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Questions ]

@ Q1. What does the pricing kernel look like?

o Dispersion : entropy

@ Dynamics : n—period entropy and horizon dependence
o Disasters : entropy and high-order cumulants

@ lllustration: the Vasicek model

@ Q2. How do these pricing kernels compare?

Power utility
Recursive preferences
Habits

Jumps and disasters

¢ ¢ ¢ ¢
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Questions ]

@ Q1. What does the pricing kernel look like?

@ Dispersion : entropy “big”

@ Dynamics : n—period entropy and horizon dependence “small”
o Disasters : entropy and high-order cumulants
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Questions )

@ Q1. What does the pricing kernel look like?

@ Dispersion : entropy “big”

@ Dynamics : n—period entropy and horizon dependence “small”
o Disasters : entropy and high-order cumulants help with both

@ lllustration: the Vasicek model

@ Q2. How do these pricing kernels compare?

Power utility
Recursive preferences
Habits

Jumps and disasters
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Facts about excess returns (% per month) |

Standard Excess
Asset Mean Deviation Skewness Kurtosis
S&P 500 0.40 5.56 —0.40 7.90
Fama-French (small, low) —0.30 11.40 0.28 9.40
Fama-French (small, high) 0.90 8.94 1.00 12.80
Pound Sterling 0.35 3.16 —0.50 1.50
5 year bond 0.15 1.90 0.10 4.87

@ Also ... the nominal 60-month term spread is about 0.1%/month
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Facts: summary ]

@ Facts

@ “Big” excess returns, 1% > equity premium
@ “Small” term spreads, £0.1%
@ Skewness and kurtosis evident

@ Each tells us something about the pricing kernel
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Entropy ]

4/21



Entropy )

@ Conditional entropy

Li(miy1) = logEimiyq —Elogmiia
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Entropy ]

@ Conditional entropy

Li(miy1) = logEimiyq —Elogmiia

@ Why “entropy”?

Li(mi+1) = —Eilog(i+1/Pi+1)

@ Applications

@ Entropy, ELt(m¢41)
@ Horizon dependence

H(n) = n EL(mytin)—EL(miia)
—_— —] —

avg over n periods one period
governp LSE
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Properties of entropy )

@ Dispersion: entropy bound

ELt(mt+1) > E(Iog M1 — |Og rtl)
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Properties of entropy )

@ Dispersion: entropy bound

EL((my1) > E(logrys —logrl)

@ Dynamics: horizon dependence

H(n) = —E(y{ —v¢)

@ Disasters: high-order cumulants

Le(meya) = Kar(logmeya) /2! + Ka(logmit1) /3! + Ka(logmegq) /40 + -

normal term high-order cumulants LSE
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What the pricing kernel looks like )

@ Dispersion
@ Entropy > 0.01 = 1% a month

@ Dynamics

@ Horizon dependence < 0.001 = 0.1% a month

@ Disasters

@ Something besides the normal distribution
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Vasicek model: an example

@ Pricing kernel

logmi1; = logm—+a(B)wgyg
= logm+ agWi11 + agWe +apWe—3 + -+
——

entropy horizon dependence
w ~ NID(0,1)

@ Interest rate

1 logm 2
y; = —logEi (e ™) = —logm —af/2 —a;w; — apWy_q — - - -

@ ARMAC(1,1) for logm; is AR(1) [Vasicek] for the interest rate

aj+1=0ay, j>1
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Vasicek model: properties ]

@ Partial sums
An = atartax+---+a,
@ Entropy
EL(me1) = a5/2 = Aj/2 = ag “big’

@ Horizon dependence

H(n) = n~ (A]2 1 —AY/2 = a “small’

-
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Vasicek model: moving average coefficients |

0.05

0.04f

0.03f

<~ 0.02F

0.01f

-0.01

Il Positive Yield Spread
I Negative Yield Spread

Order j



Vasicek model:

horizon dependence

)

Entropy and Horizon Dependence
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Representative-agent models

@ Additive power utility

@ Recursive preferences

@ Bansal-Yaron with persistent consumption growth
9 ... and stochastic volatility

@ Habits

@ Ratio habits
o Difference habits
@ Campbell-Cochrane

@ Jumps and disasters
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Model summary
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Recursive preferences ]

@ Preferences

U = [(2—B)cP+Bu(Ua)?]?

