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Theories based on information costs or frictions have become increasingly
popular in macroeconomics and macro-finance. The literature has used var-
ious types of information choices, such as rational inattention, inattentive-
ness, information markets or costly precision.1 Using a unified framework,
we compare these different information choice technologies and explain why
some generate increasing returns and others, particularly those where agents
choose how much public information to observe, generate multiple equilibria.
The results can help applied theorists to choose the appropriate information
choice technology for their application and to understand the consequences
of that modeling choice.

1 The game

We convey our main intuition using a beauty contest game (as in Morris and
Shin, 2002). Agents seek to take actions close to the true state and close to
the average action of others. The agents choose what information to observe
about the true state, before they play this game. Different information
choice technologies are represented as different information cost functions
and different constraints on the signal choice set.

We use a quadratic objective because of its tractability and because
by quadratically approximating objectives, we can map many models into
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1See e.g., Sims (2003), Reis (2006), Veldkamp (2006), Mackowiak and Wiederholt
(2009), Matejka (2011), Myatt and Wallace (2011), and Veldkamp (2011) for many other
examples.

1



this framework. In stage one, nature draws the state variable s from the
distribution N(µ, τ−1

s ) and a series of signals about s. Agents choose signals
to observe. In stage 2, agents observe their chosen signals and simultaneously
pick an optimal action.

Specifically, a measure one continuum of agents, indexed by i ∈ [0, 1]
choose an action ai ∈ R to minimize the expected squared distance between
their action and a target action, that is a weighted average of the average
action ā =

∫
aidi and the unknown state s, minus any cost c of acquiring

information, where c is denominated in units of expected utility:

u (ai, ā, s) = − (ai − rā− (1− r)s)2 − c. (1)

If s is common knowledge, the best response is ai = (1− r) s + rā,
and ai = ā = s constitutes the unique equilibrium. The coefficient r < 1
measures the complementarity/substitutability of agents’ decisions. If r > 0,
decisions are complementary: Best responses are increasing in the prices set
by other agents. If r < 0, decisions are strategic substitutes. A higher r
means more complementarity.

Denote the information set that includes chosen signals s as Ii. The first
order condition of (1) with respect to ai yields: ai = E[rā + (1 − r)s|Ii].
Utility (1) is then simply a conditional variance u (ai, ā, s) = V ar(rā+ (1−
r)s|Ii)− c. The variance of this sum can be decomposed into the individual
variances and a covariance term:

E[u (ai, ā, s)] = r2V ar[ā|Ii] (2)

+2r(1− r)Cov[ā, s|Ii] + (1− r)2V ar[s|Ii]− c.

Since 2 is the expected utility of an agent who acts optimally in the
second-stage action game, it is the payoff function for the first-stage infor-
mation choice game. Thus, to understand the value of any signal choices, it
is sufficient to know what the information implies for three moments: the
conditional variance of the state, the conditional variance of the average
action and the covariance between the average action and the state.

A flexible signal structure. Suppose that nature selects a k × 1 vector
of common signal noises u ∼ N (0, Ik), independent of the state s. In
addition, for each agent, nature selects an l×1 vector of idiosyncratic signal
noises vi, which are independently and identically distributed across agents,
vi ∼ N (0, Il), independent of s and u. These shocks generate an n × 1
vector of potentially observable signals zi:

zi = 1n·s+Du+Bvi (3)
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1n is an n× 1 vector of ones and D and B are diagonal (n× n) matrices of
coefficients.2

Thus, we can express agent i’s jth signal as zij = s + djuj + bjv
i
j . This

signal structure allows for arbitrary correlation in signals across agents. In
particular, by setting either d or b equal to zero, we can allow for special
cases where all signals are either purely private, i.e. with noise independent
across agents, or common. If dj + bj = ∞, signal j is unobserved (or is
uninformative).

The agent’s cost of information is determined by a function c (d,b),
which is decreasing in both arguments.

