

Alejandro Justiniano, Federal Reserve Bank of Chicago

Giorgio Primiceri, Northwestern University

Andrea Tambalotti, Federal Reserve Bank of New York

Federal Reserve Bank of Minneapolis May 4, 2012

HP-detrended GDP in the US

Imperfect competition and inefficient fluctuations

 Modern business cycle models feature imperfect competition

- Market power in goods / labor markets implies
 Price markups over MC
 - Wage markups over the MRS

Imperfect competition and inefficient fluctuations

Markups vary over time for 2 reasons:

- Sticky prices and wages \rightarrow endogenous markup variation (1)
- (2)
- Direct shocks to markups \rightarrow exogenous markup variation

Imperfect competition and inefficient fluctuations

Markups vary over time for 2 reasons:

- 1 Sticky prices and wages \rightarrow endogenous markup variation
- 2 Direct shocks to markups \rightarrow exogenous markup variation

- Markups variation contributes to fluctuations
 - Inefficient fluctuations
 - > Would not be observed in a competitive economy

1 How important are inefficient fluctuations in US postwar business cycles?

1 How important are inefficient fluctuations in US postwar business cycles?

Inefficient fluctuations are large

- 1 How important are inefficient fluctuations in US postwar business cycles?
- Inefficient fluctuations are large

2 Should a monetary authority counteract these inefficient fluctuations?

- 1 How important are inefficient fluctuations in US postwar business cycles?
- Inefficient fluctuations are large

- 2 Should a monetary authority counteract these inefficient fluctuations?
- Yes, because policy faces a minor trade-off between output gap and inflation stabilization

Outline

- 1. Motivating questions
- 2. Model
- 3. What is the share of inefficient fluctuations?
 > Estimates of counterfactual output under constant markups
- 4. Is there a trade-off between output and inflation stabilization?
 > Compare optimal allocation to allocation with constant markups
- 5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts

The model: summary

Medium-scale DSGE model of the US business cycle

- Christiano, Eichenbaum and Evans (2005, JPE)
- Smets and Wouters (2007, AER)

Stochastic growth model + Shocks + "Frictions"

The model: summary

"Frictions"

- 1. Preferences
 - Habit in consumption
- 2. Technology
 - > Adjustment costs in investment
 - Variable capital utilization
- 3. Market structure: Imperfect competition
 - > Monopolistic competition in products and labor markets
 - Price and wage stickiness (endogenous markups)

Exogenous disturbances

- Tastes & technology
 - Neutral technology
 - ➢ Investment specific
 - Inter-temporal preference shock +
 - Intra-temporal preference shock

- growth rate is AR(1)
- AR(1)

 \rightarrow

 \rightarrow

- AR(1)
- AR(1)
- Shocks to markets competitiveness
 - ➤ Markup shock in wages → i.i.d.
 - $\blacktriangleright Markup shock in prices \rightarrow AR(1)$
- Policy
 - ➢ Government spending →
 - MP shocks
 - Inflation target shock

→ i.i.d.
→ persistent

AR(1)

persistent AR(1)

Exogenous disturbances

- Tastes & technology
 - Neutral technology
 - ➢ Investment specific
 - Inter-temporal preference shock +
 - Intra-temporal preference shock ->

- growth rate is AR(1)
- AR(1)

 \rightarrow

 \rightarrow

 \rightarrow

- AR(1)
- AR(1)
- Shocks to markets competitiveness
 - ≻ Markup shock in wages
 ≻ Markup shock in prices
 → AR(1)
- Policy
 - ➢ Government spending
 - MP shocks
 - Inflation target shock

i.i.d.