M(Uy1) = (EtUta+1)l/a
G,p§1

@ Interpretation

EIS = 1/(1-p)
CRRA = 1—qa
a = p = additive power utility
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Consumption and pricing kernel ]

@ Consumption growth

loggr = g+V(B)v1/2Wt
{w¢} ~ NID(0,1)
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Consumption and pricing kernel ]

@ Consumption growth

logg: = g+Yy(B)VY?w,
{w} ~ NID(0,1)

@ Pricing kernel

logmi;; = constants
+ [(P—1)Yo+ (a — p)y(bs) V2 Wess

+ (P=Dyav Pw+ (p—1)yv P wg

ap az
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Consumption and pricing kernel )

@ Consumption growth

loggr = g-l—V(B)Vl/ZWt
{Wt} ~ NID(O,l)

@ Pricing kernel

logmi;; = constants
+ [(P—1)Yo+ (a — p)y(bs) V2 Wess

+ (P— Vv 2w+ (p— 1)yav 2w g -

ap az

@ Critical term: y(b1) = Yo+ b1yy + b2y, + - -
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Power and recursive preferences: moving

average coefficients

a

Moving Average Coefficients —
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Recursive preferences: entropy and horizon

Time Horizon in Months
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Model summary
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Answers to questions J

@ Q1. What does the pricing kernel look like?

Substantial dispersion: entropy > 1% monthly
Limited horizon dependence: < 0.1% monthly
Probably not normal

Useful diagnostics for any model

¢ ¢ ¢ ¢

@ Q2. How do representative-agent models compare?
@ Itis easy to get lots of entropy
@ But it often generates too much horizon dependence
@ All this conditional on parameters

@ Q3. What's next?

@ Heterogeneous agents?
@ Business cycle models?
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Related work (some of it) )

@ Bounds

@ Alvarez-Jermann, Bansal-Lehmann, Hansen-Jagannathan

@ Recursive preferences

o Preferences: Epstein-Zin, Kreps-Porteus, Weil
@ Asset pricing: Bansal-Yaron, Campbell, Hansen-Heaton-Li

@ Habits

@ Abel, Campbell-Cochrane, Chan-Kogan, Constantinides, Heaton,
Sundaresan

@ Jumps and disasters

@ Barro, Barro-Nakamura-Steinsson-Ursua, Bekaert-Engstrom,
Benzoni-Collin-Dufresne-Goldstein, Branger-Rodrigues-Schlag,
Drechsler-Yaron, Eraker-Shaliastovich, Gabaix,
Garcia-Luger-Renault, Longstaff-Piazzesi, Wachter
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Derivation of the Entropy Bound )

Fundamental Theorem of Asset Pricing

Et(Meyafsa) = 1,
Etlogmii1 +E¢logrey; <log(1l) = 0, with equality iff m¢;qri11 =1
Risk-free rate
log rt1+1 = —logE((miy1) = —Li(Miy1) — E¢logmi g

Subtract from above:

Le(Met1) > Ec(logritq —logrd, )

Unconditional entropy: L(m¢11) = EL¢(M¢41) + L(E¢(Mi41))
Therefore,

L(Met1) > E(logries —logryy) + L(Ei(Mis1)) > E(logrs —logry,)

the bound is tighter
SE
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Entropy and HJ bounds (App A.2) )

@ Entropy: High-return asset o HJ: High-return asset

logriy1 = —logme4a f o Mt1
t+1 — YN T N1/5
Vari (m;41)%/2
@ Max excess return over time t(mesa)
(iid) @ Max SR over time (iid)
L(Mt4n) =0 [KH(1) — Ky var(mein) ok (2) -2 ()] _ ¢
E(Mgt4n)?

@ Excess log-return (normal)
@ SR (normal)

1
logri+1 ~ A (logrey; + Kat, Kat)

N eKutKa/2 _ q
Ei(logriy1 —logry, ;) = Ky SRy =

eKit+Kat /2 (eKZt — 1)1/2

)
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