notes. The figure summarizes entropy and horizon dependence (at maturity 60 months)
for a range of models. They include: V (Vasicek); PU (power utility, column (1) of Table
3); BY1 (Bansal-Yaron with consumption dynamics, column (2) of Table 2); BY2 (Bansal-
Yaron with consumption and volatility dynamics, column (3) of Table 2); BY3 (alternative
parameterization of BY2, smaller persistent component of consumption growth, column (4)
of Table 2); RH (ratio habit, column (2) of Table 3); DH (difference habit, column (3) of
Table 3); CC (Campbell-Cochrane, column (4) of Table 3); and PJR (persistent jump risk,
column (3) of Table 4). Some of the bars have been truncated to make the others visible.
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