Is there a trade-off between inflation and output stabilization?

Alejandro Justiniano, Federal Reserve Bank of Chicago

Giorgio Primiceri, Northwestern University

Andrea Tambalotti, Federal Reserve Bank of New York

Federal Reserve Bank of Minneapolis
May 4, 2012
HP-detrended GDP in the US
Imperfect competition and inefficient fluctuations

- Modern business cycle models feature imperfect competition

- Market power in goods / labor markets implies
 - Price markups over MC
 - Wage markups over the MRS
Imperfect competition and inefficient fluctuations

- Markups vary over time for 2 reasons:
 ① Sticky prices and wages ➔ endogenous markup variation
 ② Direct shocks to markups ➔ exogenous markup variation
Imperfect competition and inefficient fluctuations

- Markups vary over time for 2 reasons:
 1. Sticky prices and wages ➔ endogenous markup variation
 2. Direct shocks to markups ➔ exogenous markup variation

- Markups variation contributes to fluctuations
 - Inefficient fluctuations
 - Would not be observed in a competitive economy
The questions that we address

① How important are inefficient fluctuations in US postwar business cycles?
The questions that we address

① How important are inefficient fluctuations in US postwar business cycles?

→ Inefficient fluctuations are large
The questions that we address

1. How important are inefficient fluctuations in US postwar business cycles?

 ➤ Inefficient fluctuations are large

2. Should a monetary authority counteract these inefficient fluctuations?
The questions that we address

1. How important are inefficient fluctuations in US postwar business cycles?
 - Inefficient fluctuations are large

2. Should a monetary authority counteract these inefficient fluctuations?
 - Yes, because policy faces a minor trade-off between output gap and inflation stabilization
Outline

1. Motivating questions

2. Model

3. What is the share of inefficient fluctuations?
 - Estimates of counterfactual output under constant markups

4. Is there a trade-off between output and inflation stabilization?
 - Compare optimal allocation to allocation with constant markups

5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts
The model: summary

- Medium-scale DSGE model of the US business cycle
 - Christiano, Eichenbaum and Evans (2005, JPE)
 - Smets and Wouters (2007, AER)

- Stochastic growth model + Shocks + “Frictions”
The model: summary

“Frictions”

1. Preferences
 - Habit in consumption

2. Technology
 - Adjustment costs in investment
 - Variable capital utilization

3. Market structure: Imperfect competition
 - Monopolistic competition in products and labor markets
 - Price and wage stickiness (endogenous markups)
Exogenous disturbances

- Tastes & technology
 - Neutral technology → growth rate is AR(1)
 - Investment specific → AR(1)
 - Inter-temporal preference shock → AR(1)
 - Intra-temporal preference shock → AR(1)

- Shocks to markets competitiveness
 - Markup shock in wages → $i.i.d.$
 - Markup shock in prices → AR(1)

- Policy
 - Government spending → AR(1)
 - MP shocks → $i.i.d.$
 - Inflation target shock → persistent AR(1)
Exogenous disturbances

- Tastes & technology
 - Neutral technology \rightarrow growth rate is AR(1)
 - Investment specific \rightarrow AR(1)
 - Inter-temporal preference shock \rightarrow AR(1)
 - Intra-temporal preference shock \rightarrow AR(1)

- Shocks to markets competitiveness
 - Markup shock in wages \rightarrow i.i.d.
 - Markup shock in prices \rightarrow AR(1)

- Policy
 - Government spending \rightarrow AR(1)
 - MP shocks \rightarrow i.i.d.
 - Inflation target shock \rightarrow persistent AR(1)
Data and estimation

- Observable variables
 1. GDP
 2. Consumption
 3. Investment
 4. Hours
 5. Inflation
 6. Federal funds rate
 7. Wages (compensation, total economy)
 8. Wages (earnings, non-supervisory and production workers)
Two wage inflation measures

Nominal wage inflation

- Blue line: baseline
- Red dashed line: LEPRIVA

Year range: 1960 to 2010

Y-axis: Nominal wage inflation (range -1 to 3.5)
Data and estimation

- Observable variables
 1. GDP
 2. Consumption
 3. Investment
 4. Hours
 5. Inflation
 6. Federal funds rate
 7. Wages (compensation, total economy)
 8. Wages (earnings, non-supervisory and production workers)

- Quarterly data from 1964:I to 2009:IV

- Bayesian inference
1. Motivating questions

2. Model

3. What is the share of inefficient fluctuations?
 - Estimates of counterfactual output under constant markups

4. Is there a trade-off between output and inflation stabilization?
 - Compare optimal allocation to allocation with constant markups

5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts
What is the share of inefficient fluctuations?