Bayesian updating. Each of agent i’s signals is an unbiased predictor of
the state s with variance b2j + d2j . Bayes’ Law for normal variables delivers
posterior beliefs

E[s|Ii] =
τsµ+

∑
j(b

2
j + d2j )

−1zj

τs +
∑

j(b
2
j + d2j )

−1
(4)

V ar[s|Ii] =
1

τs +
∑

j(b
2
j + d2j )

−1
. (5)

How agents update about the average action ā depends on the properties
of the signal they observe. We consider symmetric information choices. This
implies that in equilibrium, all agents choose to observe signals with the
same precision and therefore choose the same action rules, although, signal
outcomes and realized actions may differ. Since the first-order condition
and the Bayesian updating formula are both linear in signals and priors,
ai = γ0µ +

∑
j γjz

i
j , where γ0 denotes the weight on priors in actions, γ

denotes the weight on the signal if only 1 signal is observed and γj denotes
the weight on signal j ≥ 1 when multiple signals are observed. Since vi is
independent across agents, ā = γ0µ +

∑
j γj(s + djuj). Thus, the beliefs

about average actions are summarized by

E[ā|Ii] = γ0µ+
∑
j

γj(E[s|Ii] + djE[uj |Ii]). (6)

2For most of our results, D and B can be arbitrary (n×k) and (n×l) matrices with rank
n. Such cross-signal correlation does not affect the key properties of the problem. The
agent simply uses the inverse of the variance-covariance to undo the correlation and back
out the underlying orthogonal shocks. But doing so make the problem less transparent.
See Appendix A and Veldkamp (2011), chapter 3 for details. The mathematical appendix,
containing derivations and proofs is posted on the authors’ websites.
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2 Comparing signal choices

Many frequently-used learning technologies can be described as special cases
of (3), with some restriction on d and b choice. We discuss what this re-
striction implies for the three sufficient statistics and the information choice
equilibria.

2.1 Full revelation (Inattentiveness)

Suppose an agent can chose one of two options: Observe no signal (d+b =
∞) or observe s exactly (d = b = 0) at a cost c. This is a limiting case
of either public or private information acquisition, as the precision tends
to infinity. An example of this learning technology in the literature is the
“inattentiveness” choice in Reis (2006), where agents choose dates at which
agentes acquire full information.

For informed agents, the sufficient statistics are simple. Since they know
the state and others’ information sets, they can deduce average actions.
Thus, V ar[s|s] = V ar[ā|s] = Cov[ā, s|s] = 0. Let α be the fraction of agents
that choose to become informed. The first order condition tells us that
uninformed agents should choose ai = µ and informed agents should choose
ai = (1−γ)µ+γs where γ = (1−r)/(1−rα). Then for uninformed agents, the
sufficient statistics are V ar[s] = τ−1

s , V ar[ā] = γ2τ−1
s and Cov[ā, s] = γτ−1

s .
There are three types of possible equilibria: Either all agents, no agents,

or some agents acquire full information. Which equilibrium prevails de-
pends on the information cost c, the degree of complementarity r and prior
precision τs.

Proposition 1 With fixed costs of full revelation, and complementarity in
actions (r > 0), multiple equilibria exist if c ∈

(
(1− r)2τ−1

s , τ−1
s

)
.

When there is strategic substitutability in actions (r < 0), the game has
a unique equilibrium. But when when actions are complements, information
choice is also a complement. The combination of complementarity and the
discrete nature of the choice (to learn or not to learn) generates multiple
equilibria.

2.2 Private signals (rational inattention)

In many settings, signals about the state s are conditionally uncorrelated
across agents (D = 0). Suppose the agent observes a single signal. Then,
zi = s + bivi where vi ∼ N(0, 1) are independent across i. Each agent
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chooses bi to maximize expected utility (2), subject to a cost-function c(bi)
that is decreasing in bi.

An example of this kind of learning technology is rational inattention
(Sims, 2003), where all information is potentially available to an agent. But
their limited information processing ability causes them to add noise to
whatever they observe. Each agent creates their own noise, independent of
any other agent.3

Setting d = 0 in (5) and (6) reveals that the three summary statistics
are

V ar[s|Ii] = 1/(τs + (bi)−2) (7)

V ar[ā|Ii] = (1− γ0)
2V ar[s|Ii] (8)

Cov[ā, s|Ii] = (1− γ0)V ar[s|Ii]. (9)

If agent i observes more information, V ar[s|Ii], V ar[ā|Ii] and Cov[s, ā|Ii]
all fall by the same proportion.