AR(1)

persistent AR(1)

Data and estimation

- Observable variables
 - 1. GDP
 - 2. Consumption
 - 3. Investment
 - 4. Hours
 - 5. Inflation
 - 6. Federal funds rate
 - 7. Wages (compensation, total economy)
 - 8. Wages (earnings, non-supervisory and production workers)

Two wage inflation measures

Data and estimation

- Observable variables
 - 1. GDP
 - 2. Consumption
 - 3. Investment
 - 4. Hours
 - 5. Inflation
 - 6. Federal funds rate
 - 7. Wages (compensation, total economy)
 - 8. Wages (earnings, non-supervisory and production workers)
- Quarterly data from 1964: I to 2009: IIII
- Bayesian inference

Outline

- 1. Motivating questions
- 2. Model
- 3. What is the share of inefficient fluctuations?
 > Estimates of counterfactual output under constant markups
- 4. Is there a trade-off between output and inflation stabilization?
 ➢ Compare optimal allocation to allocation with constant markups
- 5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts

What is the share of inefficient fluctuations?

- Compare actual output to potential output
- Potential output
 - Level of output that would prevail under constant markups
 - Almost same log-linear dynamics of efficient output (i.e. output under perfect competition)

Model economy under constant markups

Potential output = level of output that would have been observed in the absence of inefficient markup variation

Actual and DSGE-potential output

Actual and DSGE-potential output

Actual and DSGE-potential output

Decomposing the business cycle

Decomposing the business cycle

$$y_t - y_t^{hp} = y_t^* - y_t^{*hp} + g_t - g_t^{hp}$$

Output Gap and Business Cycles

Summary of results about inefficient fluctuations

Potential output is quite volatile, as in RBC

The output gap is cyclical and also quite volatile

Inefficient fluctuations are large

Summary of results about inefficient fluctuations

Potential output is quite volatile, as in RBC

The output gap is cyclical and also quite volatile

Inefficient fluctuations are large

Outline

- 1. Motivating questions
- 2. Model
- 3. What is the share of inefficient fluctuations?> Estimates of counterfactual output under constant markups
- 4. Is there a trade-off between output and inflation stabilization?
 > Compare optimal allocation to allocation with constant markups
- 5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts

Efficient allocation

•
$$MRS_t = MPL_t = \frac{W_t}{P_t}$$

•
$$Y_{it} = Y_t \quad \forall i$$

•
$$L_{jt} = L_t \quad \forall j$$

Efficient allocation

•
$$MRS_t = MPL_t = \frac{W_t}{P_t}$$

•
$$Y_{it} = Y_t \quad \forall i$$

•
$$L_{jt} = L_t \quad \forall j$$

Our economy with sticky prices and wages

•
$$P_t = \mu_t^p M C_t$$

• $\frac{W_t}{P_t} = \mu_t^w M R S_t$

Efficient allocation

•
$$MRS_t = MPL_t = \frac{W_t}{P_t}$$

•
$$Y_{it} = Y_t \quad \forall i$$

•
$$L_{jt} = L_t \quad \forall j$$

Our economy with sticky prices and wages

•
$$P_t = \mu_t^p MC_t$$

• $\frac{W_t}{P_t} = \mu_t^w MRS_t$

$$MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t$$

Efficient allocation

•
$$MRS_t = MPL_t = \frac{W_t}{P_t}$$

•
$$Y_{it} = Y_t \quad \forall i$$

•
$$L_{jt} = L_t \quad \forall j$$

Our economy with sticky prices and wages

•
$$P_t = \mu_t^p MC_t$$

• $\frac{W_t}{P_t} = \mu_t^w MRS_t$

$$MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t$$

• $Y_{it} \neq Y_t$ • $L_{jt} \neq L_t$

Efficient allocation

•
$$MRS_t = MPL_t = \frac{W_t}{P_t}$$

•
$$Y_{it} = Y_t \quad \forall i$$

•
$$L_{jt} = L_t \quad \forall j$$

Our economy with sticky prices and wages

•
$$P_t = \mu_t^p MC_t$$

• $\frac{W_t}{P_t} = \mu_t^w MRS_t$
• $Y_{it} \neq Y_t$
MRS_t· $(\mu_t^w \cdot \mu_t^p) = MPL_t$

• $L_{jt} \neq L_t$
The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. closing the output gap
 - > Nominal stabilization, i.e. eliminating price and wage dispersion