- Compare actual output to potential output

- Potential output
 - Level of output that would prevail under constant markups
 - Almost same log-linear dynamics of efficient output (i.e. output under perfect competition)
Model economy

- Shocks to preferences and technology
- Shocks to the degree of market competitiveness

- Sticky prices and wages
- Estimated policy rule
- Habit formation, etc...

→

Observed Output

Y
Model economy

Shocks to preferences and technology

Shocks to the degree of market competitiveness

Sticky prices and wages

Estimated policy rule

Habit formation, etc...

Observed Output

Y
Model economy under constant markups

Potential output = level of output that would have been observed in the absence of inefficient markup variation
Actual and DSGE-potential output

(a): GDP and Potential GDP

Log GDP Per Capita
Log Potential GDP

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3
5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3

- Log GDP Per Capita
- Log Potential GDP
Actual and DSGE-potential output

(a): GDP and Potential GDP

(b): Output Gap
Actual and DSGE-potential output

(a): GDP and Potential GDP

(b): Output Gap
Decomposing the business cycle

\[y_t = y_t^* + g_t \]
Decomposing the business cycle

\[y_t - y_t^{hp} = y_t^* - y_t^{*hp} + g_t - g_t^{hp} \]
Output Gap and Business Cycles
Summary of results about inefficient fluctuations

- Potential output is quite volatile, as in RBC
- The output gap is cyclical and also quite volatile

Inefficient fluctuations are large
Summary of results about inefficient fluctuations

- Potential output is quite volatile, as in RBC
- The output gap is cyclical and also quite volatile

Inefficient fluctuations are large

- Next question ➔ What should policy do about it?
Outline

1. Motivating questions

2. Model

3. What is the share of inefficient fluctuations?
 - Estimates of counterfactual output under constant markups

4. Is there a trade-off between output and inflation stabilization?
 - Compare optimal allocation to allocation with constant markups

5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts
The policy tradeoff

Efficient allocation

- \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
- \(Y_{it} = Y_t \quad \forall i \)
- \(L_{jt} = L_t \quad \forall j \)
The policy tradeoff

- Efficient allocation
 - \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
 - \(Y_{it} = Y_t \quad \forall i \)
 - \(L_{jt} = L_t \quad \forall j \)

- Our economy with sticky prices and wages
 - \(P_t = \mu_t^p MC_t \)
 - \(\frac{W_t}{P_t} = \mu_t^w MRS_t \)
The policy tradeoff

Efficient allocation

- \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
- \(Y_{it} = Y_t \quad \forall i \)
- \(L_{jt} = L_t \quad \forall j \)

Our economy with sticky prices and wages

- \(P_t = \mu_t^p MC_t \)
- \(\frac{W_t}{P_t} = \mu_t^w MRS_t \)
- \(MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t \)
The policy tradeoff

- Efficient allocation
 - \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
 - \(Y_{it} = Y_t \quad \forall i \)
 - \(L_{jt} = L_t \quad \forall j \)

- Our economy with sticky prices and wages
 - \(P_t = \mu_t^p MC_t \)
 - \(\frac{W_t}{P_t} = \mu_t^w MRS_t \)
 - \(Y_{it} \neq Y_t \)
 - \(L_{jt} \neq L_t \)
 - \(MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t \)
The policy tradeoff

Efficient allocation

\[MRS_t = MPL_t = \frac{W_t}{P_t} \]

\[Y_{it} = Y_t \quad \forall i \]

\[L_{jt} = L_t \quad \forall j \]

Our economy with sticky prices and wages

\[P_t = \mu_t^P MC_t \]

\[\frac{W_t}{P_t} = \mu_t^w MRS_t \]

\[Y_{it} \neq Y_t \]

\[L_{jt} \neq L_t \]

\[MRS_t \cdot \mu_t^w \cdot \mu_t^P = MPL_t \]
The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. closing the output gap
 - Nominal stabilization, i.e. eliminating price and wage dispersion
The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. closing the output gap
 - Nominal stabilization, i.e. eliminating price and wage dispersion