A unique information choice equilibrium. If other agents acquire more
information, they put more weight on the more precise private signals when
forming their actions. Thus, (1− γ0) rises. When actions are complements
(r > 0), this increases the marginal value of reducing V ar[s|Ii] by acquiring
information oneself. This is a complementarity in information acquisition.
But this complementarity is not sufficiently strong to generate multiple equi-
libria (Hellwig and Veldkamp, 2009).

The choice of one signal’s precision is unique. With two or more private
signals and a cost function of the sum of the signal precisions, there will
always be multiplicity. Learning from two signals with precisions τ1 and
τ2 or with τ1 + t ≥ 0 and τ2 − t ≥ 0 leaves all the sufficient statistics and
the information cost unchanged. Thus, an agent is indifferent between any
signal precisions that have the same sum. So, multiple equilibria exist, but
the distinction between these equilibria is not economically meaningful.

Rational inattention and cost concavity. When the state s and the signals
are normally distributed, rational inattention dictates that the amount of
information processed is K = 1

2 ln (|V ar(s)|/|V ar(s|Ii)|). It then allows for
any arbitrary cost function c(K), or simply a bound on K.

Rational inattention has a form of diminishing marginal cost of precision
in it. Here are examples of that property: 1) When s is a scalar, a one-unit
increase in signal precision increases posterior precision 1/V ar(s|Ii) by one

3In principle, rational inattention allows agents to choose not only the precision of their
private signal, but also the shape of this signal noise distribution. Since our objective
function is quadratic, normal signals are optimal in this setting (Sims, 2003).
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unit. That increase has a marginal cost proportional to V ar(s). This implies
that learning about something unfamiliar (high V ar(s)) is costly. 2) In a
dynamic problem, if an agent learns more about s over time, V ar(s) falls.
For a given amount of K, signal precision could grow over time. 3) When
there are multiple risks, K depends on the determinant of the precision
matrix |V ar(s|Ii)−1|. If risks and signals are independent, this is a product
of posterior precisions:

∏
j(τsj+b−2

j ). Increasing the precision of signals that

are already precise (high b−2
j ) increases the product by less (is less costly).

The fact that knowing more makes acquiring additional signals less costly
represents a process of refined search. The amount of information K is ap-
proximately the number of binary signals required the transmit information
of that precision (Sims, 2003). Suppose that the first binary signal tells the
observer whether the outcome is above or below the median. The second
signal, in conjunction with the first, tells the observer which quartile the
outcome is in, and so forth. If the outcomes are uniformly distributed, each
signal is reducing the standard deviation by half (increasing the precision
4-fold). Increasing precision proportionately is always equally costly. The
fact that the interpretation of the second signal depends on the first illus-
trates how existing information helps agents interpret new information more
effectively.

While cost concavity may have a realistic foundation, it can also generate
multiple equilibria. When a non-convex cost is subtracted from a concave
objective, multiple utility-maximizing choices may arise. See Myatt and
Wallace (2011) for a proof and examples.

2.3 Public signals (information markets)

One way of modeling information frictions is by assuming that agents can
purchase signals from an information market (Veldkamp, 2006). Typically,
the producer of the signal has to pay a fixed cost to discover the signal. Once
discovered, he can replicate it and sell it to others. Because the seller is
selling exact replicas of the same signal, it is a purely public signal (b = 0).
Agents choose a set J i of signals to purchase and observe. Hellwig and
Veldkamp (2009) consider a setting with a large number of signals and take
a limit as the signal precision (d−2

j ) and the cost per signal approach zero.
This effectively eliminates the discreteness in the choice variable.

Multiple equilibria. A key property of this problem is that in a symmet-
ric equilibrium, V ar[ā|Ii] = 0 and Cov[s, ā|Ii] = 0. Only the state is still
uncertain: V ar[s|Ii] = 1/(τs +

∑
jϵJi d

−2
j ). An agent who learns less pub-

lic information than others would reduce V ar[ā|Ii] by learning more. But
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an agent who learns more public information than others does not change
V ar[ā|Ii]. This features creates a discontinuity in the marginal utility of in-
formation that is responsible for multiple equilibria (Hellwig and Veldkamp,
2009).