The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. closing the output gap
 - > Nominal stabilization, i.e. eliminating price and wage dispersion
- Sources of trade-off
 - Sticky prices and wages
 - Markup shocks

The optimal allocation

- Maximize the utility of the average HH
 - Subject to the (nonlinear) constraints represented by the equilibrium behavior of private agents
- Compute a first order approximation to the dynamics under optimal policy
- Plot the path of variables in a counterfactual economy hit by the same shocks, but with Ramsey policy since the beginning of time

The optimal allocation

The optimal allocation

Summary of results about the optimal allocation

- Optimal ≈ potential output
- Optimal inflations are quite stable

Summary of results about the optimal allocation

- Optimal ≈ potential output
- Optimal inflations are quite stable

1. Little trade-off between output and inflation stabilization

Summary of results about the optimal allocation

- Optimal ≈ potential output
- Optimal inflations are quite stable

- 1. Little trade-off between output and inflation stabilization
- 2. A large fraction of fluctuations should have been avoided

Outline

- 1. Motivating questions
- 2. Model
- 3. What is the share of inefficient fluctuations?
 > Estimates of counterfactual output under constant markups
- 4. Is there a trade-off between output and inflation stabilization?
 ➢ Compare optimal allocation to allocation with constant markups
- 5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts

Two wage inflation measures

- Re-estimate model using only one series of compensation
 Standard practice in the DSGE literature (e.g. SW 2007)
- Most parameter estimates are similar to baseline

- Re-estimate model using only one series of compensation
 Standard practice in the DSGE literature (e.g. SW 2007)
- Most parameter estimates are similar to baseline
- One exception: Wage markup shocks
 - ➢ Six times as volatile → implausibly volatile
 - Resemble noise
 - Explain most high frequency variation in wages
 - > Explain negligible shares of BC variance in all real series

- Re-estimate model using only one series of compensation
 Standard practice in the DSGE literature (e.g. SW 2007)
- Most parameter estimates are similar to baseline
- One exception: Wage markup shocks
 - ➢ Six times as volatile → implausibly volatile
 - Resemble noise
 - Explain most high frequency variation in wages
 - Explain negligible shares of BC variance in all real series
- Compute the optimal allocation in this model

The optimal allocation in a model estimated with one wage series

Model estimated with one wage series:

Strong tension between real and nominal stabilization

Optimal policy de-stabilizes output to stabilize wages

- Model estimated with one wage series:
 - Strong tension between real and nominal stabilization
 - > Optimal policy de-stabilizes output to stabilize wages
 - Tension driven by large high frequency variation in desired markups, which seems questionable

The optimal allocation without wage markup shocks

- Model estimated with one wage series:
 - Strong tension between real and nominal stabilization
 - > Optimal policy de-stabilizes output to stabilize wages
 - Tension driven by large high frequency variation in desired markups, which seems questionable
 - So much weight on nominal stabilization that optimal output is nearly invariant to the interpretation of labor supply shocks

Potential and optimal output under two interpretations of labor supply shocks

Conclusions

Inefficient fluctuations are large

- Optimal output ≈ potential output
 - > A substantial fraction of fluctuations should have been avoided
 - Negligible trade-off between output and inflation stabilization
- Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts
- Lack of identification of labor supply shocks has only a minor impact on the normative implications of the model (cf. CKM 2010)

Production technology of final-good producers

$$Y_t = \left[\int_0^1 Y_t(i) \frac{1}{1+\lambda_{p,t}} di\right]^{1+\lambda_{p,t}} di$$

Production technology of final-good producers

$$Y_{t} = \left[\int_{0}^{1} Y_{t}(i) \frac{1}{1+\lambda_{p,t}} di\right]^{1+\lambda_{p,t}} \int_{\text{shock}}^{1+\lambda_{p,t}} di$$

Production technology of intermediate goods producers

$$Y_{t}(i) = \frac{A_{t}^{1-\alpha}K_{t}(i)^{\alpha}L_{t}(i)^{1-\alpha} - A_{t}F$$