- Sources of trade-off
 - Sticky prices and wages
 - Markup shocks
The optimal allocation

- Maximize the utility of the average HH
 - Subject to the (nonlinear) constraints represented by the equilibrium behavior of private agents

- Compute a first order approximation to the dynamics under optimal policy

- Plot the path of variables in a counterfactual economy hit by the same shocks, but with Ramsey policy since the beginning of time
The optimal allocation

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
The optimal allocation

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
Summary of results about the optimal allocation

- Optimal \approx potential output

- Optimal inflations are quite stable
Summary of results about the optimal allocation

- Optimal \approx potential output

- Optimal inflations are quite stable

1. Little trade-off between output and inflation stabilization
Summary of results about the optimal allocation

- Optimal \approx potential output
- Optimal inflations are quite stable

1. Little trade-off between output and inflation stabilization
2. A large fraction of fluctuations should have been avoided
Outline

1. Motivating questions

2. Model

3. What is the share of inefficient fluctuations?
 - Estimates of counterfactual output under constant markups

4. Is there a trade-off between output and inflation stabilization?
 - Compare optimal allocation to allocation with constant markups

5. Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts
Importance of measurement of wages
Two wage inflation measures
Importance of measurement of wages

- Re-estimate model using only one series of compensation
 - Standard practice in the DSGE literature (e.g. SW 2007)

- Most parameter estimates are similar to baseline
Importance of measurement of wages

- Re-estimate model using only one series of compensation
 - Standard practice in the DSGE literature (e.g. SW 2007)

- Most parameter estimates are similar to baseline

- One exception: Wage markup shocks
 - Six times as volatile \(\rightarrow\) implausibly volatile
 - Resemble noise
 - Explain most high frequency variation in wages
 - Explain negligible shares of BC variance in all real series
Importance of measurement of wages

- Re-estimate model using only one series of compensation
 - Standard practice in the DSGE literature (e.g. SW 2007)

- Most parameter estimates are similar to baseline

- One exception: Wage markup shocks
 - Six times as volatile \Rightarrow implausibly volatile
 - Resemble noise
 - Explain most high frequency variation in wages
 - Explain negligible shares of BC variance in all real series

- Compute the optimal allocation in this model
The optimal allocation in a model estimated with one wage series

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
Importance of measurement of wages

- Model estimated with one wage series:
 - Strong tension between real and nominal stabilization
 - Optimal policy de-stabilizes output to stabilize wages
importance of measurement of wages

- Model estimated with one wage series:

 - Strong tension between real and nominal stabilization

 - Optimal policy de-stabilizes output to stabilize wages

 - Tension driven by large high frequency variation in desired markups, which seems questionable
The optimal allocation without wage markup shocks

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
Importance of measurement of wages

Model estimated with one wage series:

- Strong tension between real and nominal stabilization
- Optimal policy de-stabilizes output to stabilize wages
- Tension driven by large high frequency variation in desired markups, which seems questionable
- So much weight on nominal stabilization that optimal output is nearly invariant to the interpretation of labor supply shocks
Potential and optimal output under two interpretations of labor supply shocks
Conclusions

- Inefficient fluctuations are large

- Optimal output \approx potential output
 - A substantial fraction of fluctuations should have been avoided
 - Negligible trade-off between output and inflation stabilization

- Key to the no-trade-off result:
 - Treatment of wages in the estimation
 - Assumption about sources of low frequency labor supply shifts

- Lack of identification of labor supply shocks has only a minor impact on the normative implications of the model (cf. CKM 2010)
The model

- Production technology of final-good producers

\[
Y_t = \left[\int_0^1 Y_t(i) \frac{1}{1+\lambda_p} \, di \right]^{1+\lambda_p}
\]
The model

- Production technology of final-good producers

\[Y_t = \left[\int_0^1 Y_t(i) \frac{1}{1+\lambda_{p,t}} \, di \right]^{1+\lambda_{p,t}} \]

price markup shock
The model

- Production technology of intermediate goods producers

\[Y_t(i) = A_t^{1-\alpha} K_t(i)^\alpha L_t(i)^{1-\alpha} - A_t F \]

- Monopolistically competitive markets

- Optimizing firms set prices by maximizing PDV of profits

- Calvo type stickiness: a fraction \(\xi_p \) of firms cannot re-optimize
 - index prices to ss and past inflation
The model