The intuition is that, when actions are complements, public information
is more valuble because it can be used both to forecast the state and to
directly forecast others’ actions (reduce V ar[ā|Ii]). Thus, the marginal value
of public information exceeds the marginal value of private information. But
learning one additional increment of public information, beyond what others
have learned, is effectively learning private information. It is potentially
public because others can learn that bit of information, but it is effectively
private because others have chosen not to learn it. If others observe that
additional public signal, then learning the signal has a higher marginal value
because it lowers V ar[ā|Ii]. Learning that signal becomes a best response.
If others choose not to learn that signal, it is effectively private, has lower
value, and therefore may not be optimal to learn.

2.4 Correlated signals

Finally, we consider signals with both public and private noise. First, we
fix the amount of public noise and allow agents to choose private noise, as
in Myatt and Wallace (2011). Then, we fix the amount of private noise
and allow agents to vary the weight their signal places on public noise.
As in Myatt and Wallace (2011), we interpret a lower bj as “paying more
attention” and a lower dj as “clarifying” signal j.

Such information choices affect all three sufficient statistics: First, equa-
tion (5) gives us V ar[s|Ii]. It reveals that more attention to signal j (lower
bj) lowers the conditional variance of the state forecast. Reducing bj has
a larger effect if dj is also small and vice-versa: Paying attention is more
valuable when the signal is clear; clearer signals are more valuable if one
can pay close attention to them. Second, the covariance of this average ac-
tion with the state s is given by (9). It is proportional to V ar[s|Ii]. The
third statistic, the conditional variance of the average action, depends on
how agents forecast others’ signals and on the weight they place on the jth
signal in actions (γj):

V ar[ā|Ii] =
∑
j

γ2j b
2
j

τ−1
s + d2j

τ−1
s + d2j + b2j

. (10)

If agents pay little attention to signal j (bj is large), then signal j becomes
a private signal. This increases uncertainty about ā because the agent has
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little idea of what signals others observe. If agents pay lots of attention
to signal j (bj is small), it becomes public. As all entries of b go to zero,
agent i knows ā with certainty: limb→0V ar[ā|Ii] = 0. In between these two
extremes, there is a continuous monotonic mapping that increases V ar[ā|Ii]
as signal correlation falls.

Choosing attention to public signals. In order to characterize equilibria,
it is useful to simplify the setting. Suppose agent i observes two signals:
zij = s + djuj + bjv

i
j for j ∈ {1, 2}. The d’s are exogenous. Agents can

choose private precisions b−2
1 , b−2

2 , subject to a cost function c(b1, b2).

Proposition 2 Suppose that information costs are a function of the sum of
private precisions: c(b−2

1 + b−2
2 ). Then the equilibrium information choice is

unique.

See Myatt and Wallace (2011). When actions are complements, choices
of signal precision are complements as well. But, just like in the private
signal case, this complementarity is not strong enough to generate multi-
ple equilibria. Because agents are choosing the amount of private noise,
rather than whether to see the next increment of information, the choice is
continuous and there is no kink in the marginal benefit curve.

Choosing signal clarity. Consider the same signal structure as the previ-
ous section. But instead of fixing d and choosing b, we fix b and allow agents
to choose d. One way to interpret this technology is that agents choose from
a continuum of news outlets that have the same news with some common
noise. But some outlets achieve a higher signal-to-noise ratio than others. In
addition, agents may add independent signal processing noise to whatever
they read, but they cannot control this processing noise.

Proposition 3 When c(d) is a convex function, there is a unique symmet-
ric equilibrium in the choice of signal clarity d .

One might think that the choice of d and choosing how much of the
newspaper to read (II.C) would be isomorphic problems. Moreover, it is
not the presence of private signal noise that explains why one problem has
multiple equilibria and the other does not. If B = 0, proposition 3 still holds.
Rather, the key difference is that one problem has a continuous marginal
utility and the other does not.

Clarity vs. quantity of public information. One key distinction between
these information choice technologies is that in the newspaper model, an
agent can decompose his signal into information that others see and infor-
mation they do not. The information others observe has a discretely different
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marginal utility than the additional information others have not observed.
That discrete difference creates the kink in utility and multiple equilibria.
In the signal clarity problem, there is no such decomposition. In fact, if
B = 0, then an agent who observed two signals with different degrees of
clarity could infer the public noise u and the true state s exactly.

A second property that distinguishes the two technologies is that more
signal clarity can lower expected utility. A precise signal about s reveals little
about u and thus tells the observer little about what others know and what
they will do. In other words, it can raise V ar[ā|Ii]. In the newspaper model,
an agent who learns more information never forgets his existing information
and therefore cannot become more uncertain about ā. Therefore, more
information always increases expected utility.