- > Monopolistically competitive markets
- > Optimizing firms set prices by maximizing PDV of profits
- > Calvo type stickiness: a fraction ξ_p of firms cannot re-optimize
 - index prices to ss and past inflation

Households maximization problem

$$E_{0} \sum_{t=0}^{\infty} \beta^{t} b_{t} \left[\log (C_{t} - hC_{t-1}) - \frac{\varphi_{t}}{1 + \nu} \frac{L_{t}(j)^{1+\nu}}{1 + \nu} \right]$$

subject to

 $P_t C_t + P_t I_t + T_t + B_t \le R_{t-1} B_{t-1} + Q_t(j) + \Pi_t + W_t(j) L_t(j) + r_t^k K_t$

$$K_{t+1} = (1-\delta)K_t + \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right)\mu_t I_t$$

- Monopolistically competitive suppliers of specialized labor
- > Calvo-type stickiness: a fraction ξ_w of HH cannot re-optimize
 - index wages to ss and past inflation-productivity

 Employment agencies aggregate differentiated labor into homogeneous labor

$$L_{t} = \begin{bmatrix} 1 \\ \int_{0}^{1} L_{t}(j) & \frac{1}{1 + \lambda_{w,t}} \\ 0 & \text{wage markup} \\ \text{shock} \end{bmatrix}^{1 + \lambda_{w,t}} \text{wage markup}$$

 Employment agencies aggregate differentiated labor into homogeneous labor

$$L_{t} = \begin{bmatrix} 1 \\ \int_{0}^{1} L_{t}(j) & \frac{1}{1+\lambda_{w,t}} & di \end{bmatrix}^{1+\lambda_{w,t}} wage markup shock$$

The wage markup shock and the labor supply shock are observationally equivalent

 ...but have different implications for the behavior of the efficient economy (CKM 2009)

The model: log-linear wage Phillips curve

 $\pi_t^w = \gamma_1 \pi_{t-1}^w + \gamma_2 E_t \pi_{t+1}^w + \kappa \mu_t^w + \kappa \lambda_{w,t}$

 Monetary policy sets the short-term nominal interest rate following a Taylor-type rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\left(\frac{\overline{\pi}_{t-3,t}}{\pi_t^*}\right)^{\phi_\pi} \left(\frac{(X_t/X_{t-4})^{1/4}}{e^{\gamma}}\right)^{\phi_X} \right]^{1-\rho_R} \mathcal{E}_{R,t}$$

Wage markup shocks: fact or fiction?

Wage markup shocks in the log-linear version of the model

> Wage Phillips curve:

$$\pi_t^w = \gamma_1 \pi_{t-1}^w + \gamma_2 E_t \pi_{t+1}^w + \kappa \mu_t^w + \kappa \lambda_{w,t}$$

Std \approx 30 basis points

Shocks to desired markup in the labor market are large

Alternative interpretation of wage markup shocks

- Take seriously the idea that they might just be "noise"
- Estimate models
 - > With measurement error for wages (without wage markup shocks)
 - Fits the data better
 - Without wages as observables
 - Markup shocks become very small
 - > With two wage inflation measures
 - In the spirit of factor analysis (Boivin and Giannoni, 2006)
 - Helps identifying idiosyncratic errors from wage markup shocks

$\mathbf{\Psi}$

Markup shocks are very small

"Going after" (a subset of) the literature

Output gap estimates differ from standard measures

Edge, Kiley and Laforte (2008)

Levin, Onatski, Williams and Williams (2005)

> Andrés, López-Salido and Nelson (2005)

Edge, Kiley and Laforte (2008)

Edge, Kiley and Laforte (2008)

"Our" gap without π^*

LOWW (2005)

LOWW (2005)

"Our" gap with LOWW dataset and policy rule

Andrés, López-Salido and Nelson (2005)

Andrés, López-Salido and Nelson (2005)

— "Our" gap without *markup shocks*