- **Households maximization problem**

\[
E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \varphi_t \frac{L_t(j)^{1+\nu}}{1 + \nu} \right]
\]

subject to

\[
P_tC_t + P_tI_t + T_t + B_t \leq R_{t-1}B_{t-1} + Q_t(j) + \sum_t + W_t(j)L_t(j) + r^kK_t
\]

\[
k_{t+1} = (1 - \delta)K_t + \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right)\mu_t I_t
\]
The model

- **Households** maximization problem

\[
E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \phi_t \frac{L_t(j)^{1+\nu}}{1 + \nu} \right]
\]

subject to

\[
P_t C_t + P_t I_t + T_t + B_t \leq R_{t-1} B_{t-1} + Q_t(j) + \Pi_t + W_t(j) L_t(j) + r_t^k K_t
\]

\[
K_{t+1} = (1 - \delta) K_t + \left(1 - S \left(\frac{I_t}{I_{t-1}} \right) \right) \mu_t I_t
\]
The model

- **Households maximization problem**

\[
E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \varphi_t \frac{L_t(j)^{1+\nu}}{1 + \nu} \right]
\]

subject to

\[
P_t C_t + P_t I_t + T_t + B_t \leq R_{t-1} B_{t-1} + Q_t(j) + \Pi_t + W_t(j) L_t(j) + r^K K_t
\]

\[
K_{t+1} = (1 - \delta) K_t + \left(1 - S \left(\frac{I_t}{I_{t-1}} \right) \right) \mu_I I_t
\]

- Monopolistically competitive suppliers of specialized labor

- Calvo-type stickiness: a fraction ξ_w of HH cannot re-optimize
 - index wages to ss and past inflation-productivity
The model

- Employment agencies aggregate differentiated labor into homogeneous labor

\[
L_t = \left[\int_{0}^{1} L_t(j) \frac{1}{1 + \lambda_{w,t}} \, di \right]^{1 + \lambda_{w,t}}
\]

wage markup shock
The model

- Employment agencies aggregate differentiated labor into homogeneous labor

\[L_t = \left[\int_0^1 L_t(j) \frac{1}{1+\lambda_{w,t}} \, dj \right]^{1+\lambda_{w,t}} \]

- The wage markup shock and the labor supply shock are observationally equivalent

- …but have different implications for the behavior of the efficient economy (CKM 2009)
The model: log-linear wage Phillips curve

\[\pi_t^w = \gamma_1 \pi_{t-1}^w + \gamma_2 E_t \pi_{t+1}^w + \kappa \mu_t^w + \kappa \lambda_{w,t} \]
The model

- Monetary policy sets the short-term nominal interest rate following a Taylor-type rule

\[
\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\rho_R} \left[\frac{\pi_{1,t-3}}{\pi_t^*} \phi_\pi \left(\frac{X_t / X_{t-4}^{1/4}}{e^\gamma} \right)^{\phi_X} \right]^{1-\rho_R} \varepsilon_{R,t}
\]
Wage markup shocks: fact or fiction?

- Wage markup shocks in the log-linear version of the model

 - Wage Phillips curve:

 \[\pi_t^w = \gamma_1 \pi_{t-1}^w + \gamma_2 E_t \pi_{t+1}^w + \kappa \mu_t^w + \kappa \lambda_{w,t} \]

 \[\text{Std} \approx 30 \text{ basis points} \]

- Shocks to desired markup in the labor market are large
Alternative interpretation of wage markup shocks

- Take seriously the idea that they might just be “noise”

- Estimate models

 - With measurement error for wages (without wage markup shocks)
 - Fits the data better

 - Without wages as observables
 - Markup shocks become very small

 - With two wage inflation measures
 - In the spirit of factor analysis (Boivin and Giannoni, 2006)
 - Helps identifying idiosyncratic errors from wage markup shocks

 \[\text{Markup shocks are very small} \]
“Going after” (a subset of) the literature

- Output gap estimates differ from standard measures
 - Edge, Kiley and Laforte (2008)
 - Levin, Onatski, Williams and Williams (2005)
Edge, Kiley and Laforte (2008)
Edge, Kiley and Laforte (2008)

“Our” gap without π^*
"Our" gap with LOWW dataset and policy rule
Andrés, López-Salido and Nelson (2005)
Andrés, López-Salido and Nelson (2005)

“Our” gap without *markup shocks*