Finally, a clearer signal has the same state s and same noise u with
different weights on them. Learning more newspaper information could be
represented as choosing a signal with more precision. But as the precision
changed, the noise u, and its correlation with the u in others’ signals, would
have to change as well.

3 Conclusion

Formulating a problem with information choice requires a learning technol-
ogy. Which technology is appropriate depends on the type of data agents
are acquiring. Inattentiveness is a useful way to describe facts that can be
objectively known and easily transmitted, e.g., one’s bank balance, a stock
price, or an election outcome. Looking up the result might require effort,
but it is not likely to be observed with noise. Everyone who observes it
knows that other observers have seen the same signal. Rational inattention
is a useful way to describe more subjective evaluations, such as the prob-
ability of crisis, an optimal price, or future productivity. Shown the same
data, reasonable people might come to different conclusions. More cognitive
effort might improve estimates. Similarly, public signal choice describes a
situation where the signal may not be right, but once we see the announce-
ment, we all know what we saw and we know that other observers saw the
same thing. Correlated signals represent both the idea that the underlying
signal may have error and that agents may disagree about how to interpret
that signal.

In each case, there was also a similarity: When agents want to do what
other do, they want to know what others know. They also want to know
more when others know more. Both the choice of which signals to observe
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and the precision with which to observe those signals exhibit the same strate-
gic motives in actions. But there are various sources of non-concavities,
discreteness in choice variables, or discontinuities in marginal utilities that
can arise, depending on the information choice technology. When coupled
with complementarity in information acquisition, these features can generate
multiple equilibria.
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A Derivations and Proofs

A.1 Sufficient statistics with correlated signal errors

This appendix shows how to compute the conditional state and average action variances
and their covariance when the set of signals an agent observes are correlated with each
other.

For each information choice vector χ, we construct a corresponding m× n matrix X
of zeros and ones. The number of rows m is the number of ones in χ. If the jth entry of χ
is 1, then there is a row of X that is all zeros, except for a one in the jth position. Agent
i’s information set is thus summarized by the vector of signals he observes: Xzi.

We begin by computing posterior beliefs, conditional on an information choice and
signal realizations. Agents are trying to forecast both the true state and the common signal
noise which determines the average action of other agents. Therefore, we define a k+1×1
vector of both variables ω =

[
s u′ ]′

. This is the relevant state variable. It is normally
distributed with mean 0 and V ar(ω) = Ik+1. The covariance of the observed signals
and this state is Cov(ω,Xzi) = [1m, XD]. The distribution of posterior beliefs comes
from standard formulas for the conditional distribution of bivariate normals. Conditional
on observing Ii, ω is normally distributed with posterior mean and variance-covariance
matrix

E (ω|Ii) = Cov(ω,Xzi)′ V ar(Xzi)−1 Xzi (11)

Σ (χ) := V ar(ω|Ii) = V ar(ω)− Cov(ω,Xzi)′ V ar(Xzi)−1 Cov(ω,Xzi) (12)

where V ar(Xzi) = XΓΓ′X ′ and Γ =
[
1n D B

]
.4

A.2 Proof of proposition 1

Proof of claim 1: Suppose all agents acquire full information. In this case Π(bi) = 0 and
each agent has to pay c. Deviating from the equilibrium means that the agent receives an
uniformative signal, i.e. bi → ∞, but does not have to pay c. From the definition we can
easily see that as bi → ∞, τv → 0. In the full information equilibirum, the agent knows
that ā = s and thus V ar [ā|Ii] = Cov [ā, s|Ii] = V ar [s|Ii]. Put differently, the agent only
needs to forecast s, as he knows the action of the other players. Thus, after deviation, the
agent’s payoff becomes

Πi = −V ar[s|Ii] (13)

= −τ−1
s (14)

This deviation is strictly profitable if and only if

τ−1
s < c

From there it follows that an equilibrium with full revelation is sustainable if and only if
c ≤ τ−1

s , which is what we wanted to show.

4The relevant variance and covariance matrices are obtained by writing
[
ω′ (

Xzi
)′]′

as [
ω
Xzi

]
=

[
Ik+1 0
XΓ

] [
ω
vi

]
and using the fact that if a vector x is distributed according to x ∼ N (µ, I), then Cx ∼
N (Cµ,CC′).
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Proof of claim 2: Suppose we are in an equilibrium, in which no agent has acquired
information. In this case, all agents know that no other agent has acquired information
so that for each i we have ai = ā = E[s] = µ. Thus, V ar[s|Ii] = τ−1

s and V ar[ā|Ii] =
Cov[s, ā|Ii] = 0. Hence, in equilibrium, the payoff for each agent πi is given by

πi = −(1− r)2τ−1

If the agent were to deviate, he would fully learn s and incur a cost of c. He still knows
that ā = µ. Thus, he would play ai = (1−r)s+rµ. We see from there, as well as from the
fact that V ar[s|Ii] = V ar[ā|Ii] = Cov[s, ā|Ii] = 0 that Π = 0. thus, the agent’s payoff
after deviation will be −c. From there it follows that a deviation is strictly profitable if
and only if

(1− r)2τ−1 > c

Hence, an equilibrium in which no agent acquires any information is sustainable as long
as
c ≥ (1− r)2τ−1

s , which is what we wanted to show.
Proof of claim 3: Suppose that we are in an equilibrium in which a fraction α ∈ (0, 1)

of the agents is informed and a fraction (1− α) is not. Denote by II an informed agents’
information set and by IU the uninformed agents information set. The informed agents
know the precise value of s, the uninformed agents have to rely on the prior alone. We
conjecture that in equilibrium both, informed and uninformed agents play linear strategies
of their signal and the prior:

aIi = āI = γ1µ+ (1− γ1)sa
U
i = āU = γ2µ (15)

Where we have used the fact that there is no idiosyncratic noise in the signals for the
informed agents, since s is fully revealed. Also note that γ1, γ2 ∈ [0, 1]. Let us now find
γ1 and γ2 in such an equilibrium. The average action is given by:

ā = (αγ1 + (1− α)γ2)µ+ α(1− γ1)s

From there it follows that

E
[
ā|IU

]
= (α+ (1− α)γ2)µ

E
[
ā|II

]
= ā = (αγ1 + (1− α)γ2)µ+ α(1− γ1)s (16)

From there, using the expression for the optimal action of agents we get:

γ2µ = r(α+ (1− α)γ2)µ+ (1− r)µ

⇒ γ2 = r(α+ (1− α)γ2) + (1− r)

=
αr + (1− r)

1− r(1− α)
= 1

With this, we can then solve for γ1 and (1− γ1):

γ1µ+ (1− γ1)s = r(αγ1 + (1− α))µ+ (rα(1− γ1) + (1− r)s

⇒ γ1 = r(αγ1 + (1− α))

=
(1− α)r

1− αr

⇒ (1− γ1) =
1− r

1− αr
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Let us now turn to the sufficient statistics in such an equilibrium. Trivially, we have
V ar

[
s|II

]
= Cov

[
ā, s|II

]
= V ar

[
ā|II

]
= 0. For the uninformed agents, we get:

V ar
[
s|IU

]
= τ−1

s (17)

Cov
[
ā, s|IU

]
= α(1− γ1)τ

−1
s (18)

V ar
[
ā|II

]
= α2(1− γ1)

2τ−1
s (19)

Denoting by ΠU and ΠI the payoff of uninformed and informed agents respectively, we
know that a necessary condition for a mixed equilibrium is ΠU = ΠI Since we have

ΠI = r2V ar
[
s|II

]
+ 2(1− r)rCov

[
ā, s|II

]
+ (1− r)2V ar

[
ā|II

]
− c = −c (20)

ΠU = r2V ar
[
s|IU

]
+ 2(1− r)rCov

[
ā, s|IU

]
+ (1− r)2V ar

[
ā|IU

]
= (r2α2(1− γ1)

2 + 2(1− r)α(1− γ1) + (1− r)2)τ−1
s

= [rα(1− γ1) + (1− r)]2τ−1
s (21)

The necessary condition for a mixed equilibrium then becomes:

[rα(1− γ1) + (1− r)]2 = τsc (22)

rα
(1− r)

1− αr
+ (1− r) =

√
τsc (23)

1− r =
√
τsc(1− αr) (24)

α =
√
τsc−(1−r)
r
√
τsc

(25)

Since we require α > 0, we get the first condition:

√
τsc− (1− r) > 0 ⇒ c > (1− r)2τ−1

s

From α < 1 we then get the second condition:

√
τsc− (1− r) < r

√
τsc

⇒ r
√
τsc < 1

⇒ c < τ−1
s

A.3 Proof of proposition 2

See Myatt and Wallace (2011).

A.4 Proof of proposition 3

Our objective (1) is equivalent to maximizing the following linear quadratic utility func-
tions:

u = ū− r(ai − ā)2 − (1− r)(ai − s)2 − C (ψi)

Where s is some state of nature. Agents have an improper prior over s. We can now
consider any number n of signals, each signal zil, l = 1, 2...n for agent i is given by

zil = s+ ψ−.5
il ul +Blvil

13



Where ul is signal specific with distribution ul ∼ N (0, 1) and vil ∼ N (0, 1) is private
noise. v and u are independent to one another as well as to s.

Each agent chooses his action ai as well as his information strategy {ψil}nl=1 and has
an information cost function C (ψi), where ψi denotes the vector of information choices.
The agents private noise component is determined by Bl but is fixed for each signal and
cannot be altered by the agent.

We now first conjecture that each agent chooses a linear strategy in the n signals,
assigning weights γil to each signal l such that

∑n
l=1 = 1 and their strategy is given by

ai =

n∑
l=1

γilzil

= s+
n∑
l=1

γil
(
ψ−.5
il ul +Blvil

)
(26)

Proofs for this are standard.
Furthermore, in any symmetric equilibrium, all agents choose the same ψl = ψil ∀i

and the same γl = γil ∀i for each signal l.
Since the idiosyncratic noise washes out in the aggregate and all agents choose the

same precision, in equilibrium the average action is given by

ā = s+
n∑
l=1

γlψ
−.5
l ul

Maximizing utility is the same as minimizing the loss function

L(γi, ψi) = rE
[
(ai − ā)2

]
+ (1− r)E

[
(ai − s)2

]
+ C (ψi)

Let us first derive the first term of this expression:

(ai − ā)2 =

[
s+

n∑
l=1

γil
(
ψ−.5
il ul +Blvil

)
− s−

n∑
l=1

γlψ
−.5
l ul

]2

=

[
n∑
l=1

γilBlvil +

n∑
l=1

(γilψ
−.5
il − γlψ

−.5
l )ul

]2

(27)

Since we assumed ul and vil to be independent, the expectation becomes:

E
[
(ai − ā)2

]
=

∑n
l=1 γ

2
ilB

2
l +

∑n
l=1

(
γil√
ψil

− γl√
ψl

)2

(28)

The second term can be found by looking at

(ai − s)2 =

[
s+

n∑
l=1

γil
(
ψ−.5
il ul +Blvil

)
− s

]2

=

[
n∑
l=1

γil(Blvil + ψ−.5
il ul)

]2

(29)

Again, because of independence we get

E
[
(ai − s)2

]
=

∑n
l=1 γ

2
il

(
B2
l +

1
ψil

)
(30)

14



Combining these results yields:

L(γi, ψi) = r

[
n∑
l=1

γ2
ilB

2
l +

n∑
l=1

(
γil√
ψil

− γl√
ψl

)2
]
+ (1− r)

[
n∑
l=1

γ2
il

(
B2
l +

1

ψil

)]
+ C (ψi)

=

n∑
l=1

γ2
il

(
B2
l +

(1− r)

ψil

)
+ r

n∑
l=1

(
γil√
ψil

− γl√
ψl

)2

+ C (ψi) (31)

Regardless of the exact equilibrium we are at, local to equilibrium strategies (γ, ψ) the
second term of the above expression becomes zero and we can disregard it for the first
order conditions, since at this point changes to the information strategy or action only
have second order effects.

The fact that the middle term has zero partial derivative with respect to ψil when
ψil = ψl means that ∂2L/∂ψil∂ψl = 0 in a symmetric equilibrium. In other words, the
precision that others choose does not affect the marginal benefit of additional precision for
an individual. Thus, there is a unique crossing point where marginal benefit and marginal
cost are equal. This unique crossing point determines the unique level of ψl that can be
sustained as a symmetric equilibrium.